JPH02231539A - Differential pressure detecting device - Google Patents

Differential pressure detecting device

Info

Publication number
JPH02231539A
JPH02231539A JP5160589A JP5160589A JPH02231539A JP H02231539 A JPH02231539 A JP H02231539A JP 5160589 A JP5160589 A JP 5160589A JP 5160589 A JP5160589 A JP 5160589A JP H02231539 A JPH02231539 A JP H02231539A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure
protection
differential pressure
detection part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5160589A
Other languages
Japanese (ja)
Inventor
Kazuaki Kitamura
北村 和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5160589A priority Critical patent/JPH02231539A/en
Publication of JPH02231539A publication Critical patent/JPH02231539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To properly display a protecting function even at high temperatures by giving a protection diaphragm, which protects a detection part, a larger coefficient of thermal expansion than a member which is joined integrally with the outer peripheral parts of a left and a right side. CONSTITUTION:The detecting device consists of a detection part 20 and a protection part 30, which are connected through conduit pipes 6 and 7. The detection part 20 converts differential pressure to be measured into an electric signal and outputs the signal. The protection part 30 is provided with the protection diaphragm 3 for protecting the detection part 20. The projection diaphragm 3 has the larger coefficient of thermal expansion than main bodies 31 and 32 and when the main bodies 31 and 32 are made of martensite stainless steel, the protection diaphragm 3 is made of austenite stainless steel. Thus, the protecting function of the protection diaphragm is properly displayed even at high temperatures.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、測定すべき差圧に応じた信号を出力する検
出部と、この検出部に外設され差圧を生じる各導入圧力
に対し検出部を保護するための保護ダイヤフラムとを具
備する検出装置であって、とくにゼロ点変動を抑制する
ように改善した差圧検出装置に関する。なお、この差圧
検出装置は、導入圧力の一方が大気圧または真空である
ことによって、ゲージ圧用または絶対圧用の圧力検出装
置になる。
The present invention provides a detection unit that includes a detection unit that outputs a signal according to a differential pressure to be measured, and a protective diaphragm that is installed externally to the detection unit and protects the detection unit from each introduced pressure that causes a pressure difference. The present invention relates to a differential pressure detection device, and particularly to a differential pressure detection device improved to suppress zero point fluctuation. Note that this differential pressure detection device can be used as a pressure detection device for gauge pressure or absolute pressure because one of the introduced pressures is atmospheric pressure or vacuum.

【従来の技術】[Conventional technology]

