JPH03223639A - Differential-pressure detecting device - Google Patents

Differential-pressure detecting device

Info

Publication number
JPH03223639A
JPH03223639A JP5307790A JP5307790A JPH03223639A JP H03223639 A JPH03223639 A JP H03223639A JP 5307790 A JP5307790 A JP 5307790A JP 5307790 A JP5307790 A JP 5307790A JP H03223639 A JPH03223639 A JP H03223639A
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
diaphragm
seal diaphragm
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5307790A
Other languages
Japanese (ja)
Inventor
Kazuaki Kitamura
北村 和明
Hironobu Yao
博信 矢尾
Takahiro Tanitsu
隆弘 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5307790A priority Critical patent/JPH03223639A/en
Publication of JPH03223639A publication Critical patent/JPH03223639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make it possible to measure pressure difference highly accurately in a broad temperature range by providing a receiving surface at a facing position that is separated from a diaphragm at a specified distance at the inner surface of a sealing diaphragm. CONSTITUTION:A corrugated receiving surface 12a which is formed on the right end surface of a main body 12 is provided so that a distance to a sealing diaphragm 4 is a specified distance and the surface can be moved in parallel in the leftward direction. Namely, the specified distance is selected so that the sealing diaphragm is sufficiently moved in a region wherein pressure/capacity characteristics are linear even under the expansion and contraction of sealed liquid due to temperature change. Thus, the inner surface of the sealing diaphragm 4 faces the corresponding receiving surface 12a at a certain distance. Therefore, the operation is carried out in the region wherein the pressure/capacity characteristics, i.e. the changing rates between the pressure and the capacity, are linear even if the sealed liquid is expanded and contracted by the temperature change. As a result, the actually acting differential pressure has the linear relationship with the differential pressure to be measured, and a detecting part can output the signal which is in proportion to the differential pressure to be measured.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、測定すべき差圧に応じた信号を出力する検
出部と、この検出部に外設され前記差圧に係る各導入圧
力をそれぞれ受けるシールダイヤフラムと、前記検出部
を過大圧から保護する保護ダイヤフラムとを具備する装
置であって、とくに広い温度範囲で高精度の差圧測定が
可能な差圧検出装置に関する。
The present invention includes a detection section that outputs a signal according to the differential pressure to be measured, a seal diaphragm that is installed externally to the detection section and receives each introduction pressure related to the differential pressure, and a seal diaphragm that protects the detection section from excessive pressure. The present invention relates to a differential pressure detection device that is equipped with a protective diaphragm that can measure differential pressure with high precision over a particularly wide temperature range.

【従来の技術】[Conventional technology]

