JPH04169830A - Differential-pressure detecting device - Google Patents

Differential-pressure detecting device

Info

Publication number
JPH04169830A
JPH04169830A JP29765190A JP29765190A JPH04169830A JP H04169830 A JPH04169830 A JP H04169830A JP 29765190 A JP29765190 A JP 29765190A JP 29765190 A JP29765190 A JP 29765190A JP H04169830 A JPH04169830 A JP H04169830A
Authority
JP
Japan
Prior art keywords
diaphragm
central
ratio
hole
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29765190A
Other languages
Japanese (ja)
Inventor
Takahiro Tanitsu
隆弘 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29765190A priority Critical patent/JPH04169830A/en
Publication of JPH04169830A publication Critical patent/JPH04169830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To make it possible to suppress the fluctuation of a zero point and the stress generated in a protecting diaphragm by setting the ratio between the diameter of the operating part of each side diaphragm and the diameter of a hole and the ratio between a central diaphragm and the thickness of a plate within specified ranges, respectively. CONSTITUTION:Side diaphragms 62 are laminated on both side surfaces of a central diaphragm 61 and have the same diameter and the same material as those of the central diaphragm 61. The diaphragms 62 have the disk shape. Circular holes 62a are formed at the central parts of the side diaphragms 62. Thus, the friction caused by the deviation in the direction of the radius in the displacement at the central parts between the central diaphragm 61 and the side diaphragms 62 is eliminated. The ratio between the diameter of the operating part of each side diaphragm 62 and the diameter of the hole and the ratio between the central diaphragm 61 and the plate thickness are limited in the ranges of 0.1 - 0.25 and 1.0 - 1.2, respectively. Thus, the maximum values of the stresses which are generated on the central part and the circumference of the operating part of the central diaphragm and on the inner surface of the central hole and the circumference of the operating part of the side diaphragm can be suppressed. In this way, the fluctuation of a zero point and the stress generated in the protecting diaphragm 60 can be suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、測定すべき差圧に応した信号を出力する検
出部と、この検出部に外設され差圧を生じる各導入圧力
に対し検出部を保護するための保護ダイヤフラムとを具
備する検出装置であって、とくにゼロ点変動と保護ダイ
ヤフラムに生じる応力とを抑制するように改善した差圧
検出装置に関する。なお、この差圧検出装置は、導入圧
力の一方が大気圧または真空であることによって、ゲー
ジ圧用または絶対圧用の圧力検出装置になる。
The present invention provides a detection unit that includes a detection unit that outputs a signal corresponding to a differential pressure to be measured, and a protective diaphragm that is installed externally to the detection unit and protects the detection unit from each introduced pressure that causes a pressure difference. The present invention relates to a differential pressure detection device, and more particularly to a differential pressure detection device improved to suppress zero point fluctuations and stress generated in a protective diaphragm. Note that this differential pressure detection device can be used as a pressure detection device for gauge pressure or absolute pressure because one of the introduced pressures is atmospheric pressure or vacuum.

【従来の技術】[Conventional technology]

