JPS5956139A - Differential pressure transmitter - Google Patents

Differential pressure transmitter

Info

Publication number
JPS5956139A
JPS5956139A JP16723382A JP16723382A JPS5956139A JP S5956139 A JPS5956139 A JP S5956139A JP 16723382 A JP16723382 A JP 16723382A JP 16723382 A JP16723382 A JP 16723382A JP S5956139 A JPS5956139 A JP S5956139A
Authority
JP
Japan
Prior art keywords
pressure
diaphragm
pressure side
differential pressure
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16723382A
Other languages
Japanese (ja)
Inventor
Atsumune Kawachi
河内 淳旨
Takeshi Nishi
健 西
Shunichiro Anami
阿波 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP16723382A priority Critical patent/JPS5956139A/en
Publication of JPS5956139A publication Critical patent/JPS5956139A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0038Fluidic connecting means being part of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection

Abstract

PURPOSE:To secure a measurement range and to improve linear characteristics and responsibility by arranging a couple of spacers made of material of lower thermal expansion coefficient than a main body in the internal chamber of the body partitioned into two chambers by a center diaphragm. CONSTITUTION:The couple of spacers 30 and 31 made of material of lower thermal expansion coefficient than the main body 22 are arranged in the internal body chamber 28 partitioned into two chambers by the center diaphragm 29 on both sides of the center diaphragm 29 with displacement margins left. When high pressure and low pressure from a process are applied to barrier diaphragms 23 and 24, the barrier diaphragms 23 and 24 are recessed to move sealed-in liquid according to the compression, and their pressures are applied to the high pressure side and low pressure side of the sensor. The sensor detects the pressure difference between both sides and transmits it as an electric signal to measure the differential pressure.

Description

【発明の詳細な説明】 本発明はプロセス変量である2点間の圧力差を測定する
差圧発信器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential pressure transmitter that measures a pressure difference between two points as a process variable.

例えば管内流体の流量を測定しようとする場合、管内に
オリフィス板を設けて流体抵抗と1〜、その上流側と下
流側との圧力差を測定して所定の演算式に基づき流分を
算定することが行なわれている。
For example, when trying to measure the flow rate of fluid in a pipe, an orifice plate is installed in the pipe, the fluid resistance and the pressure difference between the upstream and downstream sides are measured, and the flow rate is calculated based on a predetermined calculation formula. things are being done.

この種の圧力差測定に用いられる差圧発信器は、高圧側
と低圧側との受圧ダイヤフラムに各測定圧力を与え、こ
の圧力による内封液の移動を、封入回路を仕切って設け
た半導体センサの歪により電気的出力として取出すよう
に構成されている。
A differential pressure transmitter used for this type of pressure difference measurement applies each measurement pressure to pressure receiving diaphragms on the high pressure side and low pressure side, and the movement of the sealed liquid due to this pressure is detected by a semiconductor sensor installed by partitioning the sealed circuit. The structure is such that the distortion is extracted as an electrical output.

ところが、この種の差圧発信器においては、プロセスの
測定仕様に応じた適切な寸法1強度、材料などを備えた
受圧ダイヤフラムが選定されて用いられたとしても、時
には過大圧力を受けることがあシ、との過圧が半導体セ
ンサに及んで、これを損傷させることによシ爾後の測定
を不可能にすることがある。そこで従来この過大圧力か
らセンサを保護する各種の装置が提案されて差圧発信器
に付設されている。
However, in this type of differential pressure transmitter, even if a pressure-receiving diaphragm with appropriate dimensions, strength, and materials is selected and used according to the measurement specifications of the process, it may sometimes receive excessive pressure. Overpressure between the sensor and the sensor can reach the semiconductor sensor and damage it, making subsequent measurements impossible. Therefore, various devices for protecting sensors from this excessive pressure have been proposed and attached to differential pressure transmitters.