従来装置について、この断面図である第4図を参照しな
がら説明する。第4図において、従来装置は大別すると
、検出部2oと保護部3oとからなり、これらは導圧管
6,7を介して連結される。検出部20は測定すべき差
圧を電気信号に変換して出力し、保護部30は詳しくは
後述するが、導入圧力に対して検出部20を保護する。 この検出部2oの構成は周知のとおりであるから、その
説明は省略する。 なお、検出部20を保護部30に内設させる構成にした
別の従来装置もあるが、検出部2oを保護部3oに外設
させる構成にした目的は、測定流体が高温度の場合にそ
の温度の影響が検出部2oに及ばないようにするためで
ある。 さて、保護部30は主として、各本体31,32、保護
ダイヤフラム3、各シールダイヤフラム45.0リング
8およびカバー9からなる。ここで、各本体3L32お
よび各シールダイヤフラム4,5は、それぞれ同じ部材
であり、0リング8およびカバー9は、それぞれ2個で
ある。保護ダイヤフラム3を挟んで、左右にそれぞれ各
本体31.32が配設され、それぞれの外周ないし周縁
部で互いに接合される。 また、各本体3L32には、それぞれ同じ各凹部11.
21 、答礼14.24および答礼45,55が形成さ
れる。さらに詳しくは、右側の本体31で代表して述べ
ると、次のとおりである。凹部11は本体31の左側面
にこれと同軸のは林状に形成され、孔14は本体31を
その軸線に沿って貫通し、孔45は一方では孔I4の凹
部IIの中心近傍に開口し、他方では導圧管6を貫通し
て検出部20の図示してない導圧空間に連通ずる。本体
31の右側面は断面が波形に形成され、この波形とほぼ
同じ形状のシールダイヤフラム4が、本体31の右側面
との間に空間をもってその周縁で固着される。本体31
の右側の、シールダイヤフラム4のさらに外方の周縁部
に0リング8を介してカバー9が取り付けられる。 以上のことは、左側の本体32についても実質的に同様
である。そして、各シールダイヤフラム45と接する空
間、答礼14,24 、各凹部11,21および答礼4
5.55からなる空間には、それぞれ圧力伝達用流体と
してのシリコーンオイル(封入液)が充填される。 この従来装置の作用は次のとおりである。差圧流量計、
たとえばオリフィスの両側の各導入圧力(静圧を含む)
が、それぞれシールダイヤフラム4.5で受圧されると
、その各導入圧力はそれぞれシールダイヤフラム4に接
する空間、孔14.凹部11.孔45をへて検出部20
の一方の導圧空間に、またシールダイヤフラム5に接す
る空間、孔24゜凹部21.孔55をへて検出部20の
他方の導圧空間に伝達される。なお、各シールダイヤフ
ラム4,5はそのバネ定数が極めて小さく(軟らか<)
、検出部の図示してない検出用ダイヤフラムはそのバネ
定数が極めて大きく(剛<)、保護ダイヤフラム3はそ
のバネ定数が前記の二つの中間値をとる。 検出部20では、各導入圧力に基づく差圧が周知の方式
、たとえば静電容量方式によって電気信号に変換され出
力される。以上は正常な圧力導入繰作がおこなわれた場
合である。 ところが、誤操作によって右側のシールダイヤフラム4
だけが受圧したとすると、もし保護部30がなければ、
検出部20は大きい片圧を受けてセンサが破壊されるお
それがある。オリフィスの両側の各圧力の導入に誤操作
があって、たとえ一方の圧力だけがシールダイヤフラム
で受圧されたとしても、保護部30は次に述べるような
動作によって検出部20を保護する。 第4図において、シールダイヤフラム4だけが受圧した
とすると、この圧力は、封入液を介して孔14.凹部1
1から一方では、保護ダイヤフラム3を介して左側の凹
部21.孔24を経て伝達されシールダイヤフラム5を
膨らませる。また他方では、孔45を経て検出部20の
右側の導圧空間に伝達される。しかし、この伝達圧力は
、シールダイヤフラム4が対向する本体31の右側の波
形表面と当接することによっである値以下に制限される
から、センサが破壊されるおそれはなく、保護機能が働
いたことになる。
The conventional device will be explained with reference to FIG. 4, which is a sectional view of this device. In FIG. 4, the conventional device is roughly divided into a detection section 2o and a protection section 3o, which are connected via pressure impulse pipes 6 and 7. The detection section 20 converts the differential pressure to be measured into an electrical signal and outputs it, and the protection section 30 protects the detection section 20 against the introduced pressure, which will be described in detail later. Since the configuration of this detection unit 2o is well known, its explanation will be omitted. Although there is another conventional device in which the detection section 20 is installed inside the protection section 30, the purpose of the configuration in which the detection section 2o is installed outside the protection section 3o is to prevent This is to prevent the influence of temperature from reaching the detection section 2o. Now, the protection part 30 mainly consists of each main body 31, 32, a protection diaphragm 3, each seal diaphragm 45.0 ring 8, and a cover 9. Here, each main body 3L32 and each seal diaphragm 4, 5 are the same members, and there are two O-rings 8 and two covers 9. Main bodies 31 and 32 are respectively disposed on the left and right sides with the protective diaphragm 3 in between, and are joined to each other at their respective outer peripheries or peripheral edges. Further, each main body 3L32 has the same recessed portions 11.