従来装置について、この断面図である第3図を参照しな
がら説明する。第3図において、従、来装置は大別する
と、検出部20と保護部30とからなり、これらは各導
圧管6,7を介して連結される。検出部20は測定すべ
き差圧を電気信号に変換して出力し、保護部30は詳し
くは後述するが、導入圧力に対して検出部20を保護す
る。この検出部20の構成は周知のとおりであるから、
その説明は省略する。なお、検出部20を保護部30に
内設させる構成にした別の従来装置もあるが、検出部2
0を保護部30に外設させる構成にした目的は、測定流
体が高温度の場合にその温度の影響が検出部20に及ば
ないようにするためである。 さて、保護部30は主として、本体3L32 、保護ダ
イヤフラム3、シールダイヤフラム4,5.0リング8
およびカバー9からなる。ここで、本体31.32およ
びシールダイヤフラム4,5の各同一名称の部材同士は
同じであり、0リング8およびカバー9はそれぞれ2個
である。保護ダイヤフラム3を挟んで、左右にそれぞれ
本体3L32が配設され、それぞれの外周ないし周縁部
で互いに接合される。 また、本体3L32には、それぞれ同し凹部11゜21
、孔14.24および孔45.55が形成される。さら
に詳しくは、右側の本体31で代表して述べると、次の
とおりである。凹部11は本体31の左側面にこれと同
軸の播鉢状に形成され、孔14は本体31をその軸線に
沿って貫通し、孔45は一方では凹部11の外周近傍に
開口し、他方では導圧管6を貫通して検出部20の図示
してない導圧空間に連通ずる。本体31の右側面は断面
が波形に形成され、この波形とほぼ同し形状のシールダ
イヤフラム4が、本体31の右側面との間に空間をもっ
てその周縁で固着される。本体31の右側の、シールダ
イヤフラム4のさらに外方の周縁部に0リング8を介し
て力)<−9が取り付けられる。 以上のことは、左側の本体32についても実質的に同様
である。そして、シールダイヤフラム4゜5と接する空
間、孔14,24 、凹部IL21および孔45.55
からなる空間には、それぞれ圧力伝達用流体としてのシ
リコーンオイル(封入液)が充填される。 この従来装置の作用は次のとおりである。差圧流量計、
たとえばオリフィスの両側の各導入圧力(静圧を含む)
が、それぞれシールダイヤフラム4.5で受圧されると
、その各導入圧力はそれぞれシールダイヤフラム4に接
する空間、孔14.凹部11.孔45をへて検出部20
の一方の導圧空間に、またシールダイヤフラム5に接す
る空間、孔24゜凹部21.孔55をへて検出部20の
他方の導圧空間に伝達される。なお、シールダイヤフラ
ム4,5はそのハネ定数が極めて小さく (軟らか<)
、検出部の図示してない検出用ダイヤフラムはそのハネ
定数が極めて大きく(剛<)、保護ダイヤフラム3はそ
のバネ定数が前記の二つの中間値をとる。 検出部20では、各導入圧力に基づく差圧が周知の方式
、たとえば静電容量方式によって電気信号に変換され出
力される。以上は正常な圧力導入操作がおこなわれた場
合である。 ところが、誤操作によって右側のシールダイヤフラム4
だけが受圧したとすると、もし保護部30がなければ、
検出部20は大きい片圧を受けてセンサが破壊されるお
それがある。オリフィスの両側の各圧力の導入に誤操作
があって、たとえ一方の圧力だけがシールダイヤフラム
で受圧されたとしても、保護部30は次に述べるような
動作によって検出部20を保護する。 − 第3図において、シールダイヤフラム4だけが受圧した
とすると、この圧力は、封入液を介して孔14.凹部工
1から一方では、保護ダイヤフラム3を介して左側の凹
部21.孔24を経て伝達されシールダイヤフラム5を
膨らませる。また他方では、孔45を経て検出部20の
右側の導圧空間に伝達される。しかし、この伝達圧力は
、シールダイヤフラム4が対向する本体31の右側の波
形表面と当接することによっである値以下に制限される
から、センサが破壊されるおそれはなく、保護機能が働
いたことになる。
The conventional device will be described with reference to FIG. 3, which is a sectional view of this device. In FIG. 3, the conventional and conventional devices are roughly divided into a detection section 20 and a protection section 30, which are connected via pressure impulse pipes 6 and 7. The detection section 20 converts the differential pressure to be measured into an electrical signal and outputs it, and the protection section 30 protects the detection section 20 against the introduced pressure, which will be described in detail later. Since the configuration of this detection section 20 is well known,
The explanation will be omitted. Note that there is another conventional device in which the detection section 20 is installed inside the protection section 30;
The purpose of configuring the sensor 0 to be provided externally to the protection section 30 is to prevent the detection section 20 from being affected by the temperature of the measured fluid when the temperature is high. Now, the protection part 30 mainly includes a main body 3L32, a protection diaphragm 3, a seal diaphragm 4, and a 5.0 ring 8.
and a cover 9. Here, the members of the main body 31, 32 and the seal diaphragms 4, 5 having the same name are the same, and there are two O-rings 8 and two covers 9. Main bodies 3L32 are disposed on the left and right sides with the protective diaphragm 3 in between, and are joined to each other at their respective outer peripheries or peripheral edges. In addition, the main body 3L32 has the same recesses 11° and 21, respectively.
, hole 14.24 and hole 45.55 are formed. More specifically, the main body 31 on the right side will be described as follows. The recess 11 is formed coaxially with the left side of the main body 31 in the shape of a pot, the hole 14 passes through the main body 31 along its axis, the hole 45 opens near the outer periphery of the recess 11 on one side, and the hole 45 opens near the outer periphery of the recess 11 on the other. It passes through the pressure guide pipe 6 and communicates with a pressure guide space (not shown) of the detection section 20 . The right side surface of the main body 31 is formed into a wave shape in cross section, and a seal diaphragm 4 having a shape substantially the same as the wave shape is fixed at the periphery of the right side surface of the main body 31 with a space between the seal diaphragm 4 and the right side surface of the main body 31. A force)<-9 is attached via an O-ring 8 to the outer peripheral edge of the sealing diaphragm 4 on the right side of the main body 31. The above is substantially the same for the left main body 32. Then, the space in contact with the seal diaphragm 4°5, the holes 14, 24, the recess IL21 and the hole 45.55.
These spaces are each filled with silicone oil (filling liquid) as a pressure transmitting fluid. The operation of this conventional device is as follows. differential pressure flowmeter,
For example, each inlet pressure (including static pressure) on each side of the orifice
are respectively received by the seal diaphragm 4.5, the respective introduced pressures are applied to the spaces and holes 14.5 in contact with the seal diaphragm 4, respectively. Recessed portion 11. Detection unit 20 through hole 45
, and the space in contact with the seal diaphragm 5, the hole 24° and the recess 21. The pressure is transmitted through the hole 55 to the other pressure guiding space of the detection unit 20 . In addition, the seal diaphragms 4 and 5 have extremely small spring constants (soft <).
The detection diaphragm (not shown) of the detection section has an extremely large spring constant (stiffness<), and the protection diaphragm 3 has a spring constant that is intermediate between the above two values. In the detection unit 20, the differential pressure based on each introduced pressure is converted into an electrical signal by a well-known method, for example, a capacitance method, and is output. The above is a case where the pressure introduction operation is performed normally. However, due to an incorrect operation, the right seal diaphragm 4
If only the protective part 30 is not present, then
The detection unit 20 may receive a large one-sided pressure and the sensor may be destroyed. Even if there is an error in introducing each pressure on both sides of the orifice and only one pressure is received by the seal diaphragm, the protection part 30 protects the detection part 20 by the following operation. - In FIG. 3, if only the sealing diaphragm 4 receives pressure, this pressure is transferred to the hole 14 through the sealed liquid. From the recess 1, on the one hand, via the protective diaphragm 3, the left recess 21. It is transmitted through the hole 24 and inflates the seal diaphragm 5. On the other hand, it is transmitted through the hole 45 to the pressure guiding space on the right side of the detection unit 20 . However, this transmitted pressure is limited to a certain value or less by the seal diaphragm 4 coming into contact with the right corrugated surface of the opposing main body 31, so there is no risk of the sensor being destroyed and the protective function has worked. It turns out.