第1図はこの種の過大圧力保餓装置を備えた従来の差圧
発信器の断面図であって、これを同図に基いて説明する
と、半割状のボディ1の両側には、波形円板状に形成さ
れた高圧側のバリアダイヤフラム2と低圧側のバリアダ
イヤフラム3とが装着されており、これらのバリアダイ
ヤフラム2,3には、ボディ1にボルト締めされた両側
のカバー4とボディ1との間の孔5,6から流入する流
体によって高圧と低圧とがそれぞれ印加されている。
FIG. 1 is a sectional view of a conventional differential pressure transmitter equipped with this type of overpressure retaining device. A barrier diaphragm 2 on the high-pressure side and a barrier diaphragm 3 on the low-pressure side, which are formed in a disc shape, are attached to these barrier diaphragms 2 and 3, and covers 4 on both sides bolted to the body 1 and the body High pressure and low pressure are respectively applied by fluids flowing in from holes 5 and 6 between the holes 5 and 1.

一方、ボディ1上方のセンサカプセル7内のセンサ室に
は、図示しない端子と接続された半導体センサ8が、基
板9に保持されて配設されており、とのセンサ8の下側
である高圧側と上側である低圧側とからは、液通路10
および11がボディ1に向って延設されている。符号1
2で示すものは波形円板状に形成されたセンタダイヤフ
ラムであって、半割状ボディ1の中央接合部に設けた内
室を高圧側内室13と低圧側内室14とに隔成するよう
にボデー1に固定されており、前記各液通路10.11
は内室13,14にそれぞれ開口されている。゛また、
前記各バリアダイヤフラム2,3とボディ1との間に形
成されたすき間と内室13゜14とは、液通路15.1
6によってそれぞれ連通されている。そして、バリアダ
イヤフラム213とボディ1との間のすき間から液通路
15.16内室13.14および液通路10.11を経
てセンサ8の高圧側と低圧側とに至る間には、シリコン
オイル等の内封液17が封入されている。
On the other hand, in a sensor chamber in the sensor capsule 7 above the body 1, a semiconductor sensor 8 connected to a terminal (not shown) is held by a substrate 9, and a high voltage From the lower pressure side and the upper side, there is a liquid passage 10.
and 11 extend toward the body 1. code 1
2 is a center diaphragm formed in the shape of a corrugated disk, which divides the inner chamber provided at the central joint of the half-split body 1 into a high-pressure side inner chamber 13 and a low-pressure side inner chamber 14. The liquid passages 10 and 11 are fixed to the body 1 as shown in FIG.
are opened into inner chambers 13 and 14, respectively.゛Also,
The gap formed between each of the barrier diaphragms 2, 3 and the body 1 and the inner chamber 13°14 form a liquid passage 15.1.
6 are connected to each other. Silicone oil or the like is provided between the gap between the barrier diaphragm 213 and the body 1 and the high-pressure side and low-pressure side of the sensor 8 via the liquid passage 15.16, the inner chamber 13.14, and the liquid passage 10.11. An internal sealing liquid 17 is sealed.

以上のように構成された差圧発信器において、バリアダ
イヤフラム2,3にプロセスからの高圧と低圧とがそれ
ぞれ印加されると、バリアダイヤフラム2,3が凹んで
その圧縮分だけ内封液17が移動し、両側の圧力差によ
る内封液1γの移動量の差をセンサ8が検出してこれを
電気信号として発信することにより差圧が測定される。
In the differential pressure transmitter configured as described above, when high pressure and low pressure from the process are respectively applied to the barrier diaphragms 2 and 3, the barrier diaphragms 2 and 3 are depressed and the inner liquid 17 is filled by the amount of compression. The sensor 8 detects the difference in the amount of movement of the sealed liquid 1γ due to the pressure difference on both sides, and transmits this as an electric signal, thereby measuring the differential pressure.

