JPS595653B2 - Manufacturing method of vibration damping steel plate for processing - Google Patents
Manufacturing method of vibration damping steel plate for processingInfo
- Publication number
- JPS595653B2 JPS595653B2 JP4165880A JP4165880A JPS595653B2 JP S595653 B2 JPS595653 B2 JP S595653B2 JP 4165880 A JP4165880 A JP 4165880A JP 4165880 A JP4165880 A JP 4165880A JP S595653 B2 JPS595653 B2 JP S595653B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- vibration damping
- steel plate
- rolling
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【発明の詳細な説明】
この発明は、冷間加工後の振動減衰能が著しく高(、し
かもその振動減衰能が時効劣化しない特性を有し、加工
性にも優れる割振鋼板の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a distributed steel sheet that has a significantly high vibration damping ability after cold working (and has a characteristic that the vibration damping ability does not deteriorate over time) and has excellent workability.
近時、振動や騒音が各方面から問題視されるようになり
、これに伴い種々な対応策が検討されている。In recent years, vibration and noise have come to be seen as problems from various quarters, and various countermeasures are being considered accordingly.
振動発生部分に振動減衰能の高い材料を使うのもその効
果的な対策の一つと云うことができ、振動減衰能の高い
、いわゆる制振鋼板の必要性もここにある。One of the effective countermeasures is to use materials with high vibration damping ability in the vibration-generating parts, and this is also why so-called vibration damping steel plates with high vibration damping ability are needed.
一般に合金の振動減衰能は、内部摩擦Q−1の大きさで
表わされる。Generally, the vibration damping ability of an alloy is expressed by the magnitude of internal friction Q-1.
ここでQ−1は、次式%式% による。Here, Q-1 is the following formula % formula % by.
このQ−1は、歪振巾1サイクル当りに失なわれるエネ
ルギーの大きさを表わし、Q−1が大きい程振動エネル
ギーを材料内部の熱に変検する割合が犬なることを意味
する。This Q-1 represents the amount of energy lost per one cycle of strain amplitude, and means that the larger Q-1 is, the greater the rate at which vibrational energy is converted into heat inside the material.
制振材料として、従来より広く一般に知られているもの
に、Mn−Cu合金があるが、これはヤング率が低く、
また製造コストの高(つ(欠点がある。Mn-Cu alloy is a well-known vibration damping material, but it has a low Young's modulus.
It also has the disadvantage of high manufacturing costs.
この他、制振鋼として、■強磁性型、■介在物型とでも
云うべき、振動減衰方式の異なる2種類のものが挙げら
れる。In addition, there are two types of vibration damping steels that have different vibration damping methods: (1) ferromagnetic type and (2) inclusion type.
■の強磁性型とは、鋼中の固溶Cや固溶N量を減じて磁
壁移動を容易にしたもので、磁気−機械静履歴損失によ
り振動を減衰させる形式のものであって、具体例として
はCrを多量含有するフェライト系ステンレス鋼をはじ
め、脱炭鋼やTi添加鋼などがある。The ferromagnetic type (ii) is a type in which the amount of solute C and N in the steel is reduced to facilitate domain wall movement, and vibration is damped by magnetic-mechanical static hysteresis loss. Examples include ferritic stainless steel containing a large amount of Cr, decarburized steel, and Ti-added steel.
この形式に共通して云えるのは、(1)先に述べたQ−
1が冷間加工によって著しく低下し、この回復には成形
加工後において700℃以上での歪取焼鈍が必要である
、(2)低歪域(最大歪振巾:1X10−5以下)での
Q−1が小さい、などの欠点を有するということである
。What this format has in common is (1) the Q-
(2) In the low strain range (maximum strain amplitude: 1X10-5 or less), strain relief annealing is required at 700℃ or higher after forming. This means that it has drawbacks such as a small Q-1.
他方、■の介在物型とは、介在物を多量含有するもので
、加工により生じた空孔で振動を吸収するものであり、
鋳鉄などがその一例として挙げられる。On the other hand, the inclusion type (■) contains a large amount of inclusions, and the pores created by processing absorb vibrations.
One example is cast iron.
この型のものは、先の■に較べると低歪域でのQ −1
が大きいが、しかし介在物の存在により加工性が悪劣を
極め、冷間加工が殆んど不可能であるほか、強度的にも
不安を残すなど、実用上必須の要件を欠く。Compared to the previous ■, this type has a Q -1 in the low distortion range.
However, due to the presence of inclusions, the workability is extremely poor, making cold working almost impossible, and the strength remains unreliable, so it lacks practically essential requirements.