従来装置について、この断面図である第工図を参照しな
がら説明する。第1図において、従来装置は大別すると
、検出部20と保護部30とからなり、これらは導圧管
6.7を介して連結される.検出部20は測定すべき差
圧を電気信号に変換して出力し、保護部30は詳しくは
後述するが、導入圧力に対して検出部20を保護する。 この検出部20の構成は周知のとおりであるから、その
説明は省略する.なお、検出部20を保護部30に内設
させる構成にした別の従来装置もあるが、検出部20を
保護部30に外設させる構成にした目的は、測定流体が
高温度の場合にその温度の影響が検出部20に及ばない
ようにするためである。 さて、保護部30は主として、本体31.32 、保護
ダイヤフラム33、シールダイヤフラム4,5、0リン
グ8およびカバー9からなる。ここで、本体31.32
およびシールダイヤフラム4.5の各同一名株の部材同
士は同じであり、0リング8およびカバー9はそれぞれ
2個である。保護ダイヤフラム33を挟んで、左右にそ
れぞれ本体31.32が配設され、それぞれの外周ない
し周縁部で互いに接合される。 また、本体31.32には、それぞれ同じ凹部11,2
1、孔14.24および孔45.55が形成される。さ
らに詳しくは、右側の零体31で代表して述べると、次
のとおりである。凹部11は本体31の左側面にこれと
同軸の播鉢状に形成され、孔14は本体31をその軸線
に沿って貫通し、孔45は一方では凹部11の外周近傍
に開口し、他方では導圧管6を貫通して検出部20の図
示してない導圧空間に連通ずる。零体31の右側面は断
面が波形に形成され、この波形とほぼ同じ形状のシール
ダイヤフラム4が、零体3Iの右側面との間に空間をも
ってその周縁で固着される。零体31の右側の、シール
ダイヤフラム4のさらに外方の周縁部に0リング8を介
してカバー9が取り付けられる。 以上のことは、左側の零体32についても実質的に同様
である。そして、シールダイヤフラム4,5と接する空
間、孔14,24 、凹部11,21および孔45.5
5からなる空間には、それぞれ圧力伝達用流体としての
シリコーンオイル(封入液)が充填される。 この従来装置の作用は次のとおりである。差圧流量計、
たとえばオリフィスの両側の各導入圧力(静圧を含む)
が、それぞれシールダイヤフラム4,5で受圧されると
、その各導入圧力はそれぞれシールダイヤフラム4に接
する空間,孔14,凹部11,孔45をへて検出部20
の一方の導圧空間に、またシールダイヤフラム5に接す
る空間,孔24,凹部21,孔55をへて検出部20の
他方の導圧空間に伝達される。なお、シールダイヤフラ
ム4.5はそのバネ定数が極めて小さく(軟らかく)、
検出部の図示してない検出用ダイヤフラムはそのバネ定
数が極めて大きく(剛<)、保護ダイヤフラム33はそ
のバネ定数が前記の二つの中間値をとる。 検出部20では、各導入圧力に基づく差圧が周知の方式
、たとえば静電容量方式によって電気信号に変換され出
力される。以上は正常な圧力導入操作がおこなわれた場
合である。 ところが、誤操作によって右側のシールダイヤフラム4
だけが受圧したとすると、もし保護部30がなければ、
検出部20は大きい片圧を受けてセンサが破壊されるお
それがある。オリフィスの両側の各圧力の導入に誤操作
があって、たとえ一方の圧力だけがシールダイヤフラム
で受圧されたとしても、保護部30は次に述べるような
動作によって検出部20を保護する。 第1図において、シールダイヤフラム4だけが受圧した
とすると、この圧力は、封入液を介して7L 14 ,
凹部11から一方では、保護ダイヤフラム33を介して
左側の凹部21,孔24を経て伝達されシールダイヤフ
ラム5を膨らませる.また他方では、孔45を経て検出
部20の右側の導圧空間に伝達される。しかし、この伝
達圧力は、シールダイヤフラム4が対向する零体31の
右側の波形表面と当接することによってある値以下に制
限されるから、センサが破壊されるおそれはなく、保護
機能が働いたことになる。
The conventional device will be explained with reference to the sectional view of this drawing. In FIG. 1, the conventional device can be roughly divided into a detection section 20 and a protection section 30, which are connected via a pressure impulse pipe 6.7. The detection section 20 converts the differential pressure to be measured into an electrical signal and outputs it, and the protection section 30 protects the detection section 20 against the introduced pressure, which will be described in detail later. Since the configuration of this detection unit 20 is well known, its explanation will be omitted. Although there is another conventional device in which the detection section 20 is installed inside the protection section 30, the purpose of the configuration in which the detection section 20 is installed outside the protection section 30 is to prevent This is to prevent the detection unit 20 from being affected by temperature. Now, the protection part 30 mainly consists of a main body 31, 32, a protection diaphragm 33, seal diaphragms 4, 5, an O-ring 8, and a cover 9. Here, the main body 31.32
The members of each of the seal diaphragms 4.5 and 4.5 having the same name are the same, and there are two O-rings 8 and two covers 9. Main bodies 31 and 32 are disposed on the left and right sides with the protective diaphragm 33 in between, and are joined to each other at their outer peripheries or peripheral edges. Also, the main bodies 31 and 32 have the same recesses 11 and 2, respectively.
1, holes 14.24 and 45.55 are formed. More specifically, the zero body 31 on the right side will be described as a representative example as follows. The recess 11 is formed coaxially with the left side of the main body 31 in the shape of a pot, the hole 14 passes through the main body 31 along its axis, the hole 45 opens near the outer periphery of the recess 11 on one side, and the hole 45 opens near the outer periphery of the recess 11 on the other. It passes through the pressure guide pipe 6 and communicates with a pressure guide space (not shown) of the detection section 20 . The right side surface of the zero body 31 has a wave-shaped cross section, and a seal diaphragm 4 having a shape substantially the same as the wave shape is fixed at its periphery with a space between it and the right side surface of the zero body 3I. A cover 9 is attached to the outer peripheral edge of the seal diaphragm 4 on the right side of the zero body 31 via an O-ring 8. The above is substantially the same for the zero body 32 on the left side. Spaces in contact with the seal diaphragms 4, 5, holes 14, 24, recesses 11, 21, and holes 45.5
Each of the spaces 5 is filled with silicone oil (filling liquid) as a pressure transmitting fluid. The operation of this conventional device is as follows. differential pressure flowmeter,