この場合センタダイヤフラム12は両側の圧力差によっ
て変形するが内室13,14の壁面には着座しないし、
”また、バリアダイヤフラム2.3も正常な差圧測定中
はボディ1に着座しない。そして例えば高圧側に過大圧
力が作用すると、高圧側のバリアダイヤフラム2が大き
く変形してボディ1へ全面的に着座するので、高圧側の
圧力が内部に伝達されなくなる。すなわち、バリアダイ
ヤフラム2が着座することによって過大圧力保頑の働き
をする。
In this case, the center diaphragm 12 is deformed due to the pressure difference on both sides, but it does not sit on the walls of the inner chambers 13 and 14.
``Furthermore, the barrier diaphragm 2.3 does not sit on the body 1 during normal differential pressure measurement.For example, when excessive pressure acts on the high pressure side, the barrier diaphragm 2 on the high pressure side deforms greatly and completely hits the body 1. Since the barrier diaphragm 2 is seated, pressure on the high pressure side is no longer transmitted to the inside.In other words, the barrier diaphragm 2 serves as an overpressure retainer by being seated.

このような従来の差圧発情器においては、ボディ1と内
封液17との熱膨張係数が異なるために差圧発信器のお
かれている温度環境が変化すると、ボディ1と内封液1
7とが異なった膨張率で膨張収縮することによシ、バリ
アダイヤフラム2.3とボディ1との間のすき間の液量
が大きく変化する。
In such a conventional differential pressure estrus device, since the body 1 and the internal liquid 17 have different thermal expansion coefficients, when the temperature environment in which the differential pressure transmitter is placed changes, the body 1 and the internal liquid 17
7 expand and contract at different expansion rates, the amount of liquid in the gap between the barrier diaphragm 2.3 and the body 1 changes greatly.

そしてこの液長が多くなると過大圧力保護装置の動作開
始圧力が高くなり、液量が少なく々ると低い圧力で動作
するというように、同一のセンサを用いても動作圧力が
変化するので、測定レンジが縮小されるばかりでなく、
液の膨張により直紡特性や応答性が低下するという欠点
があった。1本発明は以上のような点に銭みなされたも
ので、センタダイヤフラムで2室に仕切られたボディ内
家内に、ボディ本体よりも熱膨張係数の低い材料で形成
された一対のスペーサをセンタダイヤフラムの変位化を
残してその両側に配設することによ如、動作圧力に対す
る温度変化の影響を少なくして測定レンジの確保と直線
特性および応答性の向上を計った差圧発信器を提供する
ものでを)る。以下、本発明の実施例を図面に基いて詳
細に説明する。
When the liquid length increases, the pressure at which the overpressure protection device starts operating increases, and when the liquid volume decreases, it operates at a lower pressure. Even if the same sensor is used, the operating pressure changes, so it is difficult to measure. Not only is the range reduced;
There was a drawback that the direct spinning characteristics and responsiveness deteriorated due to the expansion of the liquid. 1 The present invention has been made in consideration of the above-mentioned points, and a pair of spacers made of a material having a lower coefficient of thermal expansion than the body body are placed in the interior of the body, which is divided into two chambers by a center diaphragm. By arranging the diaphragm on both sides while leaving the diaphragm displaced, we provide a differential pressure transmitter that reduces the influence of temperature changes on operating pressure, secures a measurement range, and improves linear characteristics and responsiveness. to do). Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明に係る差圧発信器の実施例を示す。図に
おいて、差圧発信器21のボディ22は、厚さ方向中央
部に達する円形凹部を備えた高圧側のバックプレート2
2aとその凹部に嵌合された低圧側のバックプレー) 
22bとで一体的に形成されておシ、各パンクプレー)
 22a 、22bの側部受圧凹陥面には、波形円板状
に形成された高圧側のバリアダイヤフラム23と低圧側
のバリアダイヤフラム24とが、円形状の受圧低面との
間にすき間25.26を残して周縁部をボディ22側に
固定されている。また、各バックプレート22a、22
bには、図示を省略したが第1図に示したものと同じよ
うなカバーが接合されておシ、バリアダイヤフラム23
,24にはカバーの孔から流入する低圧と高圧とがそれ
ぞれ印加されている。すき間25゜26は両端部に絞り
を有するバイパス27で連結されており、このバイパス
27上であるバックプレー) 22a 、22bの接合
部には、薄手円柱状のボディ内室28が設けられている
FIG. 2 shows an embodiment of the differential pressure transmitter according to the present invention. In the figure, the body 22 of the differential pressure transmitter 21 has a high-pressure side back plate 2 with a circular recess that reaches the center in the thickness direction.
2a and the low pressure side backplay fitted into its recess)
22b and each puncture play)
In the side pressure-receiving recessed surfaces of 22a and 22b, there is a gap 25.26 between the high-pressure side barrier diaphragm 23 and the low-pressure side barrier diaphragm 24, which are formed in the shape of a corrugated disk, and the circular pressure-receiving lower surface. The peripheral edge portion is fixed to the body 22 side with the exception of . In addition, each back plate 22a, 22
Although not shown, a cover similar to that shown in FIG. 1 is joined to b, and a barrier diaphragm 23
, 24 are respectively applied with low pressure and high pressure flowing in from the holes in the cover. The gaps 25 and 26 are connected by a bypass 27 having apertures at both ends, and a thin cylindrical body interior chamber 28 is provided at the junction of the back plate 22a and 22b on the bypass 27. .

