JPS5956364A - Manufacture of electrolyte matrix for fuel cell - Google Patents

Manufacture of electrolyte matrix for fuel cell

Info

Publication number
JPS5956364A
JPS5956364A JP57166231A JP16623182A JPS5956364A JP S5956364 A JPS5956364 A JP S5956364A JP 57166231 A JP57166231 A JP 57166231A JP 16623182 A JP16623182 A JP 16623182A JP S5956364 A JPS5956364 A JP S5956364A
Authority
JP
Japan
Prior art keywords
compound
electrolyte
particle size
inorganic compound
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57166231A
Other languages
Japanese (ja)
Other versions
JPS6259411B2 (en
Inventor
Hideaki Miyoshi
英明 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57166231A priority Critical patent/JPS5956364A/en
Publication of JPS5956364A publication Critical patent/JPS5956364A/en
Publication of JPS6259411B2 publication Critical patent/JPS6259411B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide an electrolyte matrix having increased holding ability of electrolyte without decreasing its mechanical strength, and high reliability by mixing a binder obtained by covering water repellent resin with an inactive inorganic compound, and an insulating inactive inorganic compound having larger particle size than above inorganic compound. CONSTITUTION:A binder obtained by covering a water repellent resin 11 with an inactive inorganic compound 9, and an insulating inactive inorganic compound 10 having larger particle size than above inorganic compound are mixed and they are molded, then dried and sintered. The water repellent resin 11 is fibrous fluorine resin. Mean particle size of insulating inactive inorganic compounds 10 is preferable to make 1-10mum and that of inactive inorganic compounds is desirable to make 1mum or less. Carbon, silicon carbide, silicone nitride, or zirconium oxide is used as the compound 9, and silicon carbide or silicon nitride is used as the compound 10.

Description

【発明の詳細な説明】 この発明は親水性に富む燃料電池用電解質マトリックス
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly hydrophilic electrolyte matrix for fuel cells.

従来この種の燃料電池としては第1図に示すものがあっ
た。図において(1)はガス分離板で一方の面に燃料流
路(2)と他方の面に酸化剤流路(3)が設けられてい
る。(4)は燃料電極、(5)は電解質マトリックス、
(6)は酸化剤電極、(7)は触媒層、(8)は電解質
などの漏洩を防ぐガスケットである。
A conventional fuel cell of this type is shown in FIG. In the figure, (1) is a gas separation plate having a fuel flow path (2) on one side and an oxidizer flow path (3) on the other side. (4) is a fuel electrode, (5) is an electrolyte matrix,
(6) is an oxidizing agent electrode, (7) is a catalyst layer, and (8) is a gasket that prevents leakage of electrolyte and the like.

次に動作について説明する。燃料流路(2)および酸化
剤流路(31に供給された燃料および酸化剤はそれぞれ
燃料電極(4)および酸化剤電極(6)でイオン化し、
双方のイオンが反応して化合物を生成する。
Next, the operation will be explained. The fuel and oxidant supplied to the fuel flow path (2) and the oxidizer flow path (31) are ionized at the fuel electrode (4) and the oxidizer electrode (6), respectively,
Both ions react to form a compound.

燃料が水素、酸化剤が酸素の場合には水が生成され、双
方の電極[41、+61間に電流が生じる。電解筒マl
−IJラックス5)はイオン導電性の電解質を保持して
おり、燃料電極(4)または酸化剤電極+61で生じた
イオンを他方の電極へ移動させる役割を持っており、電
解質かアルカリの場合はOH−イオンが、酸の場合はH
イオンが移動することにより反応が進行する。さて、こ
のマトリックス(51の材料としては電池の動作温度と
電解質の種類によって種々のものが用いられるが、例え
ば190°Cで作動するリン酸型燃料電池の場合には平
均粒径5μmのα型炭化珪素などの不活性化合物をポリ
テトラフルオロエチレンで固着したものなどが用いられ
ている。
When the fuel is hydrogen and the oxidizer is oxygen, water is produced and a current is generated between both electrodes [41, +61. Electrolytic tube
-IJ Lux 5) holds an ion-conductive electrolyte and has the role of moving ions generated at the fuel electrode (4) or oxidizer electrode +61 to the other electrode. If the OH- ion is an acid, H
The reaction progresses as the ions move. Now, various materials are used for this matrix (51) depending on the operating temperature of the battery and the type of electrolyte, but for example, in the case of a phosphoric acid fuel cell that operates at 190°C, the A material in which an inert compound such as silicon carbide is fixed with polytetrafluoroethylene is used.

