JPS5956136A - Differential pressure transmitter - Google Patents

Differential pressure transmitter

Info

Publication number
JPS5956136A
JPS5956136A JP16607982A JP16607982A JPS5956136A JP S5956136 A JPS5956136 A JP S5956136A JP 16607982 A JP16607982 A JP 16607982A JP 16607982 A JP16607982 A JP 16607982A JP S5956136 A JPS5956136 A JP S5956136A
Authority
JP
Japan
Prior art keywords
pressure
central partition
partition wall
fixed
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16607982A
Other languages
Japanese (ja)
Other versions
JPH0322572B2 (en
Inventor
Kofuku Ito
伊藤 幸福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP16607982A priority Critical patent/JPS5956136A/en
Publication of JPS5956136A publication Critical patent/JPS5956136A/en
Publication of JPH0322572B2 publication Critical patent/JPH0322572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms

Abstract

PURPOSE:To eliminate an error due to mechanical hysteresis, by specifying the movement of a moving element within a measurement range by a leaf spring and specifying the movement of respective materials in a body. CONSTITUTION:The center wall in the body 2 is divided into a high-pressure and a low-pressure part and a pressure receiving element 21 is disposed in a pressure receiving chamber 19 formed between them. The moving element 24 is fitted in the center part movable end of the pressure receiving element 21 freely movably in the axial direction of the center part through-hole 25 of the center wall 16, and leaf spring 26 and 27 are fixed to both side surfaces of the center wall 16 in an elasticity adjustable state; they are deformed elastically through the pressure receiving element 21 and moving element 24 when excessive pressure is applied, sitting pressure receiving diaphragms 4 and 5 on the side of the body 2.

Description

【発明の詳細な説明】 本発明はプロセス変量である2点間の圧力差を測定する
差圧発信器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential pressure transmitter that measures a pressure difference between two points as a process variable.

例えば管内流体の流量を測定しようとする場合、管内に
オリフィス板を設けて流体抵抗とし、その上流側と下流
側との圧力差を測定して所足の演算式に基づき流量を算
定することが行なわれている。
For example, when trying to measure the flow rate of fluid in a pipe, it is possible to install an orifice plate in the pipe to provide fluid resistance, measure the pressure difference between the upstream side and the downstream side, and calculate the flow rate based on the required calculation formula. It is being done.

この種の圧力差測定に用いられる差圧発信器は、高圧側
と低圧側との受圧ダイヤフラムに各測定圧力を与え、こ
の圧力による内封液の移動を、封入回路を仕切って設け
た半導体センサの歪によシミ気的出力として取出すよう
に構成されている。
A differential pressure transmitter used for this type of pressure difference measurement applies each measurement pressure to pressure receiving diaphragms on the high pressure side and low pressure side, and the movement of the sealed liquid due to this pressure is detected by a semiconductor sensor installed by partitioning the sealed circuit. It is configured so that it is extracted as an optical output due to the distortion of the signal.

ところが、この種の差圧発信器においては、プロセスの
測定仕様に応じた適切な寸法、強度、材料などを備えた
受圧ダイヤフラムが選定されて用いられたとしても、時
には過大圧力を受けることがあってとの過圧が半導体セ
ンサに及び、これを損傷させることによシ爾後の測定を
不可能にすることがある。そこで従来この過大圧力から
センサを保−する各種の装置gt、が提案されて差圧発
信器に付設されている。
However, in this type of differential pressure transmitter, even if a pressure-receiving diaphragm with appropriate dimensions, strength, material, etc. is selected and used according to the measurement specifications of the process, it may sometimes receive excessive pressure. This overpressure can reach the semiconductor sensor and damage it, making subsequent measurements impossible. Therefore, various devices for protecting the sensor from this excessive pressure have been proposed and attached to the differential pressure transmitter.

しかしながら従来の過大圧力保護装置を備えた差圧発信
器においては、過大圧力が発生しない正常の測定圧力下
においても内部機摘が変位して内封液が移動し、差圧が
そのま\センサに伝達されないので、伝達効¥が低く応
答性が悪いばかりでなく、測定精度が低下するという欠
点があった。
However, in a differential pressure transmitter equipped with a conventional overpressure protection device, even under normal measurement pressure in which no overpressure occurs, the internal mechanism is displaced and the internal liquid moves, and the differential pressure remains as it is. Since the signal is not transmitted to the sensor, the transmission effect is low and the response is poor, as well as the measurement accuracy is reduced.