清浄度の高い鋼を急熱短時間焼鈍する方法(特開昭50
−142421号)にて製造されるものも、一応介在物
型の範嗜に属するものであり、従って介在物による加工
性劣化の難は免れず、それに加工した後時が立つにつれ
やがてQ−1が劣化する、いわゆる時効劣化の性質をも
ち、実際使用におげろ制振効果に疑問がある。Method of rapidly heating and short-time annealing of highly clean steel
-142421) also belong to the category of inclusion type, so they are inevitably subject to deterioration of workability due to inclusions, and as time passes after processing, they will eventually become Q-1. It has the property of so-called aging deterioration, and its vibration damping effect in actual use is questionable.
上記実状に鑑み本発明は、冷間加工後の振動減衰能が著
しく良好で、しかもその振動減衰能が時効劣化しない特
性をもち、加えて加工性、強度など、実用上不可欠な要
件を備える制振鋼板の製造方法を提供しようとするもの
である。In view of the above circumstances, the present invention has been developed to provide a system which has extremely good vibration damping ability after cold working, which does not deteriorate over time, and which also meets practically essential requirements such as workability and strength. The present invention aims to provide a method for manufacturing a shaken steel plate.
すなわち本発明は、
■ C:0.004〜0.80%、Si:4%以下、M
n : 0.15〜3.0%で、S二0.042〜0.
25%を含み、かつMn (%)/S(%)≧4を満た
し、更にSol、 Al : 0.015〜0.20%
を含有し、残部はFeおよび不可避的不純物からなる鋼
。That is, the present invention includes: (1) C: 0.004 to 0.80%, Si: 4% or less, M
n: 0.15-3.0%, S2 0.042-0.
25%, and satisfies Mn (%)/S (%) ≧ 4, and further Sol, Al: 0.015 to 0.20%
steel, with the remainder consisting of Fe and unavoidable impurities.
■ C:0.004〜0.80%、Si:4%以下、M
n : 0.05〜3.0%で、Pb :0.03〜0
.30%を含み、更にSol、A1:0.015〜0.
20%を含有し、残部はFeおよび不可避的不純物から
なる鋼。■ C: 0.004-0.80%, Si: 4% or less, M
n: 0.05-3.0%, Pb: 0.03-0
.. 30%, and further contains Sol, A1: 0.015 to 0.
20%, with the remainder consisting of Fe and unavoidable impurities.
■ C:0.004〜0.80%、Si:4%以下、M
n : 0.05〜3.0%、Pb : 0.03〜0
.30%、S:0.042〜0.25%を含み、更にS
ol、 Al : 0.015〜0.20%を含有し
、残部はFeおよび不可避的不純物からなる鋼。■ C: 0.004-0.80%, Si: 4% or less, M
n: 0.05-3.0%, Pb: 0.03-0
.. 30%, S: 0.042-0.25%, and further S
Steel containing 0.015 to 0.20% of Al, and the remainder consisting of Fe and inevitable impurities.
上記■、■、■のうちの何れかの鋼を用い、熱間圧延、
或いは更に冷間圧延後、650〜750℃の温度で脱炭
焼鈍してC:0.003%以下に調整し、更に必要に応
じ0.3%以上の調質圧延を行うことを特徴とする制振
鋼板の製造方法を要旨とする。Using any of the above steels ■, ■, ■, hot rolling,
Alternatively, after further cold rolling, decarburization annealing is performed at a temperature of 650 to 750°C to adjust the C content to 0.003% or less, and if necessary, temper rolling is performed to a C content of 0.3% or more. The gist is the manufacturing method of damping steel plates.
本発明方法における調質圧延は、実際使用に当り冷間加
工が行われない場合にのみ必要とされるものであり、そ
の場合この調質圧延によりQ−1が著しく向上する。The skin pass rolling in the method of the present invention is required only when cold working is not performed in actual use, in which case the skin pass rolling significantly improves Q-1.
ユーザー側で冷間加工して使用される場合には、その冷
間加工に上記調質圧延と同じ効果を期待することができ
るので、製造段階での調圧は不要である。When used after being cold worked by the user, the cold working can be expected to have the same effect as the above-mentioned skin pass rolling, so pressure adjustment at the manufacturing stage is not necessary.
この本発明方法によれば、上記調圧、或いは冷間加工十
常温1ケ月時効後のQ−1が板表面の最大歪振巾約0.
5X10−5で2X10−3以上、また加工性について
は伸び(G、 L= 50mm) が40%以上(冷
延鋼板の場合)と、優れた特性を有する制振鋼板が製造
できる。According to the method of the present invention, Q-1 after the above-mentioned pressure adjustment or cold working and aging at room temperature for one month is the maximum strain amplitude of the plate surface of about 0.