従来の燃料電池は以上のように構成されているので、電
解質マトリックスの固着剤であるポリテトラフルオロエ
チレンが撥水性を示すため、固着剤が多すぎると電解質
の保持力が低下し、また少なすぎると電解質マトリック
スの強度が低下するという欠点があった。
Conventional fuel cells are constructed as described above, and since the polytetrafluoroethylene, which is the binder in the electrolyte matrix, exhibits water repellency, too much binder reduces the electrolyte retention, and too little binder reduces the electrolyte retention. This had the disadvantage that the strength of the electrolyte matrix was reduced.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、撥水性樹脂を不活性無機化合物(
化合物I)で被った固着剤と、上記化合物1より粒径が
大きい電気絶縁性不活性無機化合物(化合物■)とを混
合し、成形した後加熱焼成することにより、上記固着剤
の親水性を増加し、電解質の保持力を増大することがで
き、電解質マトリックスの強度を損うことなく、信頼性
の高い燃料電池用電解質マ) IJラックス製造方法を
提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional products as described above.
The hydrophilicity of the above-mentioned fixing agent is improved by mixing the fixing agent coated with Compound I) and an electrically insulating inert inorganic compound (Compound ■) whose particle size is larger than that of Compound 1, molding the mixture, and then heating and baking it. The purpose of the present invention is to provide a method for producing a highly reliable electrolyte matrix for fuel cells, which can increase the electrolyte retention capacity and increase the electrolyte retention strength without impairing the strength of the electrolyte matrix.

以下、この発明の一実施例を図をもとに説明する。第2
図は電解質マトリックスの断面の概要を示す模式図であ
る。図において、+91は不活性無機化合物(化合物■
)、α〔は化合物■(9)より粒径が大きい電気絶縁性
不活性無機化合物(化合物■)である。化合物I (9
1で繊維状の撥水性樹脂側の表面を被い、親水性の固着
剤を形成している。製造法を以下に示す。
An embodiment of the present invention will be described below with reference to the drawings. Second
The figure is a schematic diagram showing an outline of a cross section of an electrolyte matrix. In the figure, +91 is an inert inorganic compound (compound ■
), α[ is an electrically insulating inert inorganic compound (compound ■) having a larger particle size than compound ■(9). Compound I (9
1 covers the surface of the fibrous water-repellent resin to form a hydrophilic adhesive. The manufacturing method is shown below.

実施例1 撥水性の樹脂(11)であるポリテトラフルオロエチレ
ン(以下PTFEと略記する)と水の分散液を混練りす
ることによりPTF’Eを繊維化する。不活性無機化合
物(化合物I)+91である平均粒径0゜1μmの窒化
珪素は、界面活性剤などと共に水に分散させる。繊維化
したPTFEの分散液と窒化珪素の分散液とを混合した
後、沈着剤などを添加することにより、繊維化したPT
FEの表面に窒化珪素を沈着させる。得られたペースト
に不活性無機化合物(化合物n)ao+とじて平均粒径
51tmのα型炭化珪素を混合し、シート状に成形後3
00〜350°Cで焼成する。得られた電解質マトリッ
クス+51には電池の組立前に約150°Cに加熱し9
8%のリン酸を含浸する。
Example 1 PTF'E is made into fibers by kneading a dispersion of polytetrafluoroethylene (hereinafter abbreviated as PTFE), which is a water-repellent resin (11), and water. Silicon nitride, which is an inert inorganic compound (compound I) +91 and has an average particle size of 0.1 μm, is dispersed in water together with a surfactant and the like. After mixing the fiberized PTFE dispersion and the silicon nitride dispersion, by adding a depositing agent, etc., fiberized PTFE can be prepared.
Deposit silicon nitride on the surface of the FE. The resulting paste was mixed with an inert inorganic compound (compound n) ao+ and α-type silicon carbide with an average particle size of 51 tm, and after forming into a sheet,
Bake at 00-350°C. The resulting electrolyte matrix +51 was heated to approximately 150°C prior to battery assembly.
Impregnate with 8% phosphoric acid.

