JPS60237336A - Differential pressure transmitter - Google Patents

Differential pressure transmitter

Info

Publication number
JPS60237336A
JPS60237336A JP9275584A JP9275584A JPS60237336A JP S60237336 A JPS60237336 A JP S60237336A JP 9275584 A JP9275584 A JP 9275584A JP 9275584 A JP9275584 A JP 9275584A JP S60237336 A JPS60237336 A JP S60237336A
Authority
JP
Japan
Prior art keywords
pressure
receiving side
diaphragms
barrier
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9275584A
Other languages
Japanese (ja)
Inventor
Atsushi Kawachi
河内 淳
Kofuku Ito
伊藤 幸福
Shunichiro Anami
阿波 俊一郎
Takeshi Nishi
健 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP9275584A priority Critical patent/JPS60237336A/en
Publication of JPS60237336A publication Critical patent/JPS60237336A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/14Housings
    • G01L19/142Multiple part housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • G01L19/0038Fluidic connecting means being part of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection

Abstract

PURPOSE:To enhance measuring accuracy by preventing plastic deformation by excessive force and the generation of hysteresis, by constituting the title transmitter so that a barrier diaphragm is formed into a protruded shape and arranging the same in the pressure receiving side surface of a main body so as to hold a gap from said side surface. CONSTITUTION:A high pressure side barrier diaphragm 1A and a low pressure side barrier diaphragm 1B, both of which are respectively formed into a corrugated disc, are arranged to the pressure receiving side surfaces 3a, 3b of a main body 2 formed in a split state in such a state that the peripheral edge parts of both diaphragms are welded. High pressure and low pressure are respectively applied to the outer side surfaces of said diaphragms 1A, 1B by the fluid flowed in from the holes 6a, 6b between both side covers 5 secured to the main body 2 by bolts and the main body 2. In due regard to the movement amounts of the barrier diaphragms 1A, 1B, both diaphragms are formed into a protruded shape by draw molding and separated from the pressure receiving side surfaces 3a, 3b in a free state prior to liquid sealing. By this method, the generation of hysteresis by excessive pressure is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はプロセス変量である2点間の圧力差を測定する
差圧伝送器に関するもので、特に過大圧力によるヒステ
リシスの発生を防止し、測定レンジを拡大させ得るよう
にしたものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a differential pressure transmitter that measures the pressure difference between two points, which is a process variable. It is designed so that it can be expanded.

〔従来技術〕[Prior art]

例えば、管内流体の流量を測定しようとする場合、管内
にオリフィス板を設けて流体抵抗とし、その上流側と下
流側との圧力差を所定の演算式に基づき流量を算出測定
することが行なわれている。
For example, when trying to measure the flow rate of fluid in a pipe, an orifice plate is installed in the pipe to act as fluid resistance, and the flow rate is calculated and measured based on the pressure difference between the upstream and downstream sides using a predetermined calculation formula. ing.

この種の圧力測定に用いられる差圧伝送器は、一般に高
圧側と低圧側とのバリアダイヤフラムに各測定圧力を与
え、その時の圧力差による内封液の移動を、封入回路を
仕切って設けた半導体圧力センサの歪によυ電気的出力
として取シ出すように構成されている。
Differential pressure transmitters used for this type of pressure measurement generally apply each measurement pressure to barrier diaphragms on the high-pressure side and low-pressure side, and separate the sealed circuit to prevent movement of the sealed liquid due to the pressure difference at that time. The structure is such that strain in the semiconductor pressure sensor is extracted as an electrical output.

ところが、この種の差圧伝送器においては、プルセスの
測定仕様に応じた適切な寸法、強度、材料などを備えた
バリアダイヤスラムが選定され用いられたとしても、時
には過大圧力を受けることがらシ、との過圧が半導体圧
力センサに及んでこれを損傷させることによシ爾後の測
定を不可能にすることがある。
However, in this type of differential pressure transmitter, even if a barrier diaphragm with appropriate dimensions, strength, materials, etc. in accordance with the measurement specifications of the Prussse is selected and used, the system is susceptible to excessive pressure. , can reach the semiconductor pressure sensor and damage it, making subsequent measurements impossible.