It is possible to produce vibration-damping steel plates with excellent properties such as 5X10-5 and 2X10-3 or more, and the elongation (G, L = 50 mm) of 40% or more (in the case of cold-rolled steel sheets).
先に述べた従来の強磁性型、介在物型のそれぞれにみら
れる欠点は、その根本原因が各型式における振動減衰方
式そのものにあるということができる。The root cause of the drawbacks of the conventional ferromagnetic type and inclusion type described above can be said to lie in the vibration damping method itself of each type.
そこで本発明者らは、これら従来の強磁性型、介在物型
とは振動減衰方式を異にする制振鋼板の新規開発を意図
し、種々実験研究を重ねた。Therefore, the inventors of the present invention have conducted various experimental studies with the intention of developing a new vibration damping steel plate with a vibration damping method different from those of the conventional ferromagnetic type and inclusion type.
その結果、鋼中に圧延方向に伸展されたMnS相、Pb
相、PbS相などが存在し、かつ固溶C1固溶Nが可及
的に除かれていると、その場合に限り冷間加工によって
著しく高いQ−1が確保され、しかもこのQ−1は経時
的に、つまり時効により劣化しないという新たな事実を
突止めた。As a result, the MnS phase, Pb
If a phase such as PbS phase exists and solid solution C1 and solid solution N are removed as much as possible, only in that case can a significantly high Q-1 be secured by cold working, and this Q-1 is We discovered a new fact that it does not deteriorate over time, that is, due to aging.
この場合の振動減衰メカニズムの詳細は、未だ十分な解
明に至っていないが、恐ら<MnS相、Pb相、PbS
相とFe相との界面に冷間加工により導入された転位の
振動が、優れた振動減衰機能を発揮するものと考えられ
る。The details of the vibration damping mechanism in this case have not yet been fully elucidated, but it is likely that <MnS phase, Pb phase, PbS phase
It is considered that the vibration of dislocations introduced into the interface between the phase and the Fe phase by cold working exhibits an excellent vibration damping function.
このような振動減衰機能は、転位線上に集まり易い固溶
Cや固溶Nが存在しない場合には、経時的にも低下する
ことがないものと理解される。It is understood that such a vibration damping function does not deteriorate over time if there is no solid solution C or solid solution N that tends to collect on dislocation lines.
本発明者らの詳細な実験によれば、上記振動減衰機能を
低下させないためには、固溶C1固溶Nをそれぞれ0.
003%以下に調整しなげればならないことが確認され
た。According to detailed experiments by the present inventors, in order not to reduce the vibration damping function, the solid solution C1 and the solid solution N should each be reduced to 0.
It was confirmed that the ratio should be adjusted to 0.003% or less.
ところで、溶製段階にてC,N量そのものを上記のよう
に極めて低いレンジに安定に止めるのは実際上容易では
なく、著しいコストアンプは避けられない。By the way, it is actually not easy to stably keep the C and N amounts themselves within the extremely low range as mentioned above in the melting stage, and a significant cost increase is unavoidable.
しかるに本発明のように、溶製段階では普通C量とし、
鋼板に至ったとき湿水素雰囲気中で脱炭焼鈍を行なう方
法によれば、固溶Cく0.003%は容易かつ低コスト
に実現できる。However, as in the present invention, the amount of C is normally set at the melting stage,
According to a method in which a steel plate is decarburized and annealed in a wet hydrogen atmosphere, a solid solution C content of 0.003% can be easily achieved at low cost.
この場合鋼板の厚みとしては3.0mm以下であれば問
題はない。In this case, there is no problem as long as the thickness of the steel plate is 3.0 mm or less.
一方Nについては死水素中の長時間焼鈍により脱N可能
であるが、この方法は長時間を要し得策ではない。On the other hand, N can be removed by long-term annealing in dead hydrogen, but this method requires a long time and is not a good idea.
本発明のように0.015%以上のAI添加により鋼中
NをAINとして固定してしまうと、鋼中N量が高くて
も固溶N量はなく、この方法がコスト的に最も有利で、
しかも効果的な固溶Nの除去方法と云える。If the N in the steel is fixed as AIN by adding 0.015% or more of AI as in the present invention, there will be no solid solution N even if the amount of N in the steel is high, and this method is the most advantageous in terms of cost. ,
Moreover, it can be said to be an effective method for removing solid solution N.
以下、本発明における各要件限定の理由について説明す
る。The reasons for limiting each requirement in the present invention will be explained below.
C:溶製鋼のC量は振動減衰能に影響を与えない。C: The amount of C in molten steel does not affect the vibration damping ability.
しかし0.004%未満では溶製コストを嵩む。However, if it is less than 0.004%, the melting cost increases.
