JPH07128170A - Differential pressure detector - Google Patents

Differential pressure detector

Info

Publication number
JPH07128170A
JPH07128170A JP27630893A JP27630893A JPH07128170A JP H07128170 A JPH07128170 A JP H07128170A JP 27630893 A JP27630893 A JP 27630893A JP 27630893 A JP27630893 A JP 27630893A JP H07128170 A JPH07128170 A JP H07128170A
Authority
JP
Japan
Prior art keywords
diaphragm
pressure
protective diaphragm
protective
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27630893A
Other languages
Japanese (ja)
Inventor
Kazuaki Kitamura
和明 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27630893A priority Critical patent/JPH07128170A/en
Publication of JPH07128170A publication Critical patent/JPH07128170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To lower output errors which are attributed to a gap generated at a contact part between a protective diaphragm and a main body due to a welding and will be caused by changes in ambient temperature and variations in introduction pressure. CONSTITUTION:When a protective diaphragm 3 having a concentric circular groove 3a and individual main bodies 31 and 32 are welded together on the outer circumference, a protective diaphragm 3 with a larger heat expansion modulus expands larger thermally than the bodes 31 and 32 radially and the heat expansion component causes a groove 3a to deform. That is, the heat expansion component is absorbed by the groove 3a. As a result, a bending stress left in the protective diaphragm 3 after the welding is lowered eventually minimizing a gap generated at a contact part between the protective diaphragm 3 and the bodies 31 and 32. This enables the lowering of output errors which are attributed to the gap and will be caused by changes in ambient temperature and variations in introduction pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、差圧検出部と保護ダ
イヤフラムを有する保護部とシールダイヤフラム受圧部
付き本体とからなる検出装置において、保護ダイヤフラ
ムと本体との熱膨張係数の違いや、溶接部の保護ダイヤ
フラム外周に沿っての不均一性,偏りのため、溶接後に
保護ダイヤフラムと本体との接触部に隙間が生じるの
で、この隙間に起因して周囲温度の変化や導入圧力の変
動によって生じる出力誤差を低下させるように改善した
差圧検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detecting device comprising a differential pressure detecting portion, a protective portion having a protective diaphragm, and a main body with a seal diaphragm pressure receiving portion, and a difference in thermal expansion coefficient between the protective diaphragm and the main body and welding. Due to non-uniformity and unevenness along the outer circumference of the protective diaphragm of the part, a gap is created at the contact part between the protective diaphragm and the main body after welding, and this gap causes changes in the ambient temperature and fluctuations in the introduced pressure. The present invention relates to a differential pressure detecting device improved so as to reduce an output error.

【0002】[0002]

【従来の技術】従来例について、その断面図である図5
を参照しながら説明する。図5 において、従来例は大別
すると、検出部20と保護部30とからなり、これらは導圧
管6,7を介して連結される。検出部20は、静電容量式
に測定すべき差圧を電気信号に変換して出力し、保護部
30は詳しくは後述するが、導入圧力に対して検出部20を
保護する。この検出部20の構成は周知のとおりであるか
ら、説明は省略する。なお、検出部20を保護部30に内設
させる構成にした別の従来装置もあるが、検出部20を保
護部30に外設させる構成にした目的は、測定流体が高温
度の場合にその温度の影響が検出部20に及ばないように
するためである。
2. Description of the Related Art FIG. 5 is a sectional view of a conventional example.
Will be described with reference to. In FIG. 5, the conventional example is roughly divided into a detection unit 20 and a protection unit 30, which are connected via pressure guiding pipes 6 and 7. The detection unit 20 converts the differential pressure to be measured by the capacitance method into an electric signal and outputs the electric signal.
Although the details of 30 will be described later, the detection unit 20 is protected against the introduced pressure. Since the configuration of the detection unit 20 is well known, description thereof will be omitted. Although there is another conventional device in which the detection unit 20 is internally provided in the protection unit 30, the purpose of the configuration in which the detection unit 20 is externally provided in the protection unit 30 is that when the measurement fluid has a high temperature. This is to prevent the influence of temperature from affecting the detection unit 20.