符号29で示すものは、断面波形の円板状に形成されボ
ディ内室28内に低圧側の内室と高圧側の内室との2室
を隔成するセンタダイヤフラムであって、周縁部をボデ
ィ22に溶着されている。
Reference numeral 29 designates a center diaphragm formed in the shape of a disk with a corrugated cross section, which separates two chambers, a low pressure side chamber and a high pressure side chamber, in the body interior chamber 28. It is welded to the body 22.

さらにボディ内室28内には、ボディ22よりも熱膨張
係数の低いセラミックを用いてボディ内室28と同寸法
の円板状に形成された一対のスベ、−サ30,31が両
方のバックプレート22a 、 22bに半分ずつ係入
されて設けられている。スペーサ30.31の内面は、
センタダイヤフラム29とほぼ同形状の波形円板状に形
成されており、この内面とセンタダイヤフラム29との
間には、センタダイヤフラム29の変位代用空間として
の受圧室32.33が形成されている。
Furthermore, inside the body interior chamber 28, a pair of disc-shaped slides 30 and 31, which are made of ceramic having a lower coefficient of thermal expansion than the body 22 and have the same dimensions as the body interior chamber 28, are installed on both backs. It is provided so that each half is engaged with the plates 22a and 22b. The inner surface of the spacer 30.31 is
It is formed in the shape of a corrugated disk having substantially the same shape as the center diaphragm 29, and between this inner surface and the center diaphragm 29, a pressure receiving chamber 32, 33 is formed as a displacement substitute space for the center diaphragm 29.

一方、ボディ22に一体的に接合されたセンサカプセル
34内には、図示しないが第1図に符号8と9とで示し
て説明した半導体センサと基板とが周縁部を接合させて
載置固定された状態で配設されておシ、センサの高圧側
は液通路35.36によって高圧側の受圧室32と連通
されている。
On the other hand, inside the sensor capsule 34 that is integrally joined to the body 22, a semiconductor sensor and a substrate, which are not shown but are indicated by reference numerals 8 and 9 in FIG. The high pressure side of the sensor is in communication with the pressure receiving chamber 32 on the high pressure side through liquid passages 35 and 36.

壕だセンサの低圧側は液通路37.38によって低圧側
の受圧室33と連通されている。そして、バリアダイヤ
フラム23,24裏のすき間25゜26、バイパス27
.受圧室32,33.および液通路35,36,37.
38には、液封入孔39゜40から注入されたシリコン
オイル等の内封液41が内封されている。
The low pressure side of the trench sensor is communicated with the pressure receiving chamber 33 on the low pressure side through liquid passages 37,38. Then, the gap 25°26 behind the barrier diaphragms 23, 24, the bypass 27
.. Pressure receiving chambers 32, 33. and liquid passages 35, 36, 37.
38 is sealed with an internal sealing liquid 41 such as silicone oil injected from liquid filling holes 39 and 40.

以上のように構成された差圧発信器の動作を説明する。The operation of the differential pressure transmitter configured as above will be explained.