そこで、一般にバリアダイヤフラムの裏側室、すなわち
ボディ本体の受圧側面とバリアダイヤフラムとの間の隙
間を小さく設定すると共に受圧側面をバリアダイヤフラ
ムと同形の波形に形成して過大圧力保膜機構とし、過大
圧力が加わった時バリアダイヤフラムを受圧側面に着座
させ、ボディ内室側に圧力が伝達でれないようにするこ
とによシ半導体圧力センサの破損を防止している。
Therefore, in general, the gap between the back chamber of the barrier diaphragm, that is, the pressure-receiving side of the body body, and the barrier diaphragm is set small, and the pressure-receiving side is formed in the same waveform as the barrier diaphragm to create an overpressure film retention mechanism. When pressure is applied, the barrier diaphragm is seated on the pressure-receiving side to prevent pressure from being transmitted to the interior of the body, thereby preventing damage to the semiconductor pressure sensor.

ところで、第1図に示すように従来のバリアダイヤフラ
ム1は絞り成形によって形成ぢれボディ本体2の受圧側
面3に着底した状態でその周縁部1aが固着された後、
前記ボディ本体2内に内封液4が所定量封入されること
によシ鎖線で示すように凸状に強制変位され、前記受圧
側面3との間に裏側室を形成している。そのため、バリ
アダイヤフラム1は差圧入力が零の状態でも第2図の歪
一応力線図において、A点(応力δが零でない点)にあ
り、この状態から測定圧力が高圧側もしくは低圧側から
加わった場合、前記A点を中心に変位する。この変位は
バリアダイヤフラム1の材料の弾性域内とされるが、過
大圧力が加わりXの範囲で大きく変位すると、塑性域に
入るため、差圧伝送器の出力にヒステリシスが生じ、測
定精度を低下させるという欠点があった。また、A点が
塑性域に近いため、測定レンジも狭い。
By the way, as shown in FIG. 1, a conventional barrier diaphragm 1 is formed by drawing, and after its peripheral edge 1a is fixed to the pressure-receiving side surface 3 of the body main body 2 in a state where it is bent,
When a predetermined amount of the internal sealing liquid 4 is sealed in the body main body 2, it is forcibly displaced into a convex shape as shown by the chain line, and a back side chamber is formed between the internal sealing liquid 4 and the pressure-receiving side surface 3. Therefore, even when the differential pressure input is zero, the barrier diaphragm 1 is at point A (the point where the stress δ is not zero) in the strain-stress diagram in Figure 2, and from this state the measured pressure changes from the high pressure side or the low pressure side. When it is added, it is displaced around the point A. This displacement is considered to be within the elastic range of the material of the barrier diaphragm 1, but if excessive pressure is applied and the displacement is large within the range of X, it will enter the plastic range, causing hysteresis in the output of the differential pressure transmitter and reducing measurement accuracy. There was a drawback. Furthermore, since point A is close to the plastic region, the measurement range is also narrow.

〔発明の概要〕[Summary of the invention]

本発明は上述したような点に鑑みてなされたもので、バ
リアダイヤフラムを受圧側面に該側面と隙間を保って配
設し、バリアダイヤフラムの許容変位量を大きくとるこ
とによυ、過大圧力によるヒステリシスの発生を防止し
、測定レンジの拡大と測定精度の向上を可能にした差圧
伝送器を提供するものである。
The present invention has been made in view of the above-mentioned points, and by arranging a barrier diaphragm on a pressure-receiving side surface while maintaining a gap from the side surface, and increasing the permissible displacement amount of the barrier diaphragm, υ can be prevented due to excessive pressure. The present invention provides a differential pressure transmitter that prevents the occurrence of hysteresis, expands the measurement range, and improves measurement accuracy.