電解質マトリックス(5)に保持された電解質は、化合
物1.IIf91又はα〔の粒子と粒子の隙間内あるい
は化合物1 +91の粒子と化合物II(101の粒子
の隙間内に存在し、撥水性樹脂(11)とはほとんど接
触しないため、従来の電解質マトリックス(5)に比べ
て電解質力が向上した。
The electrolyte retained in the electrolyte matrix (5) is composed of compound 1. It exists in the gaps between the particles of IIf91 or α[ or in the gaps between the particles of compound 1 ) has improved electrolyte power.

実施例2 実施例1において、不活性無機化合物(化合物1 ’)
 +91である窒化珪素をβ型炭化珪素に置き換えて同
様に製造した。この場合においても電解質の保持力が従
来の電解質マ) IJラックス5)に比べて向上したこ
とが認められた。
Example 2 In Example 1, an inert inorganic compound (compound 1')
A similar manufacturing process was performed except that +91 silicon nitride was replaced with β-type silicon carbide. In this case as well, it was observed that the electrolyte holding power was improved compared to the conventional electrolyte matrix IJ Lux5).

次に、絶縁性不活性無機化合物(化合物1[)(Iαの
平均粒径は1 μm−10μmが望ましい・。10μm
を越えるとイオン導伝性が低下して好ましくなく、1 
μm以下になるとガスのバブルプレッシャー(bubb
le pressure )が低下して好ましくない。
Next, the average particle size of the insulating inert inorganic compound (compound 1 [) (Iα) is preferably 1 μm to 10 μm.
If it exceeds 1, the ionic conductivity will decrease, which is undesirable.
When it is less than μm, gas bubble pressure (bubb
This is not preferable because the pressure (le pressure) decreases.

不活性無機化合物(化合物1)(9)の平均粒径は化合
物U (101より小さいので1 μm以下にするので
あるが、実施例の場合繊維状樹脂αBの表面を被うよう
に樹脂の径より小さい方が望ましい。この場合フッ素樹
脂の径は0.1 μm〜0.5pmであるので化合物I
 (91の平均粒径は0.1  μm程度が望ましい。
The average particle size of the inert inorganic compound (Compound 1) (9) is smaller than Compound U (101), so it is set to 1 μm or less. In this case, the diameter of the fluororesin is 0.1 μm to 0.5 pm, so Compound I
(The average particle size of 91 is preferably about 0.1 μm.

また化合物■(91としては炭素、炭化珪素、窒化珪素
、酸化ジルコニウムかまたはそれらの2種以上を使用し
てもよい。化合物IIQIとしては炭化珪素、窒化珪素
かまたは両方を使用してもよい。フッ素樹脂としてはP
TFEまたはフッ化エチレンプロピレンがある。
Further, as compound (1) (91, carbon, silicon carbide, silicon nitride, zirconium oxide, or two or more thereof may be used. As compound IIQI, silicon carbide, silicon nitride, or both may be used. As a fluororesin, P
There is TFE or fluorinated ethylene propylene.

なお、」二記実施例では小孔形成物質を添加しないもの
を示したが、炭酸アンモニウムなどの発泡剤または成形
後、焼成もしくは溶解することによって除去できる小孔
形成物質を添加してもよい。
In addition, in the second embodiment, no pore-forming substance was added, but a blowing agent such as ammonium carbonate or a pore-forming substance that can be removed by firing or dissolving after molding may be added.