【0003】さて、保護部30は主として、各本体31,32
、保護ダイヤフラム3、各シールダイヤフラム4,
5、Oリング8および圧力導入用プロセスカバー (以
下、カバーという)9からなる。ここで、各本体31,32
および各シールダイヤフラム4,5の各同一名称の部材
同士は同じであり、Oリング8およびカバー9はそれぞ
れ2個である。保護ダイヤフラム3を挟んで、左右にそ
れぞれ各本体31,32 が配設され、それぞれの外周ないし
周縁部で互いに接合される。
Now, the protection section 30 is mainly composed of the main bodies 31, 32.
, Protective diaphragm 3, each seal diaphragm 4,
5, an O-ring 8 and a pressure introducing process cover (hereinafter referred to as a cover) 9. Where each body 31,32
Further, the members having the same names of the seal diaphragms 4 and 5 are the same, and the O-ring 8 and the cover 9 are each two. The main bodies 31 and 32 are respectively arranged on the left and right with the protective diaphragm 3 sandwiched therebetween, and are joined to each other at their outer circumferences or peripheral portions.

【0004】また、各本体31,32 には、それぞれ同じ各
凹部11, 21、各孔14,24 および各孔45,55 が形成され
る。さらに詳しくは、右側の本体31で代表して述べる
と、次のとおりである。凹部11は本体31の左側面にこれ
と同軸の擂鉢状に形成され、孔14は本体31をその軸線に
沿って貫通し、孔45は一方では孔14の凹部11中心近傍に
開口し、他方では導圧管6を貫通し検出部20の図示して
ない導圧空間に連通する。本体31の右側面は断面が波形
に形成され、この波形とほぼ同じ形状のシールダイヤフ
ラム4が、本体31の右側面との間に空間をもってその周
縁で固着される。本体31の右側の、シールダイヤフラム
4のさらに外方の周縁部にOリング8を介してカバー9
が取り付けられる。以上のことは、左側の本体32につい
ても実質的に同様である。そして、各シールダイヤフラ
ム4,5と接する空間、各孔14,24 、各凹部11,21 およ
び各孔45,55 からなる空間には、それぞれ圧力伝達用流
体としてのシリコーンオイル(封入液)が充填される。
Further, the same recesses 11 and 21, holes 14 and 24, and holes 45 and 55 are formed in the main bodies 31 and 32, respectively. More specifically, the main body 31 on the right side is described as follows. The recess 11 is formed on the left side surface of the main body 31 in the shape of a mortar that is coaxial therewith, the hole 14 penetrates the main body 31 along its axis, and the hole 45 opens on the one hand in the vicinity of the center of the recess 11 of the hole 14, and on the other hand Then, it penetrates the pressure guiding pipe 6 and communicates with a pressure guiding space (not shown) of the detection unit 20. A cross section of the right side surface of the main body 31 is formed in a corrugated shape, and a seal diaphragm 4 having substantially the same shape as the corrugated shape is fixed to the right side surface of the main body 31 at a peripheral edge thereof with a space. A cover 9 is provided on the right side of the main body 31 on the outer peripheral edge of the seal diaphragm 4 via an O-ring 8.
Is attached. The above is substantially the same for the left main body 32. Then, the space that is in contact with the seal diaphragms 4 and 5, the holes 14 and 24, the recesses 11 and 21, and the holes 45 and 55 is filled with silicone oil (filled liquid) as a pressure transmitting fluid. To be done.

【0005】この従来例の作用は次のとおりである。差
圧流量計、たとえばオリフィスの両側の各導入圧力(静
圧を含む)が、それぞれ各シールダイヤフラム4,5で
受圧されると、その各導入圧力は、それぞれシールダイ
ヤフラム4に接する空間,孔14, 凹部11,孔45をへて検
出部20の一方の導圧空間に、またシールダイヤフラム5
に接する空間,孔24,凹部21,孔55をへて検出部20の他
方の導圧空間に伝達される。なお、各シールダイヤフラ
ム4,5はそのバネ定数が極めて小さく(軟らく)、検
出部20の図示してない検出用ダイヤフラムはそのバネ定
数が極めて大きく(剛く)、保護ダイヤフラム3はその
バネ定数が前記の二つの中間値をとる。検出部20では、
各導入圧力に基づく差圧が周知の静電容量式によって電
気信号に変換され出力される。以上は正常な圧力導入操
作がおこなわれた場合である。
The operation of this conventional example is as follows. When a differential pressure flow meter, for example, each introduction pressure (including static pressure) on both sides of the orifice is received by each seal diaphragm 4 and 5, each introduction pressure is applied to the space and the hole 14 in contact with the seal diaphragm 4. Then, through the recess 11 and the hole 45, into the pressure-inducing space on one side of the detection unit 20, and also the seal diaphragm 5
Is transmitted to the other pressure guiding space of the detection unit 20 through the space in contact with the hole 24, the recess 21, and the hole 55. The seal diaphragms 4 and 5 have extremely small spring constants (soft), the detection diaphragm (not shown) of the detection unit 20 has extremely large spring constant (rigid), and the protective diaphragm 3 has the spring constant. Takes an intermediate value between the above two. In the detection unit 20,
The differential pressure based on each introduced pressure is converted into an electric signal by a well-known capacitance type and is output. The above is the case where the normal pressure introduction operation is performed.