【発明が解決しようとする課題】[Problem to be solved by the invention]

以上説明したように、従来の技術では、保護ダイヤフラ
ム3は、できるだけ軟らかく、いいかえれば小さい圧力
で大きく変位するように作れば、検出部20に伝達され
る片圧を抑えることができる。 しかも、そのとき保護ダイヤフラム3は、自身に生じる
応力を大きくしないようにして破損から守必要がある。 そのため従来、保護ダイヤフラムとして、複数個のダイ
ヤフラムを積層して構成する方式がとられることがある
。しかし、この方式では互いに隣接するダイヤフラム間
の面摩擦のために、作用する片圧が除去されたとき完全
に初期位置に復帰せず、つまり残留変位が生じ、その結
果ゼロ点変動を生じるという問題がある。 この発明の課題は、従来の技術がもつ以上の問題点を解
消し、ゼロ点変動と保護ダイヤフラムに生じる応力とを
抑制するように改善した差圧検出装置を提供することに
ある。
As explained above, in the conventional technology, if the protective diaphragm 3 is made as soft as possible, in other words, if it is made so that it can be largely displaced with a small pressure, the one-sided pressure transmitted to the detection section 20 can be suppressed. Moreover, at this time, the protective diaphragm 3 must be protected from damage by not increasing the stress generated therein. Therefore, conventionally, a method has been adopted in which a plurality of diaphragms are stacked together as a protective diaphragm. However, this method has the problem that due to surface friction between adjacent diaphragms, they do not completely return to the initial position when the applied one-sided pressure is removed, resulting in residual displacement, resulting in zero point fluctuation. There is. An object of the present invention is to provide an improved differential pressure detection device that eliminates the above-mentioned problems of the prior art and suppresses zero point fluctuations and stress generated in the protective diaphragm.