バリアダイヤフラム23.24にプロセスからの高圧と
低圧とがそれぞれ印加されると、バリアダイヤフラム2
3,24が凹んでその圧縮分だけ内封液が移動し、それ
ぞれの圧力がセンサの高圧側と低圧側とに印加される。
When high pressure and low pressure from the process are respectively applied to the barrier diaphragms 23 and 24, the barrier diaphragms 2
3 and 24 are recessed, and the inner liquid moves by the amount of compression thereof, and respective pressures are applied to the high pressure side and the low pressure side of the sensor.

センサは両側の圧力差を検出してこれを電気何月として
発信することによシ差圧が測定される。
The sensor detects the pressure difference on both sides and transmits it as an electric signal, thereby measuring the pressure difference.

このように動作する差圧発信器による差圧測定作業にお
いては環境温度が一50°から+120° というよう
に大幅に変化する。い壕例えば低温から高温へと温度が
変化した場合について説明すると、この高温化によって
ボディ22が膨張すると同時に内封液41も膨張する2
、しかしながらボディ22と内封液41との熱膨張係数
を比較すると内封液41の方が遥かに大きいので、バリ
アダイヤフラム23.24の裏のすき間25.26にあ
る内封液41の肘が多くなり、低温のときよりも高圧で
ないとバリアダイヤフラム23,24が尤−座しなくな
り、センサの過大圧方探にφ装置の動作圧力が高くなろ
うとする。しかしながら、この差圧発信器において目、
ボディ内室28内に低膨張係数のスペーサ30I31を
設けたので、このスペーサ30.31の体積をかなり大
きくすれば、内封液41の過膨張分を、り分とんど膨張
しないスペー・1−30.31の低膨張によ−)て相殺
することができ、内封液41の見叫けの膨張所を0にす
ることが可能である。したがって高温化によって過大圧
力保護装置ηの動作圧力が高くなるのを回避することが
できる。
In differential pressure measurement work using a differential pressure transmitter operating in this manner, the environmental temperature varies significantly from 150° to +120°. For example, when the temperature changes from a low temperature to a high temperature, the body 22 expands due to this increase in temperature, and at the same time the internal liquid 41 also expands.
However, when comparing the thermal expansion coefficients of the body 22 and the inner sealing liquid 41, the inner sealing liquid 41 is much larger, so the elbow of the inner sealing liquid 41 in the gap 25.26 behind the barrier diaphragm 23.24 is The barrier diaphragms 23 and 24 will not be seated unless the pressure is higher than that at low temperature, and the operating pressure of the φ device will become higher in order to detect the overpressure of the sensor. However, in this differential pressure transmitter, the eye
Since the spacer 30I31 with a low expansion coefficient is provided in the body inner chamber 28, if the volume of this spacer 30. This can be offset by the low expansion of −30.31 −), and it is possible to reduce the apparent expansion point of the internal sealing liquid 41 to 0. Therefore, it is possible to avoid an increase in the operating pressure of the overpressure protection device η due to an increase in temperature.

なお・、この熱膨張係数に差を設りだことによる過膨張
の相殺作用を第3図に基いてさらに詳述する4、い′ま
理解を容易にするため第:3図において密閉71j状の
ボディ22内にスペーサ30と内封液41とが入ってい
るとする。ボディ22の体膨張係数をαA、スペーサ3
0の体膨張係数をα11 、内封液410体膨張係数を
αt、ボディ22の内容積をVAO,スペーサ30の体
積をvnoとすると、温度がt’C上昇したときには次
式が成立する。。
The effect of canceling out overexpansion by creating a difference in the thermal expansion coefficient will be further explained in detail based on FIG. It is assumed that a spacer 30 and an internal sealing liquid 41 are contained in the body 22 of. The body expansion coefficient of the body 22 is αA, and the spacer 3
Assuming that α11 is the body expansion coefficient of 0, αt is the body expansion coefficient of the internal liquid 410, VAO is the internal volume of the body 22, and vno is the volume of the spacer 30, the following equation holds true when the temperature rises by t'C. .