21, reply 14.24 and reply 45, 55 are formed. More specifically, the main body 31 on the right side will be described as follows. The recess 11 is formed coaxially with the left side of the main body 31 in a forest shape, the hole 14 passes through the main body 31 along its axis, and the hole 45 opens near the center of the recess II of the hole I4. , and on the other hand, it passes through the pressure guide pipe 6 and communicates with a pressure guide space (not shown) of the detection unit 20 . The right side of the main body 31 has a wave-shaped cross section, and a seal diaphragm 4 having substantially the same shape as the wave is fixed at its periphery with a space between it and the right side of the main body 31. Main body 31
A cover 9 is attached to the outer peripheral edge of the seal diaphragm 4 on the right side of the seal diaphragm 4 via an O-ring 8. The above is substantially the same for the left main body 32. The spaces in contact with each seal diaphragm 45, the recesses 14 and 24, the recesses 11 and 21, and the recesses 4,
Each of the spaces consisting of 5.55 mm is filled with silicone oil (filling liquid) as a pressure transmitting fluid. The operation of this conventional device is as follows. differential pressure flowmeter,
For example, each inlet pressure (including static pressure) on each side of the orifice
are respectively received by the seal diaphragm 4.5, the respective introduced pressures are applied to the spaces and holes 14.5 in contact with the seal diaphragm 4, respectively. Recessed portion 11. Detection unit 20 through hole 45
, and the space in contact with the seal diaphragm 5, the hole 24° and the recess 21. The pressure is transmitted through the hole 55 to the other pressure guiding space of the detection unit 20 . In addition, each seal diaphragm 4, 5 has an extremely small spring constant (soft <).
The detecting diaphragm (not shown) of the detecting section has an extremely large spring constant (stiffness<), and the protective diaphragm 3 has a spring constant intermediate between the above two values. In the detection unit 20, the differential pressure based on each introduced pressure is converted into an electrical signal by a well-known method, for example, a capacitance method, and is output. The above is the case when the pressure introduction cycle is performed normally. However, due to an incorrect operation, the right seal diaphragm 4
If only the protective part 30 is not present, then
The detection unit 20 may receive a large one-sided pressure and the sensor may be destroyed. Even if there is an error in introducing each pressure on both sides of the orifice and only one pressure is received by the seal diaphragm, the protection part 30 protects the detection part 20 by the following operation. In FIG. 4, if only the seal diaphragm 4 receives pressure, this pressure is transmitted to the hole 14 through the sealed liquid. Recess 1
1 on the one hand through the protective diaphragm 3 into the left-hand recess 21. It is transmitted through the hole 24 and inflates the seal diaphragm 5. On the other hand, it is transmitted through the hole 45 to the pressure guiding space on the right side of the detection unit 20 . However, this transmitted pressure is limited to a certain value or less by the seal diaphragm 4 coming into contact with the corrugated surface on the right side of the opposing body 31, so there is no risk of the sensor being destroyed and the protective function has worked. It turns out.