他方0.8%をこえると、大きな冷間圧延パワーを要し
、実際上製造困難となる。On the other hand, if it exceeds 0.8%, a large amount of cold rolling power is required, making production difficult in practice.
Si :必ずしも添加を要しないが、含有量が多いほど
脱炭が容易となり、強度上も好ましい。Si: Although it is not necessarily necessary to add Si, the higher the content, the easier decarburization becomes, and it is also preferable in terms of strength.
ただし4%より多くなると、硬化が著しく製造時に割れ
が入り易い。However, if it exceeds 4%, hardening will be significant and cracks will easily occur during manufacturing.
Mn :MnS相を利用して高いQ−1を確保しようと
する場合、0.15%以上でないと高Q−1は得られな
い。When attempting to secure a high Q-1 using the Mn:MnS phase, a high Q-1 cannot be obtained unless the content is 0.15% or more.
0.15%未満ではMnSが溶解し易いからである。This is because if it is less than 0.15%, MnS is easily dissolved.
MnS相と同じ効果を期待してPb相、またはPbS相
を用いるときには、熱間脆性防止のため、0.05%以
上の含有を要す。When using a Pb phase or a PbS phase with the expectation of the same effect as the MnS phase, the content must be 0.05% or more to prevent hot embrittlement.
ただし3.0%を越える含有では、溶製が困難となる。However, if the content exceeds 3.0%, melting becomes difficult.
S:MnS相或いはPbS相の形成を通して振動減衰能
を向上させる効果があるが、0.042%未満では効果
が不足する。S: has the effect of improving vibration damping ability through the formation of a MnS phase or a PbS phase, but the effect is insufficient if it is less than 0.042%.
しかし0.25%を越える場合には、加工性の低下を来
たす。However, if it exceeds 0.25%, workability will deteriorate.
Pb:振動減衰能の改善に有効であるが、0.03%未
満では効果の不足を来たす。Pb: Effective in improving vibration damping ability, but if it is less than 0.03%, the effect is insufficient.
しかし0.3%を越えると加工性が低下し好ましくない
。However, if it exceeds 0.3%, workability deteriorates, which is not preferable.
上記s、pbは単独、複合の何れの添加でもよい。The above s and pb may be added alone or in combination.
Mn/S:Pbが添加されない場合、熱間脆性を防止す
るには、4以上としなげればならない。Mn/S: If Pb is not added, the ratio must be 4 or more to prevent hot embrittlement.
Sol、 Al :NをAINとして固定する作用があ
るが、0.015%未満ではその作用が充分に期待でき
ない。Sol, Al: has the effect of fixing N as AIN, but if it is less than 0.015%, this effect cannot be expected sufficiently.
反面0.2%を越える含有は、徒らにコストのみ上昇さ
せる。On the other hand, if the content exceeds 0.2%, it will only increase the cost.
脱炭焼鈍ニ一般に板厚3.0mm以下であれば、湿水素
中にてC≦0.003%までの脱炭は充分可能5である
。Decarburization annealing Generally, if the plate thickness is 3.0 mm or less, decarburization to C≦0.003% in wet hydrogen is sufficiently possible5.
その温度としては、650〜750℃が適する。A suitable temperature is 650 to 750°C.
すなわち650℃未満ではCの拡散速度が遅いため脱炭
の効率が低(、また750℃をこえるとオーステナイト
相が発生するので脱炭が進行しに((なる。That is, below 650°C, the diffusion rate of C is slow, resulting in low decarburization efficiency (and above 750°C, an austenite phase is generated, so decarburization slows down).
脱炭焼鈍後の調質圧延二0.3%以上でないと、Q −
1の充分な向上は望めない。If the temper rolling after decarburization annealing does not exceed 0.3%, Q
1 cannot be expected to improve sufficiently.
先にも述べたが、ユーザーにて冷間加工される場合には
、調質圧延は要しない。As mentioned earlier, when cold working is performed by the user, skin pass rolling is not required.
調質圧延の圧下率は高ければ高い程Q−1は向上するが
、圧延機の能力や調質圧延による諸機械的特性の変化の
程度等により上限値も変わるので上限値は特に限定する
ものではない。The higher the rolling reduction ratio in skin-pass rolling, the better the Q-1 will be, but the upper limit value will change depending on the capacity of the rolling mill and the degree of change in mechanical properties due to skin-pass rolling, so the upper limit value should be particularly limited. isn't it.
以下、実施例に基いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on Examples.