ボディ22の内容積  VA 1 = (1+aAl 
)VA Oスペーサ300体i&  Vnl = (1
+abt )VBO内封液41の体積 Vl+ −(+
−1−cu’t)(V人o−vno)温度がt ’C上
昇しても見掛は上の体積変化がないようにするだめには
次式が成立しなければならない。
Internal volume of body 22 VA 1 = (1+aAl
) VA O spacer 300 i & Vnl = (1
+abt ) Volume of VBO internal sealing liquid 41 Vl+ −(+
-1-cu't) (V person o-vno) In order to prevent the apparent volume change from occurring even if the temperature rises by t'C, the following equation must hold.

VAI = VB I +V11 これに上式を代入すると、 (1+aht )VA O= (1+aa t )VB
o十(1+alt )(VAO−VBO)aAVAG 
= dBvBo +aJ(V人o −VBO)(ctl
−aA)VAO= (αi−αn) VnOVHOαl
−αA VAOat−co+ ここでボディ22の材料をオースブナイト系ステンレス
、スペーサ30の材質をアンバー、内封液41をシリコ
ンオイルとすると、 αA = 4.8X t o ”/’aαB = 0.
3X10−5/’0 αt = 94X10 ’/’C! したがって すなわちボディ22の内容積にスペーサ300体積を近
づけてその比を0.952にすれば見掛は上の体積変化
を0にすることができ、この数字に近づけるほど見掛は
上の体積変化が小さくなることが明らかである。
VAI = VB I +V11 Substituting the above formula into this, (1+aht)VA O= (1+aat)VB
o ten (1+alt) (VAO-VBO) aAVAG
= dBvBo +aJ(Vpersono −VBO)(ctl
-aA)VAO= (αi-αn) VnOVHOαl
-αA VAOat-co+ Here, if the material of the body 22 is ausbunite stainless steel, the material of the spacer 30 is amber, and the inner sealing liquid 41 is silicone oil, αA = 4.8X t o ”/'aαB = 0.
3X10-5/'0 αt = 94X10'/'C! Therefore, by bringing the volume of the spacer 300 closer to the internal volume of the body 22 and making the ratio 0.952, the apparent change in the upper volume can be reduced to 0. It is clear that the value becomes smaller.

以上の説明により明らかなように、本発明によれば差圧
発信器において、センタダイヤフラムで2室に仕切られ
たボディ内室内に、ボディ本体よりも熱膨張係数の低い
材料で形成された一対のスペーサをセンタダイヤフラム
の変位化を残してその両側に配設したことにより、測定
時の環境温度が大きく変化してもボディ本体と内封液と
の熱膨張差がスペーサの低膨張によって相殺され、過大
助保護装置の動作圧力を、環境温度の変化にかかわらず
一定に保持することができるので、従来よりも測定レン
ジを拡大することができるとともに、見用けの液膨張が
ないので、直線特性および応答性の向上を計ることがで
きる。
As is clear from the above description, in the differential pressure transmitter according to the present invention, a pair of chambers formed of a material having a coefficient of thermal expansion lower than that of the body main body is provided in the inner chamber of the body which is partitioned into two chambers by the center diaphragm. By placing the spacers on both sides of the center diaphragm, leaving the center diaphragm displaced, even if the environmental temperature changes significantly during measurement, the difference in thermal expansion between the body and the internal liquid is offset by the low expansion of the spacer. Since the operating pressure of the overload protection device can be held constant regardless of changes in the environmental temperature, the measurement range can be expanded compared to conventional methods, and since there is no spurious liquid expansion, linear characteristics can be improved. and improve responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の差圧発信器の断面図、第2図は本発明に
係る差圧発信器の実施例の断面図、第3図は熱膨張作用
の説明図である。 21・・・・差圧発信器、22°°°°ボテイ、23.
24・・・・バリアダイヤフラム、25゜26・・・・
すき間、2T・・・・バイパス、28・・・・ボディ内
室、29・・・・センタダイヤフラム、30.31・・
・・スペーサ、35゜36I3γ、38・・・・液通路
。 特許出願人  山武ノ・ネウエル株式会社代 理 人 
  山 川 政 樹(ほか1名)第1図 第2図          第3図” イ
FIG. 1 is a sectional view of a conventional differential pressure transmitter, FIG. 2 is a sectional view of an embodiment of the differential pressure transmitter according to the present invention, and FIG. 3 is an explanatory diagram of the thermal expansion effect. 21... Differential pressure transmitter, 22°°°° body, 23.
24...Barrier diaphragm, 25°26...
Gap, 2T... Bypass, 28... Body interior, 29... Center diaphragm, 30.31...
...Spacer, 35°36I3γ, 38...Liquid passage. Patent applicant: Yamatake Newell Co., Ltd. Agent
Masaki Yamakawa (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] ボディ両側の各受圧ダイヤフラムとボディとの間のすき
間を中心部で連結するバイパス上にボディ内室を設け、
センサの高圧側、低圧側との間を液通路でそれぞれ連結
された2室を前記ボディ内室内に隔成するセンタダイヤ
プラムを設けるとともに、前記ボディ内室内にボディ本
体よシも膨張係数の低い材料で形成された一対のスペー
サを前記センタダイヤフラムの変位式を残してその両側
に配設したことを特徴とする差圧発信器。
An internal body chamber is provided on the bypass that connects the gap between each pressure receiving diaphragm on both sides of the body and the body at the center.
A center diaphragm is provided in the interior of the body to separate two chambers connected to each other by a liquid passage between the high pressure side and the low pressure side of the sensor. 1. A differential pressure transmitter, characterized in that a pair of spacers made of a material are disposed on both sides of the center diaphragm except for the displacement type.
JP16723382A 1982-09-25 1982-09-25 Differential pressure transmitter Pending JPS5956139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16723382A JPS5956139A (en) 1982-09-25 1982-09-25 Differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16723382A JPS5956139A (en) 1982-09-25 1982-09-25 Differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPS5956139A true JPS5956139A (en) 1984-03-31