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

〔実施例〕〔Example〕

第3図は本発明に係る差圧伝送器の一実施例を示す断面
図である。同図において、分割形成されたボディ本体2
の各受圧側面3m、3bにはそれぞれ波形円板状に形成
された高圧側のバリアダイヤフラム1Aと、低圧側のバ
リアダイヤフラム1Bがその周縁部を溶接されて配設さ
れている。前記各受圧側面3m、3bはそれぞれバリア
ダイヤフラムLA、IBと同形の波形に形成されている
。前記各バリアダイヤフラムIA、IBの外側面には、
前記ボディ本体2にボルト(図示せず)によシ固着され
た両側のカバー5とボディ本体2間の孔5m。
FIG. 3 is a sectional view showing an embodiment of a differential pressure transmitter according to the present invention. In the same figure, a body main body 2 that is divided into parts is shown.
A high-pressure side barrier diaphragm 1A and a low-pressure side barrier diaphragm 1B each formed in the shape of a corrugated disc are disposed on each of the pressure-receiving sides 3m and 3b, with their peripheral edges welded together. Each of the pressure-receiving side surfaces 3m and 3b is formed in the same waveform as the barrier diaphragm LA and IB, respectively. On the outer surface of each of the barrier diaphragms IA and IB,
A hole 5 m between the body body 2 and the covers 5 on both sides fixed to the body body 2 by bolts (not shown).

6bから流入する流体によって高圧と低圧とがそれぞれ
印加でれている。また、各バリアダイヤフラムIA、I
Bと前記受圧側面3m、3bとの間には適宜な間隔が設
けられ、裏側室7m、7bを形成している。
High pressure and low pressure are applied by the fluid flowing in from 6b. In addition, each barrier diaphragm IA, I
An appropriate interval is provided between B and the pressure-receiving side surfaces 3m and 3b, forming back chambers 7m and 7b.

前記ボディ本体2の上部にはネック部材8を介してセン
サカプセル9が配設されておシ、このセンサカプセル9
内のセンサ室9瓢には周知の半導体圧力センサ10がセ
ンサ台11に保持てれて配設されている。前記ボディ本
体2の内部中央にはボディ内室14が形成されている。
A sensor capsule 9 is disposed in the upper part of the main body 2 via a neck member 8.
A well-known semiconductor pressure sensor 10 is mounted on a sensor stand 11 in a sensor chamber 9 therein. A body interior chamber 14 is formed in the center of the body main body 2 .

とのボディ内室14はセンタダイヤフラム15によって
左右2つの室1わ114bに仕切られておシ、その夫々
の室1わ114bが前記裏側室7m、7bに連通路16
゜1Tによって連通されると共に封入回路18.19に
連通されている。これら封入回路18.19は前記半導
体圧力センサ10によって仕切ら、れている。そして、
前記各裏側室7a、 Tbから連通路16.17および
封入回路18.19を経て前記半導体圧力センサ10の
高圧側と低圧側とに至る間には、シリコンオイル等の内
封液4がそれぞれ封入されている。なお、23は液封孔
である。
The body interior chamber 14 is partitioned by a center diaphragm 15 into two left and right chambers 114b, each of which has a communication passage 16 with the back chambers 7m and 7b.
1T and to the enclosed circuit 18,19. These enclosed circuits 18, 19 are separated by the semiconductor pressure sensor 10. and,
An internal sealing liquid 4 such as silicone oil is sealed between each of the back side chambers 7a, Tb and the high pressure side and low pressure side of the semiconductor pressure sensor 10 via the communication path 16.17 and the sealed circuit 18.19. has been done. Note that 23 is a liquid sealing hole.