【0006】ところが、誤操作によって右側のシールダ
イヤフラム4だけが受圧したとすると、もし保護部30が
なければ、検出部20は大きい片圧を受けてセンサが破壊
されるおそれがある。オリフィスの両側の各圧力の導入
に誤操作があって、たとえ一方の圧力だけがシールダイ
ヤフラムで受圧されたとしても、保護部30は次に述べる
ような動作によって検出部20を保護する。いま、シール
ダイヤフラム4だけが受圧したとすると、この圧力は、
封入液を介して孔14,凹部11から一方では、保護ダイヤ
フラム3を介して左側の凹部21, 孔24を経て伝達されシ
ールダイヤフラム5を膨らませる。また他方では、孔45
を経て検出部20の右側の導圧空間に伝達される。しか
し、この伝達圧力は、シールダイヤフラム4が対向する
本体31の右側の波形表面と当接することによってある値
以下に制限されるから、センサが破壊されるおそれはな
く、保護機能が働いたことになる。
However, if only the right seal diaphragm 4 receives a pressure due to an erroneous operation, if the protective portion 30 is not provided, the detection portion 20 may receive a large one-sided pressure and the sensor may be destroyed. Even if only one of the pressures is received by the seal diaphragm due to an erroneous operation in introducing each pressure on both sides of the orifice, the protection unit 30 protects the detection unit 20 by the following operation. Now, assuming that only the seal diaphragm 4 receives pressure, this pressure is
On the other hand, the sealing diaphragm 5 is inflated by being transmitted from the hole 14 and the concave portion 11 through the filled liquid and the protective diaphragm 3 through the concave portion 21 and the hole 24 on the left side. On the other hand, the hole 45
Is transmitted to the pressure guiding space on the right side of the detection unit 20 via. However, this transmission pressure is limited to a certain value or less by the contact of the seal diaphragm 4 with the corrugated surface on the right side of the opposing main body 31, so that there is no danger of the sensor being damaged and the protection function has been activated. Become.

【0007】ところで、従来例の差圧検出部20は、図示
してないが測定ダイヤフラムと、その各側のシリコン板
電極との間に形成される静電容量に基づいて、差圧が検
出される。いま、一方の導入圧力をP1,他方の導入圧力
をP2(P1 より大) 、対応する一方の静電容量値をC1,
他方の静電容量値をC2 とすると、 C1 =εA/(d−Δd) C2=εA/(d+Δd) ここで、ε:封入液の誘電率、A:電極の有効面積、
d:圧力導入がないときの測定ダイヤフラム・電極間の
平均隙間量、Δd:圧力導入時の測定ダイヤフラムの変
位量、である。周知の電子回路を介して、近似的に次の
式で表されるF値を求め、これによって差圧を知ること
ができる。
By the way, the differential pressure detecting unit 20 of the conventional example detects the differential pressure based on the electrostatic capacitance formed between the measurement diaphragm and the silicon plate electrodes on each side, which is not shown. It Now, one introduction pressure is P1, the other introduction pressure is P2 (greater than P1), and the corresponding one capacitance value is C1,
If the other capacitance value is C2, C1 = εA / (d−Δd) C2 = εA / (d + Δd) where ε: permittivity of filled liquid, A: effective area of electrode,
d is the average gap amount between the measurement diaphragm and the electrode when pressure is not introduced, and Δd is the displacement amount of the measurement diaphragm when pressure is introduced. It is possible to know the differential pressure by obtaining an F value approximately expressed by the following equation through a well-known electronic circuit.