【発明が解決しようとする課題I 以上説明したような従来の技術において、各シールダイ
ヤフラム4,5に、それぞれ各圧力P1゜P2(PI 
>P2)が作用するとき、答礼14,45と答礼24.
55とを介して検出部20に伝達される各圧力Psl、
  Ps2は、各シールダイヤフラム4.5の各圧力伝
達損失LL、L2だけ変化する。いま、各シールダイヤ
フラム4,5に係る、圧力の容量に対する変化率をそれ
ぞれKl、に2、同じく初期圧力(軸線方向の初期力を
面積で割った値)をそれぞれJl、J2、封入液の移動
量を■とすると、Ll =KI V+J1 、L2 =
−に2 V+J2であるから、 Psi−PI −KI V−JI Ps2=P2 +に2 V−J2 したがって、 Psi−Ps2=(PI −P2)−(Kl +に2 
)  V−(Jl −J2)       ・・・(1
)さて、保護ダイヤフラム3に係る容it変化Viと、
検出部20の図示してない測定ダイヤフラムに係る容量
変化Vpとは、いずれも(Psi−Ps2)に比例する
から、Cm、Cpをそれぞれ定数として次のように表さ
れる。 Psi −Ps2= C+a Vn+ = Cp Vp
また、V = V+a + Vpであるから、Psi 
−Ps2= CV            ・”(2)
ここで、CmCm Cp / (CRI +CI) )
弐(1)、 (2)からVを消去すると、Psi−Ps
2−((PL −P2 )−(Jl −J2 ) )/
 (1+ (Kl 十に2 ) C)=A (Pi −
P2 ) −B     ・・・(3)ここで、A=1
/ (1+ (Kl +に2 )C)、B=(Jl −
J2 ) / (1+(Kl +に2 ) C)ところ
で、従来例において高温度または低温度での差圧測定を
おこなうとき、封入液の腫脹、収縮のためシールダイヤ
フラムの動作領域がリニアな領域から部分的に逸脱する
おそれがある。 第5図は従来例のシールダイヤフラムの圧力・容量特性
図で、横軸に圧力Pを、縦軸に容量Vをそれぞれとる。 第5図におけるAは常温でのシールダイヤフラムの動作
領域を示し、同様にBは高温での動作領域を、Cは低温
での動作領域をそれぞれ示す。B、Cは封入液の常温か
らの温度変化による腫脹、収縮に起因してAから移動し
たものであり、B、Cの一部にノンリニアな特性部分が
含まれる。このことは、式(3)におけるKl、に2が
定数でないことを示しており、(Psi−Ps2)が(
PI−P2)に対しリニアな関係でなくなり、(P s
l −P s2)に基づく測定では誤差を生じることを
意味する。 この発明の課題は、従来の技術がもつ以上の問題点を解
消し、広い温度範囲で高精度の差圧測定が可能な差圧検
出装置を提供することにある。 【課題を解決するための手段】 この課題を解決するために、本発明に係る差圧検出装置
は、 測定すべき差圧に応じた信号を出力する検出部と、この
検出部に外設され前記差圧に係る各導入圧力をそれぞれ
受けるシールダイヤフラムと、前記検出部を過大圧から
保護する保護ダイヤフラムと、内部空間に充填される封
入液とを具備する装置において、 前記各シールダイヤフラムの内面の少なくとも中心部に
、温度変化による前記封入液の腫脹、収縮の下において
前記シールダイヤフラムの動作がその圧力・容量特性の
リニア領域でおこなわれ得るような距離を隔てて対向位
置する受面を備える。
Problem to be Solved by the Invention I In the conventional technology as explained above, each seal diaphragm 4, 5 is charged with each pressure P1°P2 (PI
>P2) is activated, the replies 14, 45 and 24.
Each pressure Psl transmitted to the detection unit 20 via 55,
Ps2 changes by each pressure transmission loss LL, L2 of each seal diaphragm 4.5. Now, the rate of change of pressure with respect to capacity for each seal diaphragm 4 and 5 is Kl, respectively, and 2, and the initial pressure (value obtained by dividing the initial force in the axial direction by the area) is Jl and J2, respectively, and the movement of the filled liquid. If the quantity is ■, Ll = KI V + J1, L2 =
- Since 2 V + J2, Psi-PI -KI V-JI Ps2 = P2 + 2 V-J2 Therefore, Psi-Ps2 = (PI - P2) - (Kl + 2 V-J2
) V-(Jl-J2)...(1
) Now, the change in capacity Vi related to the protective diaphragm 3,
Since both capacitance changes Vp related to a measurement diaphragm (not shown) of the detection unit 20 are proportional to (Psi-Ps2), they can be expressed as follows with Cm and Cp being constants. Psi −Ps2= C+a Vn+ = Cp Vp
Also, since V = V + a + Vp, Psi
−Ps2=CV・”(2)
Here, CmCm Cp / (CRI + CI))
2 If we eliminate V from (1) and (2), we get Psi-Ps
2-((PL-P2)-(Jl-J2))/
(1+ (Kl 102) C)=A (Pi −
P2) -B...(3) Here, A=1
/ (1+ (2 to Kl +)C), B=(Jl −
J2 ) / (1 + (2 to Kl +) C) By the way, in the conventional example, when measuring differential pressure at high or low temperatures, the operating range of the seal diaphragm deviates from the linear range due to swelling and contraction of the filled liquid. There is a risk of partial deviation. FIG. 5 is a pressure/capacity characteristic diagram of a conventional seal diaphragm, in which the horizontal axis represents pressure P and the vertical axis represents capacity V. In FIG. 5, A indicates the operating range of the seal diaphragm at room temperature, B indicates the operating range at high temperature, and C indicates the operating range at low temperature. B and C move from A due to swelling and contraction of the sealed liquid due to a temperature change from room temperature, and some of B and C include nonlinear characteristic portions. This shows that 2 is not a constant for Kl in equation (3), and (Psi-Ps2) is (
The relationship is no longer linear with respect to (PI-P2), and (P s
This means that measurements based on l - P s2) will result in errors. It is an object of the present invention to provide a differential pressure detection device that solves the above-mentioned problems of the conventional technology and is capable of measuring differential pressure with high accuracy over a wide temperature range. [Means for Solving the Problem] In order to solve this problem, the differential pressure detection device according to the present invention includes a detection section that outputs a signal according to the differential pressure to be measured, and a detection section that is externally installed in the detection section. In an apparatus comprising a seal diaphragm that receives each introduction pressure related to the differential pressure, a protection diaphragm that protects the detection section from excessive pressure, and a sealed liquid that fills the internal space, the inner surface of each of the seal diaphragms is At least at the center thereof, there are receiving surfaces located opposite each other at a distance such that the seal diaphragm can operate in a linear region of its pressure/capacitance characteristics under swelling and contraction of the sealed liquid due to temperature changes.