For example, each inlet pressure (including static pressure) on each side of the orifice
are received by the seal diaphragms 4 and 5, respectively, and the introduced pressure passes through the space in contact with the seal diaphragm 4, the hole 14, the recess 11, and the hole 45, respectively, and is detected by the detection unit 20.
The pressure is transmitted to the other pressure guiding space of the detection unit 20 through the space in contact with the seal diaphragm 5, the hole 24, the recess 21, and the hole 55. In addition, the seal diaphragm 4.5 has an extremely small spring constant (soft),
The detection diaphragm (not shown) of the detection section has an extremely large spring constant (rigid <), and the protection diaphragm 33 has a spring constant that is intermediate between the above two values. In the detection unit 20, the differential pressure based on each introduced pressure is converted into an electrical signal by a well-known method, for example, a capacitance method, and is output. The above is a case where the pressure introduction operation is performed normally. However, due to an incorrect operation, the right seal diaphragm 4
If only the protective part 30 is not present, then
The detection unit 20 may receive a large one-sided pressure and the sensor may be destroyed. Even if there is an error in introducing each pressure on both sides of the orifice and only one pressure is received by the seal diaphragm, the protection part 30 protects the detection part 20 by the following operation. In FIG. 1, if only the seal diaphragm 4 receives pressure, this pressure will be 7L 14 ,
The air is transmitted from the recess 11 via the protective diaphragm 33 to the recess 21 and hole 24 on the left side, inflating the seal diaphragm 5. On the other hand, it is transmitted through the hole 45 to the pressure guiding space on the right side of the detection unit 20 . However, this transmitted pressure is limited to a certain value or less by the contact between the seal diaphragm 4 and the right corrugated surface of the opposing zero body 31, so there is no risk of the sensor being destroyed and the protective function has worked. become.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、以上説明したような従来装置では、高温時に
次のような問題が生じる。すなわち、封入液が膨脹し、
この膨脹分がほとんど全て各シールダイヤフラム485
と、これに対応する零体31,32の波形表面との間の
空間で吸収される、言いかえれば、この空間の体積が膨
脹する。したがって、この状態で前記のような片圧が作
用すると保護ダイヤフラム3による保護機能が阻害され
る。さらに加えてもし、保護ダイヤフラム3の熱膨脹係
数が本体31.32のそれと同じないし小さいときには
、保護ダイヤフラム3が本体31 . 32によって半
径方向に引っ張られて、保護ダイヤフラム3には半径方
向の応力が生じ、この応力が前記の保護機能阻害を助長
することになる。 なお、保護ダイヤフラム3に生じた半径方向の応力が保
護機能を阻害するのは次の理由による。 いま、σ:半径方向の応力、P:片圧、W:保護ダイヤ
フラムの変位、とすると W−=P/(C+Kσ)        ・・・(1)
ここで、Cは保護ダイヤフラムのヤング率,ポアソン比
,板厚.直径によって決まる定数、Kは同じくその板厚
.直径によって決まる定数である。 したがって、応力σの増大によって変位Wは減少する、
言いかえれば、保護ダイヤフラムはより剛く動作するこ
とになり、この剛さは保護機能の低下を意味する。 この発明の課題は、従来の技術がもつ以上の問題点を解
消し、高温時でも保護機能が適切に発揮される差圧検出
装置を提供することにある。
However, in the conventional device as described above, the following problem occurs at high temperatures. In other words, the filled liquid expands,
Almost all of this expansion is caused by each seal diaphragm 485
In other words, the volume of this space expands. Therefore, if the above-mentioned one-sided pressure acts in this state, the protective function of the protective diaphragm 3 will be inhibited. In addition, if the coefficient of thermal expansion of the protective diaphragm 3 is the same or smaller than that of the main body 31. 32 in the radial direction, a radial stress is generated in the protective diaphragm 3, which stress contributes to the above-mentioned impairment of the protective function. The reason why the radial stress generated in the protective diaphragm 3 inhibits the protective function is as follows. Now, if σ is the stress in the radial direction, P is the one-sided pressure, and W is the displacement of the protective diaphragm, then W-=P/(C+Kσ)...(1)
Here, C is Young's modulus, Poisson's ratio, and plate thickness of the protective diaphragm. A constant determined by the diameter, K is also the thickness of the plate. It is a constant determined by the diameter. Therefore, as the stress σ increases, the displacement W decreases.
In other words, the protective diaphragm will operate more stiffly, and this stiffness means a reduction in the protective function. An object of the present invention is to provide a differential pressure detection device that solves the above-mentioned problems of the conventional technology and that properly exhibits its protective function even at high temperatures.