不発明は以上のような点に鑑みなされたもので、ボディ
内の中央隔壁を高圧側と低圧側とに2分してその間に形
成した受圧室内に受圧素子を配設し、との受圧素子の中
心部可動端に固定した移動子を中火隔壁の中心部貫通孔
に軸方向へ移動自在に係入させるとともに、中央隔壁の
両側面に板ばねを弾力調節自在に止着して過大圧力印加
時に受圧索子と移動子とを介し弾性変形させかつ受圧ダ
イヤフラムをボディ側に着座させるように構成すること
によシ、測定範囲内での内部封入液の移動を規制して伝
導効率と測定精度ならびに応答性の向上を計った差圧発
信器を提供するものである。以下、不発明の実施例を図
面に基づいて詳細に説明する。
The invention was made in view of the above-mentioned points, and there is a pressure receiving element in which the central partition wall in the body is divided into two parts, a high pressure side and a low pressure side, and a pressure receiving element is disposed in a pressure receiving chamber formed between them. A movable element fixed to the movable end of the central part is engaged in a through hole in the central part of the medium-sized bulkhead so as to be movable in the axial direction, and leaf springs are fixed to both sides of the central bulkhead so that the elasticity can be adjusted freely to prevent excessive pressure. By configuring the pressure-receiving diaphragm to be elastically deformed via the pressure-receiving cable and the slider when application is applied, and the pressure-receiving diaphragm is seated on the body side, the movement of the internally sealed liquid within the measurement range is regulated to improve the conduction efficiency and measurement. The present invention provides a differential pressure transmitter with improved accuracy and responsiveness. Hereinafter, embodiments of the invention will be described in detail based on the drawings.

第1図ないし第4図は本発明に係る差圧発信器の実施例
を示し、第1図はその断面図、第2図は板ばねの正面図
と側面図、第3図は過大圧力印加時における差圧発信器
の断面図、第4図は受圧ダイヤフラムへの印加圧力とセ
ンサへの圧力との関係緑図である。図において、差圧発
信器1は円筒部とその両端開口部を閉塞する円板部とで
一体形成されたボディ2を備えており、その上方には密
閉状のセンサ室3が一体形成されている。ボディ2の両
側円板部側面には、断面波形の円板状に形成された高圧
側のバリアダイヤフラム4と低圧側のバリアダイヤフラ
ム5とが、これとハソ同形状のボディ2側面との間にす
き間を設けて周縁部を固定されている。6およびTはボ
ディ2の両側面にそれぞれボルトで接合されたカバーで
あって、バリアダイヤフラム4,5との間の受圧室8.
9へ向って開口する孔to、iiを備えておシ、孔10
.11はプロセス流体管路の高圧側と低圧側とにそれぞ
れ連通されている。またバリアダイヤフラム4,5裏の
すき間とボディ2の内室との間は液通路12.13で連
通されておシ、さらにセンサ室3の内部とボディ2の内
室との間は同じく液通路14.15で連通されている。
1 to 4 show an embodiment of the differential pressure transmitter according to the present invention, FIG. 1 is a sectional view thereof, FIG. 2 is a front view and side view of a leaf spring, and FIG. 3 is an example of applying excessive pressure. FIG. 4 is a sectional view of the differential pressure transmitter at the time, and is a green diagram showing the relationship between the pressure applied to the pressure receiving diaphragm and the pressure applied to the sensor. In the figure, a differential pressure transmitter 1 includes a body 2 integrally formed with a cylindrical part and a disc part that closes openings at both ends of the body 2, and a sealed sensor chamber 3 is integrally formed above the body 2. There is. A barrier diaphragm 4 on the high-pressure side and a barrier diaphragm 5 on the low-pressure side, which are formed in the shape of a disk with a corrugated cross section, are placed on the side surfaces of both side disk portions of the body 2, and between these and the side surfaces of the body 2, which have the same shape. The peripheral edge is fixed with a gap. 6 and T are covers that are respectively bolted to both sides of the body 2, and cover the pressure receiving chamber 8.6 and T between the barrier diaphragms 4 and 5.
Holes 10 and 10 are provided with holes to and ii opening toward 9.
.. 11 are communicated with the high pressure side and the low pressure side of the process fluid line, respectively. Furthermore, the gap behind the barrier diaphragms 4 and 5 and the inner chamber of the body 2 are communicated with each other by a liquid passage 12.13, and the inner chamber of the sensor chamber 3 and the inner chamber of the body 2 are also connected through a liquid passage. It is connected by 14.15.