【作 用】[For use]

各シールダイヤフラムの内面とこれに対応する受面とは
、ある距離を隔てて対向するから、温度変化による封入
液の膨脂2収縮の下において各シールダイヤフラムの動
作は、その圧力・容量特性がリニアな領域でおこなわれ
る。その結果、検出部は、それに実際に作用する差圧が
測定すべき差圧とリニアな関係になり、測定すべき差圧
に比例した信号を出力することができる。
Since the inner surface of each seal diaphragm and the corresponding receiving surface face each other at a certain distance, the operation of each seal diaphragm under expansion and contraction of the filled liquid due to temperature changes depends on its pressure and capacity characteristics. It takes place in a linear area. As a result, the differential pressure actually acting on the detection section has a linear relationship with the differential pressure to be measured, and the detection section can output a signal proportional to the differential pressure to be measured.

【実施例】【Example】

本発明に係る差圧検出装置の第1の実施例について、そ
の要部の断面図である第1図を参照しながら説明する。 第1実施例が第4図に示した従来例と異なる点は、本体
の各端面部のシールダイヤフラムに対する位置関係であ
る。第1図において、保護部を構成する本体を、右側の
本体12の端面部の断面で代表的に示し、左側の本体に
ついては図示を省略する。なお本体12は、第4図に示
した従来例における本体31に相当する。 第1図において、本体12の右端面に形成された波形の
受面12aは、シールダイヤフラム4との距離が0.3
〜0.5 mmであるように、従来例における位置より
左方向に平行移動的に彫り込まれて設けられる。言いか
えれば、前記の距離0.3〜0.5 mmは、温度変化
による封入液の腫脹、収縮の下においても、各シールダ
イヤフラムの動作が、その圧力・容量特性のリニアな領
域でおこなわれるに十分なように選ばれたわけである。 シールダイヤフラム4の動作は、その内面(図の左側面
)とこれに対応する受面12aとが、前記の距離を隔て
て対向するから、温度変化による封入液の膨脂、収縮の
下においても、その圧力・容量特性つまり圧力の容量に
対する変化率が、後述するようにリニアな領域でおこな
われる。すなわち、式(3)におけるKl、に2が完全
に定数である。 その結果、検出部20は、それに実際に作用する差圧が
測定すべき差圧とリニアな関係になり、測定すべき差圧
に比例した信号を出力することができる。 第3図は第1実施例におけるシールダイヤフラムの圧力
・容量特性図で、次に述べる第2実施例におけるのと共
通である。第3図において、シールダイヤフラムの可動
範囲が拡大されるから、リニアな領域も拡大される。そ
の結果、高温、低温におけるシールダイヤフラムの各動
作範囲B、  Cが常温における動作範囲Aを中心にし
ていずれもリニアな領域内にある。このことは、広い温
度範囲で高精度の差圧測定が可能なことを示す。 第2図は第2の実施例における右側の本体22の端面部
の断面図である。この第2実施例の本体22が第1実施
例の本体12と異なる点は、端面に形成された受面22
aが凹面状(播鉢伏)の波形をなすことである。受面2
2aとシールダイヤフラム4との距離は中心部で最大に
なり、平均的には第1実施例での値に同じで、0.3〜
0,5唾である。 第2実施例の動作も第1実施例におけるのと同じで、そ
の圧力・容量特性は既に述べた第3図で共通に示される
A first embodiment of the differential pressure detection device according to the present invention will be described with reference to FIG. 1, which is a sectional view of the main parts thereof. The difference between the first embodiment and the conventional example shown in FIG. 4 is the positional relationship of each end face portion of the main body with respect to the seal diaphragm. In FIG. 1, the main body constituting the protection part is typically shown in cross section of the end face of the main body 12 on the right side, and the illustration of the main body on the left side is omitted. Note that the main body 12 corresponds to the main body 31 in the conventional example shown in FIG. In FIG. 1, the distance between the wave-shaped receiving surface 12a formed on the right end surface of the main body 12 and the seal diaphragm 4 is 0.3.
It is carved in parallel to the left from the position in the conventional example so that the distance is 0.5 mm. In other words, the above-mentioned distance of 0.3 to 0.5 mm allows each seal diaphragm to operate in a region where its pressure/capacitance characteristics are linear even when the sealed liquid expands or contracts due to temperature changes. It was selected so that it was sufficient for The operation of the seal diaphragm 4 is such that its inner surface (the left side in the figure) and the corresponding receiving surface 12a face each other at the above-mentioned distance, so that even when the sealed liquid expands or contracts due to temperature changes, , the pressure/capacitance characteristics, that is, the rate of change of pressure with respect to capacity, occur in a linear region as will be described later. That is, Kl in equation (3) is completely constant. As a result, the detection section 20 has a linear relationship between the differential pressure actually acting thereon and the differential pressure to be measured, and can output a signal proportional to the differential pressure to be measured. FIG. 3 is a pressure/capacity characteristic diagram of the seal diaphragm in the first embodiment, which is common to the second embodiment described below. In FIG. 3, since the range of movement of the seal diaphragm is expanded, the linear range is also expanded. As a result, the operating ranges B and C of the seal diaphragm at high and low temperatures are both within linear ranges with respect to the operating range A at room temperature. This shows that highly accurate differential pressure measurement is possible over a wide temperature range. FIG. 2 is a sectional view of the end face of the right main body 22 in the second embodiment. The main body 22 of this second embodiment differs from the main body 12 of the first embodiment in that a receiving surface 22 formed on the end surface
A has a concave waveform. Receiving surface 2
The distance between the seal diaphragm 2a and the seal diaphragm 4 is maximum at the center, and on average is the same as the value in the first embodiment, ranging from 0.3 to
0.5 saliva. The operation of the second embodiment is the same as that of the first embodiment, and its pressure/capacity characteristics are commonly shown in FIG. 3, which has already been described.