このように構成された差圧伝送器において、各バリアダ
イヤフラムIA、IBにプロセスからの高圧と低圧とが
それぞれ印加でれると、バリアダイヤフラムIA、IB
が凹んでその圧縮分だけ内封液4が移動し、両側の圧力
差による内封液4の移動量の差を半導体圧力センサ10
が検出してこれを電気信号として発信することによシ差
圧が測定される。
In the differential pressure transmitter configured in this way, when high pressure and low pressure from the process are respectively applied to each barrier diaphragm IA and IB, the barrier diaphragms IA and IB
is depressed, and the internal liquid 4 moves by the amount of compression, and the semiconductor pressure sensor 10 detects the difference in the amount of movement of the internal liquid 4 due to the pressure difference on both sides.
The differential pressure is measured by detecting this and transmitting it as an electrical signal.

ところで、各バリアダイヤフラムIA、IBは受圧側面
3m、3bに対して着底状態で取付けられ、しかる後内
封液4のボンピングアップによシム状に強制変位され受
圧側面3a、3bから離れると、前述した通り弾性域が
少なく、僅かな過大圧力に対しても塑性変形する虞れが
ある。そこで、本発明はあらかじめバリアダイヤフラム
1A、IBの移動量を考慮して第4図に示すように凸状
に絞シ成形し、液封前の自由状態で受圧側面3a、3b
から離間させた点を特徴とするもので、これによって過
大圧力によるヒステリシスの発生を防止し、測定レンジ
の拡大を可能にしている。
By the way, each barrier diaphragm IA, IB is attached to the pressure-receiving side surfaces 3m, 3b in a bottomed state, and is then forcibly displaced in a shim-like manner by the pumping up of the internal sealing liquid 4 and separated from the pressure-receiving side surfaces 3a, 3b. As mentioned above, the elastic range is small and there is a risk of plastic deformation even under slight excessive pressure. Therefore, in the present invention, the barrier diaphragms 1A and IB are drawn into a convex shape as shown in FIG. 4, taking into account the amount of movement of the barrier diaphragms 1A and IB.
This feature prevents the occurrence of hysteresis due to excessive pressure and makes it possible to expand the measurement range.

すなわち、バリアダイヤフラムIA、IBを凸状に形成
し、受圧側面3a、3bから離して取り付けると、内封
液4の封入による強制変位は僅かでよいため、許容変位
量をそれだけ大きくとれることになシ、第2図に示した
点Aの位置なにに移動させ零に近づけることができる。
In other words, if the barrier diaphragms IA and IB are formed in a convex shape and are mounted apart from the pressure-receiving sides 3a and 3b, only a small amount of forced displacement is required due to the sealing of the internal sealing liquid 4, and the allowable displacement amount can be increased accordingly. The point A shown in FIG. 2 can be moved to any position to bring it closer to zero.

したがって、大きな過大圧力に対しても弾性域内で変位
(Yの範囲)し、塑性域まで達する−ことはない。また
、従来は受圧側面に着底した状態(応力δが零の状態)
から内封液4のボンピングアップによシ変位されるため
、弾性域の半分しか利用することができず、そのため測
定レンジが狭いという欠点を有している。これに対して
本発明のようにあらかじめ凸状に形成しておくと、受圧
側面3m(3b)方向に変位した場合、応力δが零の点
を通過してもさらに変位し得るため、弾性域を有効に利
用でき、測定レンジを拡大きせることができる。この場
合、バリアダイヤフラムIA、IBの逆方向(受圧側面
方向)の変位は、受圧側面に対して平行に対向し凸状の
膨みがなくなるまでは収縮力として与えられ、その後凹
状に変形するため引張力に転するが、着底位置はその途
中で、塑性域を迎える前に設定される。
Therefore, even if a large excessive pressure is applied, the displacement occurs within the elastic range (range of Y) and does not reach the plastic range. In addition, conventionally, the state where the bottom landed on the pressure-receiving side (the state where the stress δ was zero)
Since it is displaced by the pumping up of the sealing liquid 4, only half of the elastic range can be used, which has the disadvantage that the measurement range is narrow. On the other hand, if it is formed into a convex shape in advance as in the present invention, if it is displaced in the direction of the pressure-receiving side 3m (3b), it can be further displaced even if the stress δ passes through the point of zero, so the elastic region can be used effectively and the measurement range can be expanded. In this case, the displacement of the barrier diaphragms IA and IB in the opposite direction (towards the pressure-receiving side) is applied as a contractile force until the barrier diaphragms face parallel to the pressure-receiving side and no longer have a convex bulge, and then deform into a concave shape. Although it becomes a tensile force, the bottoming position is set midway through the process, before reaching the plastic region.