【0008】 F=(C1 −C2)/(C1 +C2)≒Δd/d=k(P2 −P1 )F = (C1−C2) / (C1 + C2) ≈Δd / d = k (P2−P1)

【0009】[0009]

【発明が解決しようとする課題】従来例において、図4
の要部の側断面図に詳細に示すように、保護ダイヤフラ
ム3 と各本体31,32 とは、その接合部の外周でTig 溶
接、またはプラズマ溶接によって固着される。図のドッ
ト表示の部分が溶接部で、右側に少し偏っているのが示
されている。ここで、保護ダイヤフラム3 は、繰返し圧
力を受ける部材であるから、ステンレス鋼( 種類記号:
SUS301CP) のようなバネ用材料が用いられ、また、各本
体31,32 はいずれも耐食性, 溶接性を考慮して、ステン
レス鋼SUS316が用いられる。ここで、ステンレス鋼SUS3
01CPと、ステンレス鋼SUS316とは、熱膨張係数がそれぞ
れ、16.9×10-6/ ℃、16.0×10-6/ ℃、である。
In the conventional example, as shown in FIG.
As shown in detail in the side cross-sectional view of the main part of FIG. 3, the protective diaphragm 3 and each of the main bodies 31 and 32 are fixed to each other by Tig welding or plasma welding at the outer circumference of the joint. The part indicated by dots in the figure is the welded part, which is slightly offset to the right. Since the protective diaphragm 3 is a member that receives repeated pressure, it is made of stainless steel (type code:
A spring material such as SUS301CP) is used, and stainless steel SUS316 is used for each body 31, 32 in consideration of corrosion resistance and weldability. Where stainless steel SUS3
The thermal expansion coefficients of 01CP and stainless steel SUS316 are 16.9 × 10 -6 / ° C and 16.0 × 10 -6 / ° C, respectively.

【0010】この保護ダイヤフラム3 と各本体31,32 と
の熱膨張係数の違い、および、溶接部の保護ダイヤフラ
ム3 の外周に沿っての不均一性,偏りのため、溶接後に
保護ダイヤフラム3 と各本体31,32 との接触部に、次に
述べるようなメカニズムによって、図示のように隙間が
生じる。すなわち、保護ダイヤフラム3 の両側で均等に
加熱されないこと、加熱による熱膨張が各本体31,32 と
異なることによって、溶接後に残留熱応力に基づく曲げ
応力が保護ダイヤフラム3 に発生し、この曲げ応力によ
って両者の接触部に隙間が生じる。周囲温度の変化や導
入圧力の変動があると、各本体31,32 と両側のカバー9
とを締結固定しているボルトの締め付け力が変化し、接
触部の隙間が変化する。この隙間の変化は、保護ダイヤ
フラム3の変位をもたらし、さらには出力誤差となる。
Due to the difference in the coefficient of thermal expansion between the protective diaphragm 3 and each of the main bodies 31 and 32, and the unevenness and unevenness of the welded portion along the outer periphery of the protective diaphragm 3, the protective diaphragm 3 and each of the protective diaphragm 3 are not welded after welding. A gap is formed at the contact portion with the main bodies 31 and 32 as shown by the mechanism described below. That is, since the protective diaphragm 3 is not evenly heated on both sides and the thermal expansion due to heating is different from that of the main bodies 31 and 32, bending stress based on the residual thermal stress is generated in the protective diaphragm 3 after welding. A gap is created in the contact area between the two. If there is a change in ambient temperature or fluctuation in the introduced pressure, each main body 31, 32 and the cover 9
The tightening force of the bolts that fasten and fix the and changes, and the gap between the contact parts changes. This change in the gap causes displacement of the protective diaphragm 3 and further causes an output error.

【0011】この発明が解決すべき課題は、従来の技術
がもつ以上の問題点を解消し、保護ダイヤフラムと本体
との熱膨張係数の違いや、溶接部の保護ダイヤフラム外
周に沿っての不均一性,偏りのために、溶接後に保護ダ
イヤフラムと本体との接触部に隙間が生じるので、この
隙間に起因して周囲温度の変化や導入圧力の変動によっ
て生じる出力誤差を低下させるように改善した差圧検出
装置を提供することにある。
The problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, to make a difference in the thermal expansion coefficient between the protective diaphragm and the main body, and to make the welded portion uneven along the outer periphery of the protective diaphragm. Since a gap is created in the contact part between the protective diaphragm and the main body after welding due to the characteristics and bias, the difference improved to reduce the output error caused by the change in ambient temperature and the change in the introduced pressure due to this gap. It is to provide a pressure detection device.