【課題を解決するための手段】[Means to solve the problem]

この課題を解決するために、請求項1に係る差圧検出装
置は、 測定すべき差圧に応じた信号を出力する検出部と、この
検出部に外設され、前記差圧に係る各導入圧力に対して
前記検出部を保護する保護ダイヤフラムとを具備する検
出装置において、 前記保護ダイヤフラムは、 円板状をなす1個の中央ダイヤフラムと;この中央ダイ
ヤフラムの両面の各側に積層され、中心部に円形穴を有
し、前記中央ダイヤフラムと同径、同材質の円板状をな
すとともに、作動部分の直径に対する前記穴の直径の比
率(以下、穴径比という)と、前記中央ダイヤフラムに
対する板厚の比率(以下、板厚比という)とが、それぞ
れ所定範囲である各側ダイヤフラムと; を備える。 請求項2に係る差圧検出装置は、 請求項1に記載の装置において、穴径比、板厚比が、そ
れぞれ0.1〜0.25.1.0〜1.2、の範囲であ
る。 請求項3に係る差圧検出装置は、 請求項1に記載の装置において、穴径比、板厚比が、そ
れぞれ0.3〜0.5 、0.9〜1.0、の範囲であ
る。 請求項4に係る差圧検出装置は、 請求項1に記載の装置において、穴径比、板厚比が、そ
れぞれ0.4〜0.6 、0.8〜0.9、の範囲であ
る。
In order to solve this problem, the differential pressure detection device according to claim 1 includes: a detection section that outputs a signal according to the differential pressure to be measured; A detection device comprising a protective diaphragm that protects the detection part against pressure, the protective diaphragm comprising: a disk-shaped central diaphragm; laminated on each side of both surfaces of the central diaphragm; It has a circular hole in the central diaphragm, and has the same diameter and the same material as the central diaphragm. Each side diaphragm has a plate thickness ratio (hereinafter referred to as plate thickness ratio) within a predetermined range; The differential pressure detection device according to claim 2 is the device according to claim 1, wherein the hole diameter ratio and the plate thickness ratio are in the range of 0.1 to 0.25, 1.0 to 1.2, respectively. . The differential pressure detection device according to claim 3 is the device according to claim 1, wherein the hole diameter ratio and the plate thickness ratio are in the ranges of 0.3 to 0.5 and 0.9 to 1.0, respectively. . The differential pressure detection device according to claim 4 is the device according to claim 1, wherein the hole diameter ratio and the plate thickness ratio are in the ranges of 0.4 to 0.6 and 0.8 to 0.9, respectively. .

【作用】[Effect]

請求項1〜4のいずれかに係る差圧検出装置では共通的
に、側ダイヤフラムの中心部にあけた円形穴により、中
央ダイヤフラム、側ダイヤフラム間の中心部における変
位時の半径方向のずれに基づいて起こり得る摩擦が存在
しなくなる。また、側ダイヤフラムの作動部分の直径に
対する穴の直径の比率(穴径比)と、中央ダイヤフラム
に対する板厚の比率(板厚比)とを、ある範囲内に限定
することによって、中央ダイヤフラム中央部および作動
部分円周上と、側ダイヤフラム中心穴内周上および作動
部分円周上と、において生じる各応力の最大値を抑える
ことができる。
In the differential pressure detection device according to any one of claims 1 to 4, in common, a circular hole formed in the center of the side diaphragm is used to detect a deviation in the radial direction at the time of displacement at the center between the center diaphragm and the side diaphragm. Friction that could otherwise occur is eliminated. In addition, by limiting the ratio of the diameter of the hole to the diameter of the operating part of the side diaphragm (hole diameter ratio) and the ratio of the plate thickness to the center diaphragm (plate thickness ratio) to within a certain range, the central part of the center diaphragm Moreover, the maximum value of each stress occurring on the circumference of the operating portion, on the inner circumference of the center hole of the side diaphragm, and on the circumference of the operating portion can be suppressed.