第5図は本発明の他の実施例を示す液封前におけるバリ
アダイヤフラムの状態を示す要部断面図である。この実
施例はあらかじめバリアダイヤフラム1Aを平板にして
凸状に湾曲形成し、その周縁部11を、平坦面に形成さ
れた受圧側面31に溶接固定し、内封液のポンピングア
ンプにより鎖線で示す如く変位させたものである。
FIG. 5 is a sectional view of a main part showing a state of a barrier diaphragm before liquid sealing, showing another embodiment of the present invention. In this embodiment, the barrier diaphragm 1A is made into a flat plate and curved into a convex shape, and the peripheral edge 11 of the barrier diaphragm 1A is welded and fixed to the pressure receiving side surface 31 formed on the flat surface. It has been displaced.

このような構成においても、液封前の自由状態でバリア
ダイヤフラム1Aがその周縁部1aを除いて受圧側面3
aから離れているため、許容変位量をそれだけ大きくと
れ、上記実施例と同様の効果が得られることは明らかで
あろう。
Even in such a configuration, the barrier diaphragm 1A is in the free state before liquid sealing, except for the peripheral edge 1a, and the pressure-receiving side surface 3 is
Since it is far from a, it is clear that the allowable displacement amount can be increased accordingly, and the same effect as in the above embodiment can be obtained.

なお、本発明は半導体圧力センサを用いた差圧伝送器に
ついて説明したが、これに限らずセンタダイヤフラム1
5の変位を直接検出するようにしたキャパシタンス方式
、インダクタンス方式のものにも適用実施し得ることは
勿論であシ、また圧力針にも適用可能である。
Although the present invention has been described regarding a differential pressure transmitter using a semiconductor pressure sensor, the present invention is not limited to this, and the center diaphragm 1
Needless to say, the present invention can be applied to capacitance type and inductance type type devices that directly detect the displacement of 5, and can also be applied to pressure needles.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係る差圧伝送器は、バリアダ
イヤフラムを凸状に形成し、ボディ本体の受圧側面にM
il1面と隙間を保って配設して構成したので、許容変
位量が大きく、そのため過大圧力による塑性変形を防止
し、ヒステリシスの発生防止と、測定レンジの拡大並び
に測定精度の向上を計ることができる。また、バリアダ
イヤフラムの構造が簡単で、製作およびボディ本体への
取り何秒も容易である。
As described above, the differential pressure transmitter according to the present invention has a barrier diaphragm formed in a convex shape, and M
Since it is arranged with a gap from the il1 surface, the allowable displacement is large, which prevents plastic deformation due to excessive pressure, prevents the occurrence of hysteresis, expands the measurement range, and improves measurement accuracy. can. In addition, the structure of the barrier diaphragm is simple, making it easy to manufacture and attach to the body within seconds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のバリアダイヤフラムの取シ付けを説明す
るための要部断面図、第2図は歪と応力との関係を示す
図、第3図は本発明に係る差圧伝送器の一実施例を示す
断面図、第4図はバリアダイヤフラムの自然状態を示す
側面図、第5図は本発明の他の実施例を示す要部断面図
である。 1 、IA、IB・・・・バリアダイヤフラム、211
−・・ボディ本体、3.3m、3b @・・・受圧側面
、4・・・拳内封液、10・・・・半導体圧力センサ。 特許出願人 山武ハネウェル株式会社
Fig. 1 is a cross-sectional view of a main part to explain the installation of a conventional barrier diaphragm, Fig. 2 is a diagram showing the relationship between strain and stress, and Fig. 3 is a diagram of a differential pressure transmitter according to the present invention. FIG. 4 is a side view showing the natural state of the barrier diaphragm, and FIG. 5 is a sectional view showing a main part of another embodiment of the present invention. 1, IA, IB... barrier diaphragm, 211
--Body main body, 3.3m, 3b @...Pressure receiving side, 4...Fist sealing liquid, 10...Semiconductor pressure sensor. Patent applicant Yamatake Honeywell Co., Ltd.