【0012】[0012]

【課題を解決するための手段】請求項1に係る差圧検出
装置は、封入液を介して伝達された各導入圧力の差圧を
検出する差圧検出部と、円板状の保護ダイヤフラムを両
側から挟みその挟んだ外周部で共に溶接された受圧部付
き本体を有し差圧検出部を各導入圧力から保護する保護
部と、この保護部を両側から挟む形で締結固定された圧
力導入用プロセスカバーとからなる装置において、保護
ダイヤフラムと本体とのうち熱膨張係数の大きい方が、
その周縁部に同心の円環状溝を有する。
A differential pressure detecting device according to a first aspect of the present invention comprises a differential pressure detecting portion for detecting a differential pressure of each introduction pressure transmitted through a filled liquid, and a disc-shaped protective diaphragm. Protective part that has a main body with pressure receiving part that is sandwiched from both sides and welded together at the sandwiched outer peripheral part, and a protective part that protects the differential pressure detection part from each introduction pressure, and pressure introduction that is fastened and fixed by sandwiching this protective part from both sides In the device consisting of the process cover for use, the one with the larger coefficient of thermal expansion of the protective diaphragm and the main body
It has a concentric annular groove in its peripheral portion.

【0013】[0013]

【作用】請求項1に係る差圧検出装置では、保護ダイヤ
フラムと本体とが接合部の外周で共に溶接されるとき、
その溶接熱によって、熱膨張係数の大きい方の部材が、
半径方向に相手側より大きく膨張することになるが、こ
の熱膨張に影響される部分は溝の部分までであって、こ
の円環状の溝が変形することによって熱膨張を収納し、
中央部分にまでその影響が及ばない。その結果、溶接後
に保護ダイアフラム中央部に発生する曲げ応力を低減さ
せ、ひいては保護ダイアフラムの変形 (隙間)を少なく
することができる。
In the differential pressure detecting device according to the first aspect, when the protective diaphragm and the main body are welded together at the outer periphery of the joint,
Due to the welding heat, the member with the larger thermal expansion coefficient
It expands more than the other side in the radial direction, but the part affected by this thermal expansion is up to the groove part, and the thermal expansion is accommodated by the deformation of this annular groove,
The effect does not reach the central part. As a result, the bending stress generated in the central portion of the protective diaphragm after welding can be reduced, and the deformation (gap) of the protective diaphragm can be reduced.

【0014】[0014]

【実施例】この発明に係る差圧検出装置の実施例につい
て、以下に図を参照しながら説明する。図1は第1実施
例の要部の側断面図、図2は第1実施例の保護ダイヤフ
ラムに関し、(a) は側断面図、(b) は正面図である。こ
こで、第1実施例では、保護ダイヤフラム3の熱膨張係
数が、各本体31,32 のそれより大きいとする。説明の順
序として、保護ダイヤフラム3 の形状について述べる。
図2において、第1実施例の保護ダイヤフラム3は、そ
の両側面に同心の円環状溝3aが形成されている。なお、
この溝3aは断面がU字形であるが、その他のV字形,半
円形など一般にどんな形状であってもよい。さて、図1
に戻って、保護ダイヤフラム3と両側の各本体31,32 と
の接合部の外周が溶接され、ドット表示されているよう
な溶接部が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the differential pressure detecting device according to the present invention will be described below with reference to the drawings. 1 is a side sectional view of a main part of the first embodiment, FIG. 2 is a side sectional view of a protective diaphragm of the first embodiment, and FIG. Here, in the first embodiment, it is assumed that the thermal expansion coefficient of the protective diaphragm 3 is larger than that of each of the main bodies 31 and 32. As the order of explanation, the shape of the protective diaphragm 3 will be described.
In FIG. 2, the protective diaphragm 3 of the first embodiment has concentric annular grooves 3a formed on both side surfaces thereof. In addition,
The groove 3a has a U-shaped cross section, but may have any other general V-shaped or semi-circular shape. Well, Figure 1
Returning to, the outer periphery of the joint between the protective diaphragm 3 and each of the main bodies 31 and 32 on both sides is welded to form a welded portion as shown by dots.