【実施例】【Example】

本発明に係る差圧検出装置の実施例について、以下に図
を参照しながら説明する。第1図はこの第1実施例にお
ける保護ダイヤフラムの側断面図、第2図は同じ(その
正面図である。 第1図において、保護ダイヤフラム60は、1個の中央
ダイヤフラム61と、その各側に隣接して配置される側
ダイヤフラム62とからなる。中央ダイヤフラム61.
各側ダイヤフラム62はともに同じ直径の平面円盤状で
あるが、中央ダイヤフラム61には中心部に穴がないの
に対して、各側ダイヤフラム62には中心部に穴62a
がある。 したがって、穴62aが存在することによって、中央ダ
イヤフラム61と、これに隣接する側ダイヤフラム62
との間の中心部における変形時の半径方向のずれに基づ
き起こり得る摩擦が除去され、各相互間の面摩擦力が減
少する。その結果、保護ダイヤフラム60は、これに作
用する片圧が除去されたときほぼ完全に初期位置に復帰
し、その結果ゼロ点変動が抑制される。 ところで、保護ダイヤフラム60は、構造的には3層構
造体であるが、動作的には2層構造体と等価である。す
なわち、差圧を受けたときに変位するのは、中央ダイヤ
フラム61と、いずれかの側ダイヤフラム62とである
からである。 以下に、中央ダイヤフラム、側ダイヤフラムに生しる応
力について詳しく解析する。各ダイヤフラムで最大応力
の生しる箇所と、その応力方向とは、中央ダイヤフラム
については、■中心部で半径方向、■作動部円周上で半
径方向、のいずれかであり、側ダイヤフラムについては
、■中心穴の周上で円周方向、■作動部円周上で半径方
向、の内のいずれかである。 さて、円盤状部材がその面に直角な圧力を受けたときの
応力に関する公式と、中央、側の各ダイヤフラムの各箇
所の変位が共通であるとの仮定とに基づいて、前記■〜
■の各応力を導出すると次のようになる。いま、 h:中央ダイヤフラムの板厚 1:側ダイヤフラムの板厚 a:作動部の半径 b:側ダイヤフラムの円形穴の半径 シ:各ダイヤフラムのポアソン比 E:各ダイヤフラムのヤング率 P:作用する差圧 としたとき、前記■、■、■、■に対応する各応力σl
、σ2.σ3.σ4は、 ty1=3(1+ν) (a”(Y2−Yl−Xi)+
b2((b/a)2+41n(a/b))XIIP/8
h2(Y2−Yl)   −(1)o2 =3 (a2
(X1+Y1−Y2)+b2((b/a)2−2) X
i) P/4h” (Y2−Yl)         
   、(2)σ3 =3a”[((1+3ν)+4(
1+ν)(A+ i!、n(a/b))+2(1−v)
) (b/a)2+(1−ν)B(a/b)2] XI
 ・P/8i2(Y2−Yl)           
 ・・・(3)σ4 =3a2(3+ν+4A(1+ν
)(b/a)2−(1−ν)(2(b/a)2+B〕 
)  Xi  ・ P/8i”(Y2−Yl)−(4)
ただし、χ1 = (a”−b2)”/64DY1= 
(−a’+6a2b”−3b’−12b’j2n(a/
b)−2b”/a”)/64D Y2=−(a’−9b’+8a”b”+8A(a”b”
−b’)+4(a’B−2b’)l n(a/b) )
 /64F t) =Eh’/12(1−ν”)、 F=Ei’/1
2(L−ν2)A =−a” ((1−v X2+a”
/b2)+ [(1+3 v )+4(1+ v )f
n(a/b)) b”/a2)/ 4 (0−ν)a”
+(1+ν)b2〕 B  =−b2 ((1+ν)  (1−41!、n(
a/b)b”/a2)  +(1−v )b2/a”)
 / ((1−v )a2+(1+ v )b2)式(
13,(2)、 (3)、 (4)を、b/a、i/h
を変数として、コンピュータによってシミュレーション
して、次の結論を得た。すなわち、 (a)  0.1 ≦b / a≦0.25、かつ1.
0≦i / h≦1,2 (b)  0.3≦b / a≦0.5、かつ0.9≦
i / h≦1.0 (C)  0.4≦b / a≦0.6、かつ0.8≦
i / h≦0.9 に、それぞれ定めると、σ1〜σ4の最大値を低い値に
抑えることができる。 次に、実施例での応力値と、従来の1枚形の保護ダイヤ
フラムでの応力値とを数字的に比較してみる。 単位差圧に対する変位、つまり保護ダイヤフラムのバネ
定数の、実施例での値Kd 、従来例での値には、Vd
を差圧Pにおける実施例での変位、■を差圧Pにおける
従来例での変位とすると、Kd =Vd /P =π(1−ν”)a’ (1+(−1+3ε2−3ε4
+ε6)XI/(Y2−Yl) ) /16Eh3に=
V/P = π(1−v ”)a6/16Et’ただし、tは従
来の1枚形の保護ダイヤフラムの板厚である。当然なが
ら、実施例と従来例とのハネ定数は同しでなければなら
ないから、Kd=にである。したがって、 (1+(−1+3ε2−3ε4+εh)Xi/(Y2−
Yl) ) /b’= 1/13          
      ・・・(5)また、従来例での保護ダイヤ
フラムの最大応力σは、作動径上での半径方向の応力で
あり、a −3(a/ t) ”P/4       
    − (6)各式(5)、 (6)からtを消去
し、前記の(a)、 (b)、 (C)の場合のσの値
を計算すると、これが求めるべき従来例での保護ダイヤ
フラムの最大応力になる。 なお、E =20000 kg/ IIts 、ν=0
.3とする。 計算の結果は、前記の(a)、 (b)、 (C)の場
合のσの値が、いずれも同しバネ定数の従来例における
応力値の約90%以下になり、1枚形の従来例より最大
応力を約10%以上、抑えることができた。
Embodiments of the differential pressure detection device according to the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view of the protective diaphragm in this first embodiment, and FIG. 2 is the same (front view thereof). In FIG. a side diaphragm 62 located adjacent to a central diaphragm 61 .
Each side diaphragm 62 has a planar disk shape with the same diameter, but while the central diaphragm 61 has no hole in the center, each side diaphragm 62 has a hole 62a in the center.
There is. Therefore, the presence of the hole 62a allows the central diaphragm 61 and the adjacent side diaphragm 62 to