以上のように、この発明によれば撥水性樹脂を不活性無
機化合物(化合物■)で被った固着剤と、上記化合物I
より粒径が大きい電気絶縁性不活性無機化合物(化合物
■)とを混合し、成形した後、加熱焼成したので、上記
固着剤の親水性を増加し、電解質の保持力を増大させる
ことができ、上記電解質マトリックスの強度を損うこと
なく、信頼性の高い電解質マ) IJラックス得られる
効果がある。
As described above, according to the present invention, a fixing agent in which a water-repellent resin is coated with an inert inorganic compound (compound
By mixing it with an electrically insulating inert inorganic compound (compound ■) that has a larger particle size, molding it, and then heating and baking it, it is possible to increase the hydrophilicity of the above-mentioned fixing agent and increase the electrolyte holding power. This has the effect of providing a highly reliable electrolyte matrix (IJ lux) without impairing the strength of the electrolyte matrix.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池の一部分を示す断面図、第2図
はこの発明の一実施例による電解質マトリックスの断面
の概要を示す模式図である。 図において(5)は電解質マトリックス、(9)は不活
性無機化合物(化合物I)、凹は電気絶縁性不活性無機
化合物(化合物■)、■は撥水性樹脂である。 なお各図中同一符号は同一または相当部分を示すものと
する。 代理人 葛野信− 第1図 手続補正書(自発) 特許庁長官殿 1、事件の表示    特願昭57−166281号事
件との関係   特許出願人 住 所     東京都千代田区丸の内二丁目2番3号
名 称(601)   三菱電機株式会社代表者片山仁
八部 4、代理人 住 所     東京都千代田区丸の内二丁目2番3号
三菱電機株式会社内 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)  明細書第2頁第20行に「電解筒」とあるの
を「電解質」と訂正する。 (2)同第5頁第17行「解質」の次に「の保持」を挿
入する。 (3)  同第6頁第6行に「イオン導電性」とあるの
を[バブルプレッシャー(bubble pressu
re )Jと訂正する。 (4)同第6頁第7行〜第8行に「バブルプレッシャー
(bubble pressure) Jとあるのを「
イオン導電性」と訂正する。 以上
FIG. 1 is a cross-sectional view showing a part of a conventional fuel cell, and FIG. 2 is a schematic view showing a cross-sectional outline of an electrolyte matrix according to an embodiment of the present invention. In the figure, (5) is an electrolyte matrix, (9) is an inert inorganic compound (Compound I), the concave area is an electrically insulating inert inorganic compound (Compound ■), and ■ is a water-repellent resin. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Makoto Kuzuno - Figure 1 Procedural Amendment (Voluntary) Commissioner of the Japan Patent Office 1 Indication of case Relationship to patent application No. 57-166281 Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Hitoshi Katayama 4, Agent Address Mitsubishi Electric Corporation 5, 2-2-3 Marunouchi, Chiyoda-ku, Tokyo, Japan Detailed explanation of the invention in the specification subject to amendment Column 6, Contents of the amendment (1) In the 20th line of page 2 of the specification, the term ``electrolyte cylinder'' is corrected to ``electrolyte.'' (2) On page 5, line 17, insert ``retention of'' after ``solute''. (3) On page 6, line 6 of the same page, the words "ionic conductivity" should be replaced with "bubble pressure".
re ) Correct it as J. (4) On page 6, lines 7 and 8, change the word ``bubble pressure J'' to ``
Ion conductivity” is corrected. that's all

Claims (1)