実施例 1
第1表に示す成分の鋼を転炉にて溶製し、連続鋳造によ
り210mm厚のスラブとし、次いで加熱炉にて118
0℃まで加熱し、最終仕上温度860℃で熱間圧延を行
なった。Example 1 Steel having the components shown in Table 1 was melted in a converter, made into a 210 mm thick slab by continuous casting, and then made into a 210 mm thick slab in a heating furnace.
It was heated to 0°C and hot rolled at a final finishing temperature of 860°C.
酸洗後、冷間圧延で1.0mm厚とし、700℃にて、
普通焼鈍、または脱炭焼鈍を行なった。After pickling, it was cold rolled to a thickness of 1.0 mm and heated at 700°C.
Normal annealing or decarburization annealing was performed.
焼鈍雰囲気は、普通の場合、10%H2+90%N2で
、露点は約−10℃、脱炭焼鈍の場合は、15%H2+
85%N2で、露点は約+20℃、とした。The annealing atmosphere is normally 10% H2 + 90% N2, with a dew point of about -10°C, and in the case of decarburization annealing, it is 15% H2 +
The atmosphere was 85% N2 and the dew point was about +20°C.
なお脱炭焼鈍では、ルーズコイルを用いた。Note that a loose coil was used in decarburization annealing.
均熱時間は、何れも10時間であった。The soaking time was 10 hours in all cases.
焼鈍物、1.0%め調圧を行い、常温に1か月放置後、
JI85号による引張試験を圧延方向と直角方向:T方
向に実施し、同時にQ−1の測定を行なった。Annealed product, pressure adjusted to 1.0%, left at room temperature for 1 month,
A tensile test according to JI85 was conducted in a direction perpendicular to the rolling direction: T direction, and at the same time, Q-1 was measured.
Q−1の測定は、静電容量型横振動法により、周波数約
280Hzにて行なった。The measurement of Q-1 was performed at a frequency of about 280 Hz using a capacitive transverse vibration method.
このときの板表面の最大歪振巾は0.2〜1.0X10
−5であった。The maximum strain amplitude on the plate surface at this time is 0.2 to 1.0X10
-5.
Q−1測定試験片サイズは、1.0mm厚X10mm巾
X1207117M長で、測定は、採取のまま、2%引
張加工直後、そしてさらに50°Cで3日間時効後の3
種の状態にて行なった。The Q-1 measurement specimen size is 1.0mm thick x 10mm wide x 1207117M long, and measurements were taken as-is, immediately after 2% tensile processing, and after aging at 50°C for 3 days.
This was done in the seed state.
これは実験使用でのプレス成形とその後の経年変化を想
定している。This assumes press molding during experimental use and subsequent changes over time.
これらの結果をまとめて第2表に記す。These results are summarized in Table 2.
なお、各供試鋼板のC含有量を分析調査したところ、普
通焼鈍板では第1表の溶製鋼のままであったが、脱炭焼
鈍材では何れも0.001〜0.002%に低減してい
た。In addition, when we analyzed the C content of each test steel sheet, the normally annealed sheet remained the same as the molten steel shown in Table 1, but the decarburized annealed material decreased to 0.001 to 0.002%. Was.
第2表において、S或はpbが本発明範囲にある脱炭鋼
板A1、B1は、Q−1が何れの状態でも満足できる値
になっている。In Table 2, the decarburized steel sheets A1 and B1, in which S or pb is within the range of the present invention, have a satisfactory value of Q-1 in any state.
これに対しS或いはpbが本発明範囲にあるが、普通焼
鈍を行なった鋼板A2、B2は、特にQ −1の時効劣
化が著しい。On the other hand, although S or PB is within the range of the present invention, the steel plates A2 and B2 which have been subjected to normal annealing have particularly significant aging deterioration in Q-1.
またs、pbともに本発明範囲から外れた場合には、例
え脱炭鋼板であっても、C2が示すようにQ−1が高く
なら・ない。Furthermore, if both s and pb are out of the range of the present invention, Q-1 will not be high as shown by C2 even if it is a decarburized steel sheet.
なお引張試験結果は、何れも大差なく、本発明によって
も加工性、強度に不安のないことが明らかにされた。The results of the tensile test showed that there was no significant difference between the two, and it was revealed that there was no concern about workability and strength even with the present invention.
実施例 2
第1表の鋼A、 Bに関し、実施例1と同じ方法で製造
した1、8mm厚の熱延板を、15%H2+85%N2
、露点+20℃で、700℃にて、均熱時間を30分〜
10時間の間で変えて脱炭焼鈍した。Example 2 Regarding steels A and B in Table 1, hot-rolled plates with a thickness of 1.8 mm manufactured in the same manner as in Example 1 were heated to 15% H2 + 85% N2.
, dew point +20℃, soaking time at 700℃ for 30 minutes ~
Decarburization annealing was performed for 10 hours.