【0015】そこで、保護ダイヤフラム3 と各本体31,3
2 とが接合部の外周で共に溶接されるとき、その溶接熱
によって、熱膨張係数の大きい方の保護ダイヤフラム3
が、半径方向に各本体31,32 より大きく熱膨張し、この
熱膨張分は、溝3aの変形をもたらす、すなわち円環状溝
3aによって吸収される。その結果、溶接後に保護ダイヤ
フラム3 に残留する曲げ応力を低減させ、ひいては保護
ダイヤフラム3 と各本体31,32 との接触部に生じる隙間
を少なくすることができる。したがって、保護ダイヤフ
ラム3 が各本体31,32 より大きい熱膨張係数をもってい
ても、また、溶接部に保護ダイヤフラム3 の外周に沿っ
ての不均一性,偏りがあっても、溶接後に保護ダイヤフ
ラム3 と各本体31,32 との接触部に隙間が生じることが
減少し、ひいてはこの隙間に起因して周囲温度の変化や
導入圧力の変動によって生じる出力誤差を低下させるこ
とができる。なお、溝3aの位置は、なるべく溶接部に近
い方が熱膨張分の吸収に好都合であると言える。しか
し、溝3aが、図1 に示すように、保護ダイヤフラム3 と
各本体31,32 との接触部の範囲内であっても、破線表示
のように接触部の範囲より外れて中心側に寄っていて
も、吸収の程度に多少の差を生じるだけである。
Therefore, the protective diaphragm 3 and the main bodies 31, 3 are
When 2 and 2 are welded together on the outer periphery of the joint, the welding heat generated by the 2 protects the protective diaphragm 3 with the larger coefficient of thermal expansion.
Is thermally expanded in the radial direction to a greater extent than each of the main bodies 31 and 32, and this thermal expansion causes deformation of the groove 3a, that is, the annular groove.
Absorbed by 3a. As a result, it is possible to reduce the bending stress remaining in the protective diaphragm 3 after welding, and it is possible to reduce the gap generated at the contact portion between the protective diaphragm 3 and each of the main bodies 31 and 32. Therefore, even if the protective diaphragm 3 has a coefficient of thermal expansion larger than that of each of the main bodies 31 and 32, and even if the welded portion has unevenness or unevenness along the outer circumference of the protective diaphragm 3, the It is possible to reduce the occurrence of a gap in the contact portion with each of the main bodies 31 and 32, and it is possible to reduce an output error caused by a change in ambient temperature or a change in introduced pressure due to the gap. It can be said that the position of the groove 3a should be as close to the welded portion as possible in order to absorb the thermal expansion. However, as shown in Fig. 1, even if the groove 3a is within the contact area between the protective diaphragm 3 and each of the main bodies 31 and 32, the groove 3a is displaced from the contact area toward the center side as shown by the broken line. However, there is only a slight difference in the degree of absorption.

【0016】図3は第2実施例の要部の側断面図であ
る。図3 において、第2実施例が第1実施例と異なる点
は、各本体31,32 の熱膨張係数が、保護ダイヤフラム3
のそれより大きく、また、保護ダイヤフラム3の側に円
環状の溝が形成されるのではなく、各本体31,32 の側
に、それぞれ円環状の溝31a,32a として形成されること
である。第2実施例における各本体31,32 の溝31a,32a
の作用は、基本的に第1実施例における保護ダイヤフラ
ム3の溝3aと同じである。すなわち、保護ダイヤフラム
3 と、各本体31,32 とが接合部の外周で共に溶接される
とき、その溶接熱によって、熱膨張係数の大きい方の各
本体31,32 が、半径方向に保護ダイヤフラム3 より大き
く熱膨張し、この熱膨張分は、各溝31a,32a の変形をも
たらす、すなわち各溝31a,32a によって吸収される。そ
の結果、隙間を少なくでき、第1実施例と同様な効果、
つまり周囲温度の変化や導入圧力の変動によって生じる
出力誤差の低下という効果を上げることができる。
FIG. 3 is a side sectional view of an essential part of the second embodiment. In FIG. 3, the second embodiment is different from the first embodiment in that the thermal expansion coefficient of each of the main bodies 31 and 32 is different from that of the protective diaphragm 3.
Is larger than that, and the annular groove is not formed on the protective diaphragm 3 side, but is formed on the main body 31, 32 side as annular grooves 31a, 32a, respectively. Grooves 31a, 32a of each body 31, 32 in the second embodiment
The action of is basically the same as the groove 3a of the protective diaphragm 3 in the first embodiment. Ie protective diaphragm
When 3 and each of the main bodies 31 and 32 are welded together at the outer periphery of the joint, due to the welding heat, each of the main bodies 31 and 32, which has a larger coefficient of thermal expansion, has a greater thermal expansion in the radial direction than the protective diaphragm 3. However, this thermal expansion causes deformation of the grooves 31a and 32a, that is, is absorbed by the grooves 31a and 32a. As a result, the gap can be reduced, and the same effect as the first embodiment,
That is, the effect of reducing the output error caused by the change of the ambient temperature and the change of the introduced pressure can be enhanced.