ボディ2の内室には、ボディ2に外周部′Jfr−溶着
された中央隔壁16によって高圧側の内室17と低圧側
の内室18とが隔成されておシ、さらに中央隔壁16は
高圧側と低圧側とに2分されてその間には受圧室」9が
形成されている。一方、前記センサ室3内には、端子2
0に接続された半導体センサ21が基板22上に載貨固
定されておシ、ボディ2内の高圧側゛内室17へ開口子
る前記液通路14はセンサ21の高圧側へ開口されてい
る。
In the inner chamber of the body 2, an inner chamber 17 on the high pressure side and an inner chamber 18 on the low pressure side are separated by a central partition 16 welded to the outer periphery of the body 2. It is divided into two parts, a high pressure side and a low pressure side, and a pressure receiving chamber 9 is formed between them. On the other hand, inside the sensor chamber 3, there is a terminal 2.
A semiconductor sensor 21 connected to 0 is mounted and fixed on a substrate 22, and the liquid passage 14, which opens to the high pressure side (inner chamber 17) in the body 2, opens to the high pressure side of the sensor 21.

またボディ2内の低圧側内室18へ開口する前記液通路
15はセンサ21の低圧側へ開口されている。
Further, the liquid passage 15 that opens to the low pressure side internal chamber 18 in the body 2 is opened to the low pressure side of the sensor 21.

符号23で示すものは断面波形の円板状に形成されて前
記受圧室19に2室を隔成する受圧素子としてのセンタ
ダイヤフラムであって、周縁の固尾端を中央隔壁16に
固定されておシ、可動端である中心部には、円板状鍔付
きの移動子24が同定されている。移動子24の軸部は
、中央隔壁16の中心部を貫通して穿設した連通孔25
に軸方向へ移動自在に係入されており、軸部の端面は無
負荷時に中央隔壁16の外面とはソ同一平面上に位置す
るように設定されている。さらに中央隔壁16の両側面
には、第2図に示すように弾性材で側面視円弧状の十字
形に形成された一対の板はね26゜2Tが、それぞれ4
個の止ねじ28で弾発力調節自在に止着されており、そ
の弾性によって移動子24の軸方向への移動を規制して
いる。
Reference numeral 23 designates a center diaphragm which is formed in the shape of a disk with a corrugated cross section and serves as a pressure receiving element that separates two chambers in the pressure receiving chamber 19, and whose fixed end on the periphery is fixed to the central partition wall 16. A mover 24 with a disc-shaped flange is identified at the center, which is the movable end. The shaft portion of the mover 24 has a communication hole 25 bored through the center of the central partition wall 16.
The end face of the shaft portion is set to be located on the same plane as the outer surface of the central partition wall 16 when no load is applied. Further, on both sides of the central partition wall 16, as shown in FIG.
The movable member 24 is fixed with a plurality of setscrews 28 so as to be able to adjust its elastic force, and its elasticity restricts the movement of the movable element 24 in the axial direction.