【発明の効果】【Effect of the invention】

以上説明したように、この発明においては、各シールダ
イヤフラムの内面とこれに対応する受面とは、ある距離
を隔てて対向するから、温度変化による封入液の膨脂、
収縮の下において各シールダイヤフラムの動作は、その
圧力・容量特性がリニアな領域でおこなわれ、その結果
、検出部は、それに実際に作用する差圧が測定すべき差
圧とリニアな関係になり、測定すべき差圧に比例した信
号を出力することができる。 したがって、この発明によれば、従来の技術に比べ広い
温度範囲で高精度の差圧測定が可能になり、しかもシー
ルダイヤフラムを溶接する本体部材の形状変更ないし追
加加工で簡単に得られる、というすぐれた効果がある。
As explained above, in this invention, since the inner surface of each seal diaphragm and the corresponding receiving surface face each other at a certain distance, swelling of the sealed liquid due to temperature changes,
Under contraction, each seal diaphragm operates in a region where its pressure/capacitance characteristics are linear, and as a result, the sensing section has a linear relationship between the differential pressure actually acting on it and the differential pressure to be measured. , it is possible to output a signal proportional to the differential pressure to be measured. Therefore, according to the present invention, it is possible to measure differential pressure with high precision over a wider temperature range than with conventional techniques, and this invention has the advantage of being easily obtained by changing the shape of the main body member to which the seal diaphragm is welded or by additional processing. It has a positive effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る第1の実施例の要部の断面図、 第2図は第2の実施例の要部の断面図、第3図は第1.
第2の各実施例に共通なシールダイヤフラムの圧力・容
量特性図、 第4図は従来例の断面図、 第5図は従来例のシールダイヤフラムの圧力・容量特性
図である。 符号説明 3:保護ダイヤフラム、 4:シールダイヤフラム、 第 願 晃2図 第3図 東5図 百 工4 図
FIG. 1 is a cross-sectional view of a main part of a first embodiment according to the present invention, FIG. 2 is a cross-sectional view of a main part of a second embodiment, and FIG.
4 is a sectional view of the conventional example, and FIG. 5 is a pressure/capacity characteristic diagram of the seal diaphragm of the conventional example. Symbol explanation 3: Protective diaphragm, 4: Seal diaphragm, Figure 2, Figure 3, Figure East, Figure 5, Hyakko 4.