Family

ID=15845914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16723382A Pending JPS5956139A (en) 1982-09-25 1982-09-25 Differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPS5956139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200901A (en) * 1992-12-28 1994-07-19 Kazuo Sugimura Wave type container for wave pattern type diaphragm
WO2004013594A1 (en) * 2002-07-30 2004-02-12 Endress + Hauser Gmbh + Co. Kg Differential pressure sensor comprising a symmetric error in the separating bodies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200901A (en) * 1992-12-28 1994-07-19 Kazuo Sugimura Wave type container for wave pattern type diaphragm
WO2004013594A1 (en) * 2002-07-30 2004-02-12 Endress + Hauser Gmbh + Co. Kg Differential pressure sensor comprising a symmetric error in the separating bodies
CN100343643C (en) * 2002-07-30 2007-10-17 恩德莱斯和豪瑟尔两合公司 Differential pressure sensor comprising a symmetric error in the separating bodies

Similar Documents

Publication Publication Date Title
US4120206A (en) Differential pressure sensor capsule with low acceleration sensitivity
US4086815A (en) Device for use in sensing pressures
US4072057A (en) Differential pressure cell with diaphragm tension and overpressure protection
US9739677B2 (en) Matching back pressures on differential oil-filled diaphragms
US4782703A (en) Temperature compensated pressure signal generator
JPS5956139A (en) Differential pressure transmitter
JPS5956137A (en) Differential pressure transmitter
JPH0331212B2 (en)
JPS5930444Y2 (en) differential pressure detector
JPS6329217Y2 (en)
JPS5956138A (en) Differential pressure transmitter
JPH07198519A (en) Differential pressure/pressure originating device
JPH0894474A (en) Pressure measuring apparatus
JPH0536739B2 (en)
JPH0322576B2 (en)
JPS6366429A (en) Differential pressure measuring apparatus
JPS60237336A (en) Differential pressure transmitter
JPS6333148Y2 (en)
JPH0322574B2 (en)
JPH03223639A (en) Differential-pressure detecting device
JPS58167936A (en) Differential pressure transmitter
JPS5930445Y2 (en) differential pressure detector
JPH0752601Y2 (en) Differential pressure transmitter
SU440555A1 (en) Method for determining discharge gas flow rate
JPH07229807A (en) Differential pressure measuring apparatus