このように構成された差圧発信器1のバリアダイヤフラ
ム4,5とボディ2とのすき間、液通路?2,13、内
室17,1B、連通孔25、受圧室19の2室、液通路
14.15およびセンサ21の高圧側、低圧側にはシリ
コンオイル等の内封液29が封入されている。そして谷
ダイヤフラム4゜5.23の剛性および板ばね26.2
7のばね圧は次のように設定されている。すなわち、′
1′9r犀の測定圧範囲内ではセンタダイヤフラム23
が撓まず、また板ばね26,2γは中央隔壁16に圧接
されて移動子24の軸方向への移動を規制してお9、バ
リアダイヤフラム4,5とボディ2との間にはすき間が
形成されている。そして例えば高圧側のバリアダイヤフ
ラム4に所短圧以上の過大圧力が印加された場合には、
センタダイヤフラム23が碗み、移動子24が低圧側の
板ばね27を押して弾性変形させたのち高圧側のバリア
ダイヤフラム4がボディ2に着座して内封液29の移動
を停止させる。
The gap between the barrier diaphragms 4, 5 and the body 2 of the differential pressure transmitter 1 configured in this way, the liquid passage? 2, 13, internal chambers 17, 1B, communication hole 25, two chambers of pressure receiving chamber 19, liquid passage 14, 15, and high pressure side and low pressure side of sensor 21 are filled with internal sealing liquid 29 such as silicone oil. . and the stiffness of the valley diaphragm 4°5.23 and the leaf spring 26.2
The spring pressure of No. 7 is set as follows. That is,′
Within the measurement pressure range of 1'9r rhinoceros, the center diaphragm 23
The plate springs 26 and 2γ are pressed against the central partition wall 16 to restrict the movement of the slider 24 in the axial direction 9, and a gap is formed between the barrier diaphragms 4 and 5 and the body 2. has been done. For example, if an excessive pressure higher than the short pressure is applied to the barrier diaphragm 4 on the high pressure side,
After the center diaphragm 23 is raised and the mover 24 pushes the leaf spring 27 on the low pressure side to elastically deform it, the barrier diaphragm 4 on the high pressure side is seated on the body 2 to stop the movement of the inner liquid 29.

以上のように構成された差圧発信器の動作f:説明する
。第1図において、プロセス管路の高圧側と孔10で連
通された高圧側のダイヤフラム4には陥圧が印加され、
また低圧側と孔11で連通された低圧側のダイヤフラム
5には低圧が印加される。この場合板ばね26.27は
中央隔壁16に圧接されておシ、バリアダイヤフラム4
,5への圧力印加によシ内封液29はセンサ21側へ移
動する。このときセンサ21の高圧側ど低圧側とで内封
液29の移動による圧力が異なることによシこの圧力差
をセンサ21が検出し電気信号に変換して発信すること
によシ、これを入力して演算すれば流量、液位等を測定
することができる。
Operation f of the differential pressure transmitter configured as above will be explained. In FIG. 1, a sinking pressure is applied to the high-pressure side diaphragm 4 that communicates with the high-pressure side of the process pipe through the hole 10,
Further, low pressure is applied to the diaphragm 5 on the low pressure side, which communicates with the low pressure side through the hole 11 . In this case, the leaf springs 26, 27 are pressed against the central partition wall 16, and the barrier diaphragm 4
, 5, the internal sealing liquid 29 moves toward the sensor 21 side. At this time, the pressure difference between the high-pressure side and the low-pressure side of the sensor 21 due to the movement of the sealing liquid 29 causes the sensor 21 to detect this pressure difference, convert it into an electrical signal, and transmit it. By inputting and calculating, it is possible to measure flow rate, liquid level, etc.

そして例えば高圧側に所定圧力以上の過大圧力が発生し
て高圧側のバリアダイヤフラム4に印加されると、第3
図に示すように内室17内の内封液29は受圧室19側
へ移動してセンタダイヤフラム23を撓ませ、移動子2
4が軸方向へ移動して低圧側の板ばね27を弾性変形さ
せるとともに、高圧側のバリアダイヤフラム4がボディ
2に着座して内封液29の移動を停止させる。したがっ
てセンサ21に過大圧力が作用することがなくこれを保
順することができる。低圧側に過大圧力が発生した場合
も全く同様に動作する。
For example, if an excessive pressure higher than a predetermined pressure occurs on the high pressure side and is applied to the barrier diaphragm 4 on the high pressure side, the third
As shown in the figure, the internal sealing liquid 29 in the internal chamber 17 moves toward the pressure receiving chamber 19 side, bends the center diaphragm 23, and
4 moves in the axial direction to elastically deform the leaf spring 27 on the low pressure side, and the barrier diaphragm 4 on the high pressure side seats on the body 2 to stop the movement of the sealing liquid 29. Therefore, excessive pressure does not act on the sensor 21, and the sensor 21 can be kept in normal order. It operates in exactly the same way when excessive pressure occurs on the low pressure side.

第4図は横軸にバリアダイヤフラムへの差圧ΔP1縦軸
にセンサへの作用圧力Pをとって示す圧力の関係線図で
あって、点P1は過大圧力が印加されて過大圧力保護装
置が作動を開始した点を示しておシ、点P2はこの作動
が終了した点を示している。
FIG. 4 is a pressure relationship diagram in which the horizontal axis is the differential pressure ΔP on the barrier diaphragm, and the vertical axis is the working pressure P on the sensor. Point P1 is where excessive pressure is applied and the overpressure protection device is activated. Point P2 indicates the point at which the operation started, and point P2 indicates the point at which this operation ended.