Claims (1)

【特許請求の範囲】[Claims] 1)測定すべき差圧に応じた信号を出力する検出部と、
この検出部に外設され前記差圧に係る各導入圧力をそれ
ぞれ受けるシールダイヤフラムと、前記検出部を過大圧
から保護する保護ダイヤフラムと、内部空間に充填され
る封入液とを具備する装置において、前記各シールダイ
ヤフラムの内面の少なくとも中心部に、温度変化による
前記封入液の膨脹、収縮の下において前記シールダイヤ
フラムの動作がその圧力・容量特性のリニア領域でおこ
なわれ得るような距離を隔てて対向位置する受面を備え
ることを特徴とする差圧検出装置。
1) A detection unit that outputs a signal according to the differential pressure to be measured;
In a device comprising: a seal diaphragm that is installed externally to the detection section and receives each introduction pressure related to the differential pressure; a protection diaphragm that protects the detection section from excessive pressure; and a sealed liquid that fills the internal space. facing at least the center of the inner surface of each of the seal diaphragms at a distance such that the seal diaphragm can operate in a linear region of its pressure/capacitance characteristics under expansion and contraction of the sealed liquid due to temperature changes; A differential pressure detection device characterized by comprising a receiving surface that is positioned.
JP5307790A 1989-10-14 1990-03-05 Differential-pressure detecting device Pending JPH03223639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307790A JPH03223639A (en) 1989-10-14 1990-03-05 Differential-pressure detecting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26685989 1989-10-14
JP1-266859 1989-10-14
JP5307790A JPH03223639A (en) 1989-10-14 1990-03-05 Differential-pressure detecting device

Publications (1)

Publication Number Publication Date
JPH03223639A true JPH03223639A (en) 1991-10-02

Family

ID=26393785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307790A Pending JPH03223639A (en) 1989-10-14 1990-03-05 Differential-pressure detecting device

Country Status (1)

Country Link
JP (1) JPH03223639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503967A (en) * 1993-07-09 1996-04-02 Minnesota Mining And Manufacturing Company Silver halide photographic material having improved antistatic properties

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214329A (en) * 1986-03-17 1987-09-21 Shimadzu Corp Differential pressure transmitter
JPH01176925A (en) * 1988-01-06 1989-07-13 Yokogawa Electric Corp Manufacture of differential pressure measuring instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214329A (en) * 1986-03-17 1987-09-21 Shimadzu Corp Differential pressure transmitter
JPH01176925A (en) * 1988-01-06 1989-07-13 Yokogawa Electric Corp Manufacture of differential pressure measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5503967A (en) * 1993-07-09 1996-04-02 Minnesota Mining And Manufacturing Company Silver halide photographic material having improved antistatic properties

Similar Documents

Publication Publication Date Title
EP1883797B1 (en) Line pressure measurement using differential pressure sensor
JP2696375B2 (en) Isolation device
US7434472B2 (en) Differential pressure transducer configurations including displacement sensor
US20030127850A1 (en) Adapter for coupling a sensor to a fluid line
JPS638524A (en) Differential pressure transmitter
JPH01256177A (en) Multifunctional sensor
US5386729A (en) Temperature compensated microbend fiber optic differential pressure transducer
US6041659A (en) Methods and apparatus for sensing differential and gauge static pressure in a fluid flow line
JP2004524545A (en) Capacitive type differential pressure sensor
US3747042A (en) Pressure transducer
JPH03223639A (en) Differential-pressure detecting device
US3894436A (en) Differential pressure gauge
JPH046890B2 (en)
US7073400B2 (en) Sensor for measuring pressure in a sealed volume
JPH02212727A (en) Differential pressure detector
JPS6366429A (en) Differential pressure measuring apparatus
JP2540970B2 (en) Differential pressure detector
JPH01240832A (en) Differential pressure transmitter
JPH02231539A (en) Differential pressure detecting device
JPH0749397Y2 (en) Differential pressure transmitter
JPH06347356A (en) Device for detecting differential pressure
JPH04169830A (en) Differential-pressure detecting device
JPH07198519A (en) Differential pressure/pressure originating device
JPH03223638A (en) Differential-pressure detecting device
JPH0752601Y2 (en) Differential pressure transmitter