【0017】[0017]

【発明の効果】請求項1に係る差圧検出装置では、保護
ダイヤフラムと本体とが接合部の外周で共に溶接される
とき、その溶接熱によって、熱膨張係数の大きい方の部
材が、半径方向に相手側より大きく膨張することになる
が、この熱膨張に影響される部分は溝の部分までであっ
て、この円環状の溝が変形することによって熱膨張を収
納し、中央部分にまでその影響が及ばない。その結果、
溶接後に保護ダイアフラム中央部に発生する曲げ応力を
低減させ、ひいては保護ダイアフラムの変形 (隙間)を
少なくすることができる。したがって、保護ダイヤフラ
ムと本体との熱膨張係数の違いがあっても、また、溶接
部に保護ダイヤフラム外周に沿っての不均一性,偏りが
あっても、溶接後に保護ダイヤフラムと本体との接触部
に隙間が生じることが減少し、ひいてはこの隙間に起因
して周囲温度の変化や導入圧力の変動によって生じる出
力誤差を低下させることができる。
In the differential pressure detecting device according to the first aspect of the present invention, when the protective diaphragm and the main body are welded together at the outer periphery of the joint, the member having a larger coefficient of thermal expansion is radially moved by the welding heat. However, the part that is affected by this thermal expansion is up to the groove part, and this annular groove deforms to accommodate the thermal expansion, and even the central part Not affected. as a result,
The bending stress generated in the central portion of the protective diaphragm after welding can be reduced, and the deformation (gap) of the protective diaphragm can be reduced. Therefore, even if there is a difference in the coefficient of thermal expansion between the protective diaphragm and the main body, or if the welded portion has unevenness or unevenness along the outer circumference of the protective diaphragm, the contact portion between the protective diaphragm and the main body after welding It is possible to reduce the occurrence of a gap in the space, and it is possible to reduce an output error caused by a change in the ambient temperature or a change in the introduced pressure due to the space.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る第1実施例の要部の側断面図FIG. 1 is a side sectional view of an essential part of a first embodiment according to the present invention.

【図2】第1実施例の保護ダイヤフラムに関し、(a) は
側断面図、(b) は正面図
FIG. 2 is a side sectional view and (b) is a front view of the protective diaphragm of the first embodiment.

【図3】同じくその第2実施例の要部の側断面図FIG. 3 is a side sectional view of an essential part of the second embodiment of the same.

【図4】従来例における要部の側断面図FIG. 4 is a side sectional view of a main part in a conventional example.

【図5】従来例の側断面図FIG. 5 is a side sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

3 保護ダイヤフラム 3a 溝 20 検出部 30 保護部 31,32 本体 31a,32a 溝 3 Protective Diaphragm 3a Groove 20 Detecting Part 30 Protecting Part 31, 32 Main Body 31a, 32a Groove