図において明らかなように、点P1までの測定範囲を越
えて過大圧力が印加されるとセンサへの圧力Pはわずか
に上昇するが、センサを破壊するに至らず、保護装置の
作動終了後すなわちバリアダイヤフラム4,5が着座し
たのちはこの圧力よシ上昇することがない。そして、測
定範囲内においては圧力が変化しても板はね26.27
およびセンタダイヤフラム23、移動子24は静止して
おシ、内封液29はセンサ21側へのみ移動するから、
機械的なヒステリシスによるエラーが除去でき、測定圧
力に正しく比例した圧力をセンナに加えることができる
とともに、測定差圧ΔPの変化に対する応答性がきわめ
て良好である。
As is clear from the figure, when excessive pressure is applied beyond the measurement range up to point P1, the pressure P on the sensor increases slightly, but it does not destroy the sensor, and after the protective device is activated, After the barrier diaphragms 4 and 5 are seated, this pressure will not rise. Even if the pressure changes within the measurement range, the plate will bounce26.27
Since the center diaphragm 23 and the mover 24 are stationary, the inner sealing liquid 29 only moves toward the sensor 21.
Errors due to mechanical hysteresis can be eliminated, a pressure that is correctly proportional to the measured pressure can be applied to the senna, and the responsiveness to changes in the measured differential pressure ΔP is extremely good.

さらに、板ばね26.27は上ねじ28を回動進退させ
ることによシそのばね圧が調節可能に構成されておシ、
各発信器ごとに調節が行なわれる。
Further, the leaf springs 26 and 27 are configured such that their spring pressure can be adjusted by rotating the upper screw 28 back and forth.
Adjustments are made for each transmitter.

これは移動子24の移動を規制する板ばね24のばね圧
が測定レンジに対応して決められていても、各部品の製
造誤差や機能のばらつきによって各発信ごとに差が出る
のでこれを調節するものであり、この調節によってばら
つきを容易に吸収することができる。
This is because even though the spring pressure of the leaf spring 24 that restricts the movement of the slider 24 is determined according to the measurement range, there will be differences for each transmission due to manufacturing errors and variations in function of each component, so this must be adjusted. This adjustment allows for easy absorption of variations.