この熱延鋼板から、1.0mm厚X10mm巾X12O
ii長の試験片を採り、2%引張+50°Cで3日時効
後のQ−1を測定した。From this hot rolled steel plate, 1.0mm thickness x 10mm width x 12O
A test piece of length ii was taken and Q-1 was measured after aging at 2% tension + 50°C for 3 days.
第1図は、焼鈍板のC分析値と上記により測定したQ−
1の関係を示す。Figure 1 shows the C analysis value of the annealed plate and the Q-
1 is shown.
同図から、C≦0.003%以下で、著しく高いQ’が
得られることが判る。From the same figure, it can be seen that a significantly high Q' can be obtained when C≦0.003% or less.
実施例 3
第3表に示す成分の鋼を溶製し、20龍厚の鋼片とした
あと、1150℃に加熱して830℃以上の仕上温度で
3,2朋に熱延し、直ちに空冷した。Example 3 Steel having the composition shown in Table 3 was melted into a 20mm thick steel billet, heated to 1150°C, hot rolled to 3.2mm at a finishing temperature of 830°C or higher, and immediately cooled in air. did.
酸洗後、1.0mmに冷延し、次いで700℃×10時
間の脱炭焼鈍を実施した。After pickling, it was cold rolled to 1.0 mm, and then decarburized annealed at 700° C. for 10 hours.
雰囲気は、H215%十N285%、露点は約30℃で
あった。The atmosphere was 15% H285% N, and the dew point was about 30°C.
調圧後、50℃で3日間時効処理し、Q−1を測定した
、なお最終C量は、0.001〜0.002%と変化し
ていた。After pressure adjustment, aging treatment was performed at 50° C. for 3 days, and Q-1 was measured. The final C amount varied from 0.001 to 0.002%.
結果を第4表に示す。The results are shown in Table 4.
第4表から次のことが明らかである。The following is clear from Table 4:
すなわち、/161はSが低すぎるためQ−1が小さく
、/I63と/I6.7は、Sol、AIが低いために
、同じく充分なQl が得られていない。That is, /161 has too low S, so Q-1 is small, and /I63 and /I6.7 have low Sol and AI, so they also do not have sufficient Ql.
更に/16.6は、Mn/S〈4であって、熱延により
割れが入っている。Further, /16.6 has Mn/S<4 and has cracks due to hot rolling.
これに対し、應2、/I64、廃5、扁8〜10は、本
発明の鋼組成となっており、何れも高いQl を示して
いる。On the other hand, Steels No. 2, /I64, No. 5, and No. 8 to No. 10 have the steel composition of the present invention, and all exhibit high Ql.
なかでも、pbとSが複合添加されている/i6.5で
はMn / S < 4でも割れがなく、しかもQ −
1が最も高くなっている。Among them, in /i6.5, in which Pb and S are added in combination, there is no cracking even when Mn / S < 4, and Q -
1 is the highest.
なお/I68〜10では、B、Cr、Cu などが添加
されているが、これは強度向上や耐食性改善を狙ったも
ので、このような添加はQ−1の確保の上で支障とはな
らない。In addition, B, Cr, Cu, etc. are added to /I68-10, but this is aimed at improving strength and corrosion resistance, and such additions do not interfere with securing Q-1. .
以上の説明から明らかなように本発明によれば、冷間加
工(調質圧延)後の振動減衰能が著しく高く、しかもこ
れは時効により劣化せず、加工性、強度の点でも問題の
ない割振鋼板の製造が可能であり、このような制振鋼板
は機械、建築構造物の振動発生部分に採用して、振動、
騒音防止に極めて有効なものである。As is clear from the above explanation, according to the present invention, the vibration damping ability after cold working (temper rolling) is extremely high, and furthermore, this does not deteriorate due to aging, and there are no problems in terms of workability and strength. It is possible to manufacture damping steel plates, and these damping steel plates can be used in vibration-generating parts of machinery and building structures to reduce vibrations and
It is extremely effective for noise prevention.
第1図は、熱延板焼鈍後のC量とQ −1との関係例を
示す図表である。FIG. 1 is a chart showing an example of the relationship between the amount of C and Q −1 after annealing a hot rolled sheet.