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】封入液を介して伝達された各導入圧力の差
圧を検出する差圧検出部と、円板状の保護ダイヤフラム
を両側から挟みその挟んだ外周部で共に溶接された受圧
部付き本体を有し差圧検出部を各導入圧力から保護する
保護部と、この保護部を両側から挟む形で締結固定され
た圧力導入用プロセスカバーとからなる装置において、
保護ダイヤフラムと本体とのうち熱膨張係数の大きい方
が、その周縁部に同心の円環状溝を有することを特徴と
する差圧検出装置。
1. A pressure difference detecting section for detecting a pressure difference between respective introduction pressures transmitted through a filled liquid, and a pressure receiving section welded together with a disc-shaped protective diaphragm sandwiched from both sides. In a device comprising a protective unit having a main body with a protective unit for protecting the differential pressure detecting unit from each introduction pressure, and a pressure introducing process cover fastened and fixed so as to sandwich the protective unit from both sides,
A differential pressure detecting device, wherein one of the protective diaphragm and the main body, which has a larger coefficient of thermal expansion, has a concentric annular groove at its peripheral edge.
JP27630893A 1993-11-05 1993-11-05 Differential pressure detector Pending JPH07128170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27630893A JPH07128170A (en) 1993-11-05 1993-11-05 Differential pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27630893A JPH07128170A (en) 1993-11-05 1993-11-05 Differential pressure detector

Publications (1)

Publication Number Publication Date
JPH07128170A true JPH07128170A (en) 1995-05-19

Family

ID=17567650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27630893A Pending JPH07128170A (en) 1993-11-05 1993-11-05 Differential pressure detector

Country Status (1)

Country Link
JP (1) JPH07128170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018088A1 (en) * 2005-08-10 2007-02-15 Horiba Stec, Co., Ltd. Diaphragm mounting structure of electrostatic capacitance type pressure gauge
WO2012175256A1 (en) * 2011-06-20 2012-12-27 Endress+Hauser Gmbh+Co. Kg Method for producing a pressure sensor
JP2013533974A (en) * 2010-07-01 2013-08-29 エム ケー エス インストルメンツ インコーポレーテッド Capacitance sensor improvements
CN103674392A (en) * 2012-09-12 2014-03-26 株式会社鹭宫制作所 Pressure sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018088A1 (en) * 2005-08-10 2007-02-15 Horiba Stec, Co., Ltd. Diaphragm mounting structure of electrostatic capacitance type pressure gauge
US7802482B2 (en) 2005-08-10 2010-09-28 Horiba Stec Co., Ltd. Diaphragm attaching structure of electrostatic capacity type pressure gauge
JP2013533974A (en) * 2010-07-01 2013-08-29 エム ケー エス インストルメンツ インコーポレーテッド Capacitance sensor improvements
DE112011102258B4 (en) * 2010-07-01 2020-02-13 Mks Instruments Inc. Improved capacity sensors
WO2012175256A1 (en) * 2011-06-20 2012-12-27 Endress+Hauser Gmbh+Co. Kg Method for producing a pressure sensor
CN103674392A (en) * 2012-09-12 2014-03-26 株式会社鹭宫制作所 Pressure sensor
JP2014055826A (en) * 2012-09-12 2014-03-27 Saginomiya Seisakusho Inc Pressure sensor

Similar Documents

Publication Publication Date Title
CA2215083C (en) Pressure detector
JP2696375B2 (en) Isolation device
JP2774267B2 (en) Pressure sensor
US5763784A (en) Differential pressure transducer unit with an overload protection system
US6837112B2 (en) Capacitance manometer having a relatively thick flush diaphragm under tension to provide low hysteresis
WO1992017757A1 (en) Differential pressure device
US5386729A (en) Temperature compensated microbend fiber optic differential pressure transducer
US4782703A (en) Temperature compensated pressure signal generator
GB2310498A (en) Differential pressure transducer unit
JPH07128170A (en) Differential pressure detector
US5602338A (en) Differential pressure detecting apparatus
GB2266152A (en) Pressure sensor and a method for the manufacture thereof
JPH08219919A (en) Differential pressure detector
JP3070338B2 (en) Differential pressure detector
JP3105087B2 (en) Differential pressure detector
JPH02212727A (en) Differential pressure detector
JPS586901B2 (en) Saatsu Oudousouchi
JP2546012B2 (en) Differential pressure detector
JP2540970B2 (en) Differential pressure detector
JP3090175B2 (en) Differential pressure measuring device
JPH02231539A (en) Differential pressure detecting device
JPH07209120A (en) Pressure transmitter with displacer
JPH03223638A (en) Differential-pressure detecting device
JPH05164641A (en) Differential-pressure detecting apparatus having diaphragm unit
JPH08261856A (en) Differential pressure detection device