Claims (1)

【特許請求の範囲】 αン ボディ本体の各受圧側面にそれぞれバリアダイヤ
フラムを配設し、前記ボディ本体内に内封液を封入し、
前記各バリアダイヤフラムにそれぞれ測定圧力を与え、
その差圧を検出する差圧伝送器において、前記バリアダ
イヤフラムは液封前に前記ボディ本体の受圧側面に該側
面との間に隙間を保って配設されることを特徴とする差
圧伝送器。 e)受圧側面が平坦面に形成され、バリアダイヤスラム
が前記受圧側面から離間する方向にあらかじめ湾曲形成
でれていることを特徴とする特許請求の範囲第1項記載
の差圧伝送器。
[Claims] A barrier diaphragm is disposed on each pressure-receiving side of the body body, and an internal liquid is sealed in the body body,
Applying a measurement pressure to each of the barrier diaphragms,
The differential pressure transmitter for detecting the differential pressure is characterized in that the barrier diaphragm is disposed on a pressure-receiving side surface of the body main body before liquid sealing with a gap maintained between the pressure-receiving side surface and the side surface. . e) The differential pressure transmitter according to claim 1, characterized in that the pressure-receiving side surface is formed as a flat surface, and the barrier diaphragm is pre-curved in a direction away from the pressure-receiving side surface.
JP9275584A 1984-05-11 1984-05-11 Differential pressure transmitter Pending JPS60237336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9275584A JPS60237336A (en) 1984-05-11 1984-05-11 Differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9275584A JPS60237336A (en) 1984-05-11 1984-05-11 Differential pressure transmitter

Publications (1)

Publication Number Publication Date
JPS60237336A true JPS60237336A (en) 1985-11-26

Family

ID=14063231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9275584A Pending JPS60237336A (en) 1984-05-11 1984-05-11 Differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPS60237336A (en)

Similar Documents

Publication Publication Date Title
US4218925A (en) Differential pressure transmitter with pressure sensor protection
US3400588A (en) Fluid pressure gauge
US4782703A (en) Temperature compensated pressure signal generator
JPS60237336A (en) Differential pressure transmitter
US11560302B2 (en) Micromechanical pressure sensor with two cavities and diaphragms and corresponding production method
JPS5956137A (en) Differential pressure transmitter
JPH0331212B2 (en)
JPS6239368B2 (en)
CN220729522U (en) Integrated double-path differential pressure sensor
JPS5956139A (en) Differential pressure transmitter
JPS6329217Y2 (en)
JPH0436425Y2 (en)
JPH0752601Y2 (en) Differential pressure transmitter
JPS6333148Y2 (en)
JP2988077B2 (en) Differential pressure measuring device
JP2001159573A (en) Pressure detecting device
JPH04143630A (en) Manufacture of transmitter of differential pressure and pressure
JPH0749397Y2 (en) Differential pressure transmitter
JPS6247067Y2 (en)
JPH0570776B2 (en)
JPS6366429A (en) Differential pressure measuring apparatus
JP2022034155A (en) Pressure sensor
JPH0429971B2 (en)
JPH0322576B2 (en)
KR830004600A (en) Differential pressure detector