Friction that may occur due to radial deviations during deformation in the center between them is eliminated, and the surface friction forces between each other are reduced. As a result, the protective diaphragm 60 almost completely returns to its initial position when the one-sided pressure acting on it is removed, so that zero point fluctuations are suppressed. By the way, although the protective diaphragm 60 is structurally a three-layer structure, it is operationally equivalent to a two-layer structure. That is, it is the center diaphragm 61 and either side diaphragm 62 that are displaced when subjected to differential pressure. Below, we will analyze in detail the stress generated in the central diaphragm and side diaphragms. The location where the maximum stress occurs in each diaphragm and the direction of the stress are: for the central diaphragm, either ■ radial direction at the center, ■ radial direction on the circumference of the operating part, and for the side diaphragms , (circumferential direction on the circumference of the center hole), or (2) radial direction on the circumference of the operating part. Now, based on the formula for the stress when a disc-shaped member is subjected to pressure perpendicular to its surface, and the assumption that the displacements at each location of the center and side diaphragms are the same,
Deriving each stress in (2) is as follows. Now, h: Thickness of central diaphragm 1: Thickness of side diaphragm a: Radius of operating part b: Radius of circular hole in side diaphragm C: Poisson's ratio of each diaphragm E: Young's modulus of each diaphragm P: Acting difference When expressed as pressure, each stress σl corresponding to the above ■, ■, ■, ■
, σ2. σ3. σ4 is ty1=3(1+ν) (a”(Y2-Yl-Xi)+
b2((b/a)2+41n(a/b))XIIP/8
h2 (Y2-Yl) - (1) o2 = 3 (a2
(X1+Y1-Y2)+b2((b/a)2-2) X
i) P/4h” (Y2-Yl)
, (2) σ3 = 3a” [((1+3ν)+4(
1+ν) (A+ i!, n(a/b))+2(1-v)
) (b/a)2+(1-ν)B(a/b)2] XI
・P/8i2 (Y2-Yl)
...(3)σ4 =3a2(3+ν+4A(1+ν
)(b/a)2-(1-ν)(2(b/a)2+B)
) Xi ・P/8i”(Y2-Yl)-(4)
However, χ1 = (a"-b2)"/64DY1=
(-a'+6a2b"-3b'-12b'j2n(a/
b)-2b"/a")/64D Y2=-(a'-9b'+8a"b"+8A(a"b"
-b')+4(a'B-2b')l n(a/b))
/64Ft) =Eh'/12(1-ν"), F=Ei'/1
2(L-ν2)A =-a" ((1-v X2+a"
/b2)+[(1+3v)+4(1+v)f
n(a/b)) b”/a2)/4 (0-ν)a”
+(1+ν)b2] B =-b2 ((1+ν) (1-41!, n(
a/b)b”/a2) +(1-v)b2/a”)
/ ((1-v)a2+(1+v)b2) formula (
13, (2), (3), (4), b/a, i/h
A computer simulation was performed using the variables as variables, and the following conclusions were obtained. That is, (a) 0.1≦b/a≦0.25, and 1.
0≦i / h≦1,2 (b) 0.3≦b / a≦0.5 and 0.9≦
i/h≦1.0 (C) 0.4≦b/a≦0.6 and 0.8≦
By setting i/h≦0.9, the maximum values of σ1 to σ4 can be suppressed to low values. Next, a numerical comparison will be made between the stress value in the example and the stress value in a conventional single-piece protective diaphragm. The displacement for a unit differential pressure, that is, the spring constant of the protective diaphragm, is the value Kd in the embodiment, and the value in the conventional example is Vd.
Assuming that .
+ε6)XI/(Y2-Yl) ) /16Eh3 =
V/P = π(1-v'')a6/16Et' However, t is the thickness of the conventional single-piece protective diaphragm.Of course, the spring constants of the embodiment and the conventional example must be the same. Therefore, (1+(-1+3ε2-3ε4+εh)Xi/(Y2-
Yl) ) /b'= 1/13
...(5) Also, the maximum stress σ of the protective diaphragm in the conventional example is the stress in the radial direction on the working radius, and is a −3 (a/t) ”P/4
- (6) By eliminating t from each equation (5) and (6) and calculating the value of σ in the cases of (a), (b), and (C) above, this is the protection in the conventional example that should be sought. This is the maximum stress on the diaphragm. In addition, E = 20000 kg/ IIts, ν = 0
.. 3. The calculation results show that the values of σ in cases (a), (b), and (C) above are all approximately 90% or less of the stress value in the conventional example with the same spring constant, and The maximum stress could be suppressed by about 10% or more compared to the conventional example.