Claims (1)
Mn : 0.15〜3.0%で、S : 0.042
〜0.25%を含み、かつMn (%)/S(%)≧4
を満たし、更にSol 、 Al : 0.015〜0
.20%を含有し、残部はFeおよび不可避的不純物か
らなる鋼を、熱間圧延、或いは更に冷間圧延後、650
〜750°Cの温度で脱炭焼鈍してC:0.003%以
下に調整することを特徴とする加工用制振鋼板の製造方
法。 2 C:0.004〜0.80%、Si:4%以下、
Mn : 0.15〜3.0%で、S : 0.042
〜0.25%を含み、かつMn (%)/S(%)〉4
を満たし、更にSol、 At : 0.015〜0
.20%を含有し、残部はFeおよび不可避的不純物か
ら鋼を、熱間圧延、或いは更に冷間圧延後、650〜7
50℃の温度で脱炭焼鈍してC:0.003%以下に調
整し、更に0.3%以上の調質圧延を行うことを特徴と
する加工用制振鋼板の製造方法。 3 C:0.004〜0.80%、Si:4%以下、
Mn : 0.05〜3.0%で、Pb : 0.03
〜0.30%を含み、更にSol、 Al : 0.0
15〜0.20%を含有し、残部はFeおよび不可避的
不純物からなる鋼を、熱間圧延、或いは更に冷間圧延後
、650〜750℃の温度で脱炭焼純してC:0.00
3%以下に調整することを特徴とする加工用制振鋼板の
製造方法。 4 C:0.004〜0.80%、Si:4%以下、
Mn : 0.05〜3.0%で、Pb :0.03〜
0.30%に含み、更にSol、 AI : 0.0
15〜0.20%を含有し、残部はFeおよび不可避的
不純物からなる鋼を、熱間圧延、或いは更に冷間圧延後
、650〜750℃の温度で脱炭焼鈍してC:0.00
3%以下に調整し、更に0.3%以上の調質圧延を行う
ことを特徴とする加工用制振鋼板の製造方法。 5 C:0.004〜0.80%、Si:4%以下、
Mn : 0.05〜3.0%、Pb : 0.03〜
0.30%、S : 0.042〜0.25%を含み、
更にSol、 Al:0.015〜0.20%を含有し
、残部はFeおよび不可避的不純物からなる鋼を、熱間
圧延、或いは更に冷間圧延後、650〜750℃の温度
で脱炭焼鈍してC:0.003%以下に調整することを
特徴とする加工用制振鋼板の製造方法。 6 C:0.004〜0.80%、Si:4%以下、
Mn : 0.05〜3.0%、Pb : 0.03〜
0.30%、S : 0.042〜0.25%を含み、
更にSol、Al:0.015〜0.20%を含有し、
残部はFeおよび不可避的不純物からなる鋼を、熱間圧
延、或いは更に冷間圧延後、650〜750℃の温度で
脱炭焼鈍してC:0.003%以下に調整し、更に0.
3%以上の調質圧延を行うことを特徴とする加工用制振
鋼板の製造方法。[Claims] IC: 0.004 to 0.80%, Si: 4% or less,
Mn: 0.15-3.0%, S: 0.042
~0.25%, and Mn (%)/S (%) ≧4
and further Sol, Al: 0.015~0
.. After hot rolling or further cold rolling, a steel containing 20% Fe and the remainder consisting of Fe and unavoidable impurities is heated to
A method for producing a damping steel plate for processing, which comprises decarburizing and annealing at a temperature of ~750°C to adjust C to 0.003% or less. 2 C: 0.004 to 0.80%, Si: 4% or less,
Mn: 0.15-3.0%, S: 0.042
Contains ~0.25%, and Mn (%)/S (%)〉4
and further Sol, At: 0.015~0
.. After hot rolling or further cold rolling, the steel contains 20% and the balance is Fe and unavoidable impurities.
A method for producing a vibration damping steel plate for processing, which comprises decarburizing and annealing at a temperature of 50° C. to adjust the C content to 0.003% or less, and then temper rolling to a C content of 0.3% or more. 3 C: 0.004 to 0.80%, Si: 4% or less,
Mn: 0.05-3.0%, Pb: 0.03
~0.30%, further Sol, Al: 0.0
C: 0.00 by hot rolling or further cold rolling and decarburizing and annealing the steel at a temperature of 650 to 750°C to obtain a C: 0.00.
A method for manufacturing a vibration damping steel plate for processing, characterized by adjusting the vibration damping steel plate to 3% or less. 4 C: 0.004 to 0.80%, Si: 4% or less,
Mn: 0.05~3.0%, Pb: 0.03~
Included in 0.30% and further Sol, AI: 0.0
C: 0.00 by hot rolling or further cold rolling and decarburizing annealing at a temperature of 650 to 750°C.