【課題を解決するための手段】[Means to solve the problem]

この課題を解決するために、本発明に係る差圧検出装置
では、 測定すべき差圧に応じた信号を出力する検出部と、この
検出部に外設され前記差圧を生じる導入圧力に対して前
記検出部を保護するための保護ダイヤフラムとを具備す
る装置において、 前記保護ダイヤフラムは、この左右各側にその外周部に
おいて一体的に接合される部材より大きい熱膨脹係数を
もつ。
In order to solve this problem, the differential pressure detection device according to the present invention includes a detection section that outputs a signal according to the differential pressure to be measured, and a detection section that is installed externally to this detection section and responds to the introduction pressure that produces the differential pressure. and a protective diaphragm for protecting the detection section, wherein the protective diaphragm has a coefficient of thermal expansion larger than a member integrally joined at its outer peripheral portion on each of the left and right sides.

【作 用】[For use]

保護ダイヤフラムは、その熱膨脹係数が保護ダイヤフラ
ムの左右各側にその外周部において一体的に接合される
部材より大きいから、高温時に保護ダイヤフラムは、部
材の熱膨脹の差に起因してこれによって引っ張られるこ
とがな《、その結果、保護ダイヤフラムは片圧を受けた
ときの変位がより大きくなる、言いかえれば、軟らかく
動作し、保護機能が適切に発揮される。
Since the protective diaphragm has a larger coefficient of thermal expansion than the members integrally joined at its outer periphery on each side of the protective diaphragm, at high temperatures the protective diaphragm is stretched by this due to the difference in thermal expansion of the members. As a result, the protective diaphragm has a larger displacement when subjected to one-sided pressure; in other words, it operates more softly, and its protective function is properly exerted.

【実施例】【Example】

本発明に係る差圧検出装置の実施例について、側断面図
である第1図を参照しながら説明する。 なお、第1図は既に説明した従来装置の側断面図と共通
である。 第1図における保護ダイヤフラム3は、その熱膨脹係数
が本体31.32のそれより大きいとする。 たとえば、本体31.32の材料がマルテンサイト系ス
テンレス鋼の一種であるSUS430のとき、保護ダイ
ヤフラム3の材料をオーステナイト系ステンレス鋼に属
するSUS301に選択する。ちなみに、熱膨張係数は
、SUS430が10.4 X 10−6/”C , 
S[IS301が16.9X10−6/”Cである。そ
のとき、保護ダイヤフラム3には、温度変化ΔTによっ
て半径方向の応力変化Δσが生じるとすると、 Δσ一EΔT・Δα/(1−ν)   ・・・(2)こ
こで、E:保護ダイヤフラムのヤング率、ν:ボアソン
比、△α:本体と保護ダイヤフラムとの熱膨脹係数の差
(Δα〈0)、である。 ΔT〉0,ΔαくO であるから、Δσ〈0、つまり減
少する。したがって、(1)式によって、保護ダイヤフ
ラムは、その変位Wが同じ片圧Pに対して増大する、言
いかえれば、より軟らかく動作する。このことは、高温
時に保護ダイヤフラムの保護機能が適切に発揮されるこ
とを意味する。
An embodiment of the differential pressure detection device according to the present invention will be described with reference to FIG. 1, which is a side sectional view. Note that FIG. 1 is the same as the side sectional view of the conventional device described above. It is assumed that the protective diaphragm 3 in FIG. 1 has a coefficient of thermal expansion greater than that of the main body 31,32. For example, when the material of the main bodies 31 and 32 is SUS430, which is a type of martensitic stainless steel, the material of the protective diaphragm 3 is selected to be SUS301, which is a type of austenitic stainless steel. By the way, the thermal expansion coefficient of SUS430 is 10.4 x 10-6/”C,
S[IS301 is 16.9X10-6/"C. At that time, if the protective diaphragm 3 has a stress change Δσ in the radial direction due to the temperature change ΔT, then Δσ−EΔT・Δα/(1−ν) ...(2) Here, E: Young's modulus of the protective diaphragm, ν: Boisson's ratio, △α: difference in thermal expansion coefficient between the main body and the protective diaphragm (Δα<0). ΔT>0, Δα O, Δσ<0, that is, decreases. Therefore, according to equation (1), the protective diaphragm increases its displacement W for the same one-sided pressure P, in other words, it operates more softly. means that the protective function of the protective diaphragm is properly demonstrated at high temperatures.