【発明の効果】【Effect of the invention】

本発明に係る実施例は、従来の技術に比べ、保護ダイヤ
フラムはこれに作用する片圧が除去されたときほぼ完全
に初期位置に復帰し、その結果ゼロ点変動が抑制され、
かつ生じる最大応力が従来の約10%以上低減される、
というすくれた効果がある。
Compared to the prior art, the embodiments of the present invention provide that the protective diaphragm almost completely returns to its initial position when the one-sided pressure acting on it is removed, so that zero point fluctuations are suppressed;
and the maximum stress generated is reduced by about 10% or more compared to the conventional one.
It has a nice effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例における保護ダイヤフラム
の側断面図、 第2図は同じくその正面図、 第3図は従来例の断面図である。 符号説明 60:保護ダイヤフラム、61:中央ダイヤフラム、6
2:側ダイヤフラム、62a:穴。 イli!官ヤフウム 旦q 犬1図 且q 不2 図
FIG. 1 is a side sectional view of a protective diaphragm according to an embodiment of the present invention, FIG. 2 is a front view thereof, and FIG. 3 is a sectional view of a conventional example. Code explanation: 60: Protective diaphragm, 61: Central diaphragm, 6
2: Side diaphragm, 62a: Hole. Ili! Official Yahuum Danq Dog 1 figure and q Not 2 figure

Claims (1)