【特許請求の範囲】 (1)撥水性樹脂を不活性無機化合物(化合物1)で被
った固着剤と、上記化合物Iより粒径が大きい電気絶縁
性不活性無機化合物(化合物■)とを混合し、成形した
後、加熱焼成した燃料電池用電解質マトリックスの製造
方法。 (2)撥水性樹脂は繊維化したフッ素樹脂であることを
特徴とする特許請求の範囲第1項記載の燃料電池用電解
質マ) IJラックス製造方法っ(3)化合物■の平均
粒径が1 μm−10綿で、化合物■の平均粒径が1 
μm以下であることを特徴とする特許請求の範囲第1項
または第2項記載の燃料電池用電解質マ) IJソック
ス製造方法。 (4)化合物Iが炭素、炭化珪素、窒化珪素および酸化
ジルコニウムのうちの少なくとも1種であることを特徴
とする特許請求の範囲第1項ないし第3項の何れかに記
載の燃料電池用電解質マトリックスの製造方法。 (5)化合物■が炭化珪素および窒化珪素のうちの少な
くとも1種であることを特徴とする特許請求の範囲第1
項ないし第4項の何れかに記載の燃料電池用電解質マト
リックスの製造方法。
[Scope of Claims] (1) A fixing agent in which a water-repellent resin is coated with an inert inorganic compound (Compound 1) is mixed with an electrically insulating inert inorganic compound (Compound ■) whose particle size is larger than that of Compound I. A method for producing an electrolyte matrix for a fuel cell, which is formed by heating and calcining the matrix. (2) The water-repellent resin is a fibrous fluororesin, the electrolyte material for fuel cells according to claim 1) The method for producing IJ Lux (3) The average particle size of the compound (1) is 1 μm-10 cotton, the average particle size of compound ■ is 1
A method for producing an electrolyte for a fuel cell according to claim 1 or 2, characterized in that the electrolyte material has a particle size of .mu.m or less. (4) The electrolyte for a fuel cell according to any one of claims 1 to 3, wherein the compound I is at least one of carbon, silicon carbide, silicon nitride, and zirconium oxide. Method of manufacturing the matrix. (5) Claim 1, characterized in that the compound (■) is at least one of silicon carbide and silicon nitride.
A method for producing an electrolyte matrix for a fuel cell according to any one of items 1 to 4.
JP57166231A 1982-09-22 1982-09-22 Manufacture of electrolyte matrix for fuel cell Granted JPS5956364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57166231A JPS5956364A (en) 1982-09-22 1982-09-22 Manufacture of electrolyte matrix for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57166231A JPS5956364A (en) 1982-09-22 1982-09-22 Manufacture of electrolyte matrix for fuel cell

Publications (2)

Publication Number Publication Date
JPS5956364A true JPS5956364A (en) 1984-03-31
JPS6259411B2 JPS6259411B2 (en) 1987-12-10

Family

ID=15827537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57166231A Granted JPS5956364A (en) 1982-09-22 1982-09-22 Manufacture of electrolyte matrix for fuel cell

Country Status (1)

Country Link
JP (1) JPS5956364A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198565A (en) * 1985-02-27 1986-09-02 Fuji Electric Co Ltd Matrix layer for fuel cell
JPS62295358A (en) * 1986-06-13 1987-12-22 Mitsubishi Electric Corp Electrolyte holding matrix for phosphoric acid type fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61198565A (en) * 1985-02-27 1986-09-02 Fuji Electric Co Ltd Matrix layer for fuel cell
JPS62295358A (en) * 1986-06-13 1987-12-22 Mitsubishi Electric Corp Electrolyte holding matrix for phosphoric acid type fuel cell

Also Published As

Publication number Publication date
JPS6259411B2 (en) 1987-12-10

Similar Documents

Publication Publication Date Title
EP1944819B1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
US5350643A (en) Solid polymer electrolyte type fuel cell
JP2842150B2 (en) Polymer electrolyte fuel cell
JP3583897B2 (en) Fuel cell
JP3929146B2 (en) Polymer electrolyte fuel cell system
EP1950826A1 (en) Gas diffusion electrode substrate, gas diffusion electrode and process for its production, and fuel cell
JP3342726B2 (en) Solid polymer electrolyte fuel cell and method of manufacturing the same
JP2004185863A (en) Electrode for fuel cell, and fuel cell using it
JP2002100372A (en) Gas diffusion electrode for fuel cell and its manufacturing method
JP2001057218A (en) Solid polymer type fuel cell and manufacture thereof
JPWO2002023655A1 (en) Polymer electrolyte fuel cell
JPH11135133A (en) Solid polymer electrolyte fuel cell
CN1462489A (en) Electrode for fuel cell and method of manufacturing the electrode
JP5339261B2 (en) Fuel cell
JPS5956364A (en) Manufacture of electrolyte matrix for fuel cell
JP2001057217A (en) Polymer electrolyte type fuel cell
JP3588889B2 (en) Solid polymer electrolyte fuel cell
JP2003197203A (en) Fuel cell
JPH0684528A (en) Solid high polymer electrolyte type fuel cell
JPH05190184A (en) Electrode-electrolyte joint body, manufacture thereof, and fuel cell using thereof
JP2003303595A (en) Gas diffusion electrode for fuel cell
JP2004179074A (en) Fuel cell
JP2004349180A (en) Membrane electrode assembly
JP2000277130A (en) Method for producing solid polymer type fuel cell and electrolyte film
JP2000228205A (en) High polymer electrolyte fuel cell