【発明の効果】【Effect of the invention】

したがって、この発明によれば、従来の技術に比べて、
高温時でも保護機能が適切に発揮され、しかも簡単な構
造により低コストで達成できる、というすぐれた効果が
ある。
Therefore, according to the present invention, compared to the conventional technology,
It has excellent effects in that it properly exhibits its protective function even at high temperatures, and can be achieved at low cost due to its simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る実施例と従来例との構成を共通的
に示す側断面図である。 符号説明
FIG. 1 is a side sectional view commonly showing the configurations of an embodiment according to the present invention and a conventional example. Code explanation

Claims (1)

【特許請求の範囲】[Claims] 1)測定すべき差圧に応じた信号を出力する検出部と、
この検出部に外設され前記差圧を生じる導入圧力に対し
て前記検出部を保護するための保護ダイヤフラムとを具
備する装置において、前記保護ダイヤフラムは、この左
右各側にその外周部において一体的に接合される部材よ
り大きい熱膨脹係数をもつことを特徴とする差圧検出装
置。
1) A detection unit that outputs a signal according to the differential pressure to be measured;
In the device, the protection diaphragm is provided externally to the detection part and protects the detection part from the introduction pressure that causes the pressure difference, and the protection diaphragm is integrally formed on the outer periphery on each side of the detection part. A differential pressure detection device characterized by having a coefficient of thermal expansion larger than that of a member to be joined to the device.
JP5160589A 1989-03-03 1989-03-03 Differential pressure detecting device Pending JPH02231539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5160589A JPH02231539A (en) 1989-03-03 1989-03-03 Differential pressure detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5160589A JPH02231539A (en) 1989-03-03 1989-03-03 Differential pressure detecting device

Publications (1)

Publication Number Publication Date
JPH02231539A true JPH02231539A (en) 1990-09-13

Family

ID=12891537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5160589A Pending JPH02231539A (en) 1989-03-03 1989-03-03 Differential pressure detecting device

Country Status (1)

Country Link
JP (1) JPH02231539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524015A (en) * 2008-06-12 2011-08-25 ローズマウント インコーポレイテッド Improved isolation system for process pressure measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524015A (en) * 2008-06-12 2011-08-25 ローズマウント インコーポレイテッド Improved isolation system for process pressure measurement

Similar Documents

Publication Publication Date Title
JP3845615B2 (en) Flow sensor
US4221134A (en) Differential pressure transducer with strain gauge
US6041659A (en) Methods and apparatus for sensing differential and gauge static pressure in a fluid flow line
US4073191A (en) Differential pressure transducer
CN101493102A (en) Pressure sensing device adapted to corrosive or explosive atmospheres and with means to filter disturbance frequencies
US4787249A (en) Differential pressure transducer
US4172388A (en) Differential pressure sensor with dual level overrange protection
ATE252726T1 (en) LEAK DETECTOR ARRANGEMENT AND SYSTEM
US4782703A (en) Temperature compensated pressure signal generator
JPH02231539A (en) Differential pressure detecting device
US4563901A (en) Transducer
JPH07306106A (en) Differential-pressure detector
JP2546012B2 (en) Differential pressure detector
JPH02212727A (en) Differential pressure detector
US3474673A (en) Differential-pressure-responsive apparatus
JP3070338B2 (en) Differential pressure detector
JPH03223638A (en) Differential-pressure detecting device
JPH03223639A (en) Differential-pressure detecting device
JPH07128170A (en) Differential pressure detector
EP2531828B1 (en) Media-isolated measurements of pressurized media
JP2540970B2 (en) Differential pressure detector
JPH04169830A (en) Differential-pressure detecting device
JPS5855833A (en) Differential pressure measuring apparatus
JPH06229793A (en) Flowmeter
Chau et al. High-stress and overrange behavior of sealed-cavity polysilicon pressure sensors