A method for manufacturing a damping steel plate for processing, characterized by adjusting the vibration damping steel plate to 3% or less, and further performing temper rolling to 0.3% or more. 5 C: 0.004 to 0.80%, Si: 4% or less,
Mn: 0.05~3.0%, Pb: 0.03~
0.30%, S: 0.042-0.25%,
Further, the steel containing 0.015 to 0.20% of Sol and Al, with the remainder consisting of Fe and unavoidable impurities, is hot rolled or further cold rolled and then decarburized and annealed at a temperature of 650 to 750°C. A method for manufacturing a damping steel plate for processing, characterized in that C: is adjusted to 0.003% or less. 6 C: 0.004 to 0.80%, Si: 4% or less,
Mn: 0.05~3.0%, Pb: 0.03~
0.30%, S: 0.042-0.25%,
Furthermore, it contains Sol, Al: 0.015 to 0.20%,
The remainder consists of Fe and unavoidable impurities. After hot rolling or further cold rolling, the steel is decarburized and annealed at a temperature of 650 to 750°C to adjust the C content to 0.003% or less, and further to 0.003% or less of C.
A method for manufacturing a damping steel plate for processing, characterized by performing temper rolling of 3% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4165880A JPS595653B2 (en) | 1980-03-31 | 1980-03-31 | Manufacturing method of vibration damping steel plate for processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4165880A JPS595653B2 (en) | 1980-03-31 | 1980-03-31 | Manufacturing method of vibration damping steel plate for processing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56139623A JPS56139623A (en) | 1981-10-31 |
JPS595653B2 true JPS595653B2 (en) | 1984-02-06 |
Family
ID=12614463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4165880A Expired JPS595653B2 (en) | 1980-03-31 | 1980-03-31 | Manufacturing method of vibration damping steel plate for processing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS595653B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0965U (en) * | 1996-04-30 | 1997-01-28 | 日之出水道機器株式会社 | Underground structure lid |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4608148B2 (en) * | 2001-08-07 | 2011-01-05 | 新日本製鐵株式会社 | Manufacturing method of highly clean thin steel plate and steel plate |
WO2017093143A1 (en) * | 2015-11-30 | 2017-06-08 | Tata Steel Nederland Technology B.V. | A method for producing precipitation strengthened steel strip and steel strip produced thereby |
CN112899577B (en) * | 2021-01-18 | 2021-12-24 | 北京科技大学 | Preparation method of Fe-Mn series high-strength high-damping alloy |
-
1980
- 1980-03-31 JP JP4165880A patent/JPS595653B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0965U (en) * | 1996-04-30 | 1997-01-28 | 日之出水道機器株式会社 | Underground structure lid |
Also Published As
Publication number | Publication date |
---|---|
JPS56139623A (en) | 1981-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5967322A (en) | Manufacture of cold rolled steel plate for deep drawing | |
JPH10219394A (en) | Cold rolled steel sheet excellent in deep drawability and aging resistance, and hot rolled steel strip for cold rolled steel sheet | |
DE50107281D1 (en) | METHOD FOR PRODUCING NON-CORNECTED ELECTROBLECH | |
JP4065579B2 (en) | Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same | |
JPH08199235A (en) | Production of niobium-containing ferritic steel sheet | |
JPS5849627B2 (en) | Method for producing non-temporal cold-rolled steel sheet | |
JPH0820843A (en) | Chromium steel sheet excellent in deep drawability and resistance to secondary working brittleness and its production | |
DE50001064D1 (en) | METHOD FOR PRODUCING UNCORRORATED ELECTROPLATE | |
JPS6338556A (en) | Cold rolled steel sheet for deep drawing having superior resistance to cracking by secondary working and its manufacture | |
JPS595653B2 (en) | Manufacturing method of vibration damping steel plate for processing | |
JP2001098328A (en) | Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance | |
JP3144228B2 (en) | Method for producing high-chromium cold-rolled steel strip excellent in ridging resistance and workability and method for producing hot-rolled steel strip for the material | |
JP4023088B2 (en) | Soft magnetic steel sheet for electromagnet actuator parts and manufacturing method thereof | |
JP3455047B2 (en) | Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same | |
JPS61272321A (en) | Manufacture of ultra high-strength cold rolled steel sheet | |
JPS5945748B2 (en) | Damping steel plate for processing and its manufacturing method | |
RU2222610C2 (en) | Method of production of cold-rolled strips and sheets | |
JP3314834B2 (en) | Method for producing ferritic stainless steel sheet with excellent living properties | |
JPS5843450B2 (en) | Manufacturing method of vibration damping thin steel plate | |
JP2001098327A (en) | Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance | |
JP3911075B2 (en) | Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability | |
JP4132582B2 (en) | Low carbon cold-rolled steel sheet with excellent formability and tensile rigidity and method for producing the same | |
JP4283425B2 (en) | Method for producing ferritic stainless steel sheet with excellent high temperature strength and magnetic properties | |
JP2971192B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing | |
JPH0477049B2 (en) |