【特許請求の範囲】 1)測定すべき差圧に応じた信号を出力する検出部と、
この検出部に外設され、前記差圧に係る各導入圧力に対
して前記検出部を保護する保護ダイヤフラムとを具備す
る検出装置において、 前記保護ダイヤフラムは、 円板状をなす1個の中央ダイヤフラムと; この中央ダイヤフラムの両面の各側に積層され、中心部
に円形穴を有し、前記中央ダイヤフラムと同径、同材質
の円板状をなすとともに、作動部分の直径に対する前記
穴の直径の比率(以下、穴径比という)と、前記中央ダ
イヤフラムに対する板厚の比率(以下、板厚比という)
とが、それぞれ所定範囲である各側ダイヤフラムと;を
備えることを特徴とする差圧検出装置。 2)請求項1に記載の装置において、穴径比、板厚比が
、それぞれ0.1〜0.25、1.0〜1.2、の範囲
であることを特徴とする差圧検出装置。 3)請求項1に記載の装置において、穴径比、板厚比が
、それぞれ0.3〜0.5、0.9〜1.0、の範囲で
あることを特徴とする差圧検出装置。 4)請求項1に記載の装置において、穴径比、板厚比が
、それぞれ0.4〜0.6、0.8〜0.9、の範囲で
あることを特徴とする差圧検出装置。
[Claims] 1) a detection unit that outputs a signal according to the differential pressure to be measured;
In the detection device, the detection device includes a protective diaphragm that is installed externally to the detection unit and protects the detection unit from each introduction pressure related to the differential pressure, wherein the protection diaphragm includes one central diaphragm having a disk shape. are laminated on each side of both sides of this central diaphragm, have a circular hole in the center, form a disk shape of the same diameter and the same material as the central diaphragm, and have a diameter of the hole relative to the diameter of the operating part. ratio (hereinafter referred to as hole diameter ratio) and the ratio of plate thickness to the central diaphragm (hereinafter referred to as plate thickness ratio)
and a diaphragm on each side, each having a predetermined range. 2) The differential pressure detection device according to claim 1, wherein the hole diameter ratio and plate thickness ratio are in the ranges of 0.1 to 0.25 and 1.0 to 1.2, respectively. . 3) The differential pressure detection device according to claim 1, wherein the hole diameter ratio and plate thickness ratio are in the ranges of 0.3 to 0.5 and 0.9 to 1.0, respectively. . 4) The differential pressure detection device according to claim 1, wherein the hole diameter ratio and plate thickness ratio are in the ranges of 0.4 to 0.6 and 0.8 to 0.9, respectively. .
JP29765190A 1990-11-02 1990-11-02 Differential-pressure detecting device Pending JPH04169830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29765190A JPH04169830A (en) 1990-11-02 1990-11-02 Differential-pressure detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29765190A JPH04169830A (en) 1990-11-02 1990-11-02 Differential-pressure detecting device

Publications (1)

Publication Number Publication Date
JPH04169830A true JPH04169830A (en) 1992-06-17

Family

ID=17849350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29765190A Pending JPH04169830A (en) 1990-11-02 1990-11-02 Differential-pressure detecting device

Country Status (1)

Country Link
JP (1) JPH04169830A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662343U (en) * 1993-02-02 1994-09-02 横河電機株式会社 Differential pressure measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212727A (en) * 1989-02-13 1990-08-23 Fuji Electric Co Ltd Differential pressure detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212727A (en) * 1989-02-13 1990-08-23 Fuji Electric Co Ltd Differential pressure detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662343U (en) * 1993-02-02 1994-09-02 横河電機株式会社 Differential pressure measuring device

Similar Documents

Publication Publication Date Title
US5319981A (en) Differential pressure device
US5165281A (en) High pressure capacitive transducer
CA1223453A (en) Pressure sensor with a substantially flat overpressure stop for the measuring diaphragm
US4218925A (en) Differential pressure transmitter with pressure sensor protection
JPH01256177A (en) Multifunctional sensor
US5157973A (en) Pressure sensor with integral overpressure protection
KR20140048050A (en) Pressure sensor chip
JPH04169830A (en) Differential-pressure detecting device
JPS59125032A (en) Differential pressure measuring device
JPH03223637A (en) Differential-pressure detecting device
US3882443A (en) Differential pressure transducer
US3894436A (en) Differential pressure gauge
JPH02212727A (en) Differential pressure detector
JP2546012B2 (en) Differential pressure detector
US3324727A (en) Diaphragm-type high pressure transducer
JPH03223638A (en) Differential-pressure detecting device
JP4291049B2 (en) Differential pressure / pressure transmitter
JPH036434A (en) Detecting device of differential pressure
JP3070338B2 (en) Differential pressure detector
JPH02231539A (en) Differential pressure detecting device
Choi et al. Development of pressure transducers utilizing deep X-ray lithography
JPS6247067Y2 (en)
JPH0129551Y2 (en)
JPS6067831A (en) Differential pressure transmitter
JPS5749831A (en) Pressure transducer