以上の説明によシ明らかなように、本発明によれば差圧
発信器においてボディ内の中央隔壁を高圧側と低圧側と
に2分してその間に形成した受圧屋内に受圧素子を配設
し、この受圧素子の中心部可動端に固定した移動子を中
央隔壁の中心部貫通孔に軸方向へ移動自在に係入させる
とともに、中央隔壁の両側面に板はねを弾力調節自在に
止着し1−++ て過大圧力印加時に受圧素子と移動子とを介し弾性変形
させ、かつ受圧ダイヤフラムをボディ側に着座させるよ
うに構成することにより、測定範囲内では板ばねで移動
子の移動を規制してボディ内の各部材の移動を規制し、
内封液のセンサ方向以外への移動がなくなるので、機械
的なヒステリシスによるエラーが除去され流体圧力に比
例したきわめて正確な圧力が測定できて測輩梢度が著し
く向上するとともに、流体圧力の変化に対する応答性が
きわめて良好である。また、板ばねのばね圧を調節する
ことができるので、部品の製造課差や機能のばらつきを
容易に吸収することができ、過大圧力保護装置が向上す
る。
As is clear from the above explanation, according to the present invention, in a differential pressure transmitter, the central partition wall in the body is divided into two parts, a high pressure side and a low pressure side, and a pressure receiving element is arranged in a pressure receiving chamber formed between the high pressure side and the low pressure side. A movable element fixed to the movable end of the center of the pressure receiving element is engaged in a through hole in the center of the center partition so as to be movable in the axial direction, and plate springs are fixed to both sides of the center partition so as to be elastically adjustable. When an excessive pressure is applied, the pressure-receiving element and the slider are elastically deformed, and the pressure-receiving diaphragm is seated on the body side, so that the plate spring prevents the movement of the slider within the measurement range. to restrict the movement of each member within the body,
Since the internal liquid does not move in any direction other than the direction of the sensor, errors due to mechanical hysteresis are eliminated, allowing extremely accurate pressure measurement proportional to fluid pressure, which significantly improves measurement accuracy and also reduces changes in fluid pressure. The response to this is extremely good. Furthermore, since the spring pressure of the leaf spring can be adjusted, manufacturing process differences and function variations of parts can be easily absorbed, and the overpressure protection device is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明に係る差圧発信器の実施例
を示し、第1図はその断面図、第2図は板ばねの正面図
および側面図、第3図は過大圧力印加時における差圧発
信器の断面図、第4図は受圧ダイヤフラムへの印加圧力
とセンサに作用する圧力との関係線図である。 1・・・・差圧発信器、2・・・・ボディ、4゜5・・
・・バリアダイヤフラム、14,15・Φ・・液通路、
16・・・・中央h★壁、17.18・・・・内室、1
9・・・・受圧室、21φ・・・センサ、23 @ I
I @ I+センタダイヤフラム、24・・・・移動子
、25・・・・連通孔、26.27・・・・板ばね、2
8・・・・止ねじ。 特許出願人    山武ハネウェル株式会社代理人  
山川政樹(ほか1名)
1 to 4 show an embodiment of the differential pressure transmitter according to the present invention, FIG. 1 is a cross-sectional view thereof, FIG. 2 is a front view and side view of a leaf spring, and FIG. 3 is an example of a differential pressure transmitter according to the present invention. FIG. 4 is a cross-sectional view of the differential pressure transmitter at this time, and is a relationship diagram between the pressure applied to the pressure receiving diaphragm and the pressure acting on the sensor. 1...Differential pressure transmitter, 2...Body, 4゜5...
・・Barrier diaphragm, 14, 15・Φ・・Liquid passage,
16...Central h★wall, 17.18...Inner room, 1
9...Pressure chamber, 21φ...Sensor, 23 @I
I @ I+ center diaphragm, 24...Switcher, 25...Communication hole, 26.27...Plate spring, 2
8...Set screw. Patent applicant Yamatake Honeywell Co., Ltd. Agent
Masaki Yamakawa (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 中央隔壁で隔成されセンサの高圧側と低圧側との間をそ
れぞれ液通路で連通された液封入型の2室を有するボデ
ィと、このボディの両側受圧面にそれぞれ配設された受
圧ダイヤフラムとを備えた差圧発信器において、前記中
央隔壁を高圧側と低圧側とに2分してその間に受圧室を
形成し、周縁部固定端が前記中央隔壁側に固定され中心
部可動端がその変位方向に中央隔壁を貫通する連通孔内
の移動子に固定された受圧素子を前記受圧室内に配設す
るとともに、通常測定圧力範囲内では弾性で前記移動子
の移動を規制し前記受圧素子への過大圧力印加時には前
記移動子に押されて弾性変形する板ばねを前記中央隔壁
の両側面に弾発力調節自在に止着し、かつ前記受圧ダイ
ヤフラムの弾性を過大圧力印加時に前記ボディ側に着座
するように設足したことを特徴とする差圧発信器。
A body having two liquid-filled chambers separated by a central partition wall and communicating through a liquid passage between a high pressure side and a low pressure side of the sensor, and pressure receiving diaphragms respectively disposed on both pressure receiving surfaces of this body. In the differential pressure transmitter, the central partition wall is divided into two parts, a high pressure side and a low pressure side, and a pressure receiving chamber is formed therebetween, and the fixed end of the peripheral part is fixed to the central partition side, and the movable end of the central part is fixed to the central partition wall side. A pressure-receiving element fixed to a moving element in a communication hole penetrating the central partition wall in the displacement direction is disposed in the pressure-receiving chamber, and within a normal measurement pressure range, movement of the moving element is elastically restricted to the pressure-receiving element. A leaf spring that is elastically deformed by being pushed by the slider when an excessive pressure is applied is fixed to both sides of the central partition wall so that the elastic force can be adjusted freely, and the elasticity of the pressure receiving diaphragm is applied to the body side when an excessive pressure is applied. A differential pressure transmitter characterized by being installed so that it is seated.
JP16607982A 1982-09-24 1982-09-24 Differential pressure transmitter Granted JPS5956136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16607982A JPS5956136A (en) 1982-09-24 1982-09-24 Differential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16607982A JPS5956136A (en) 1982-09-24 1982-09-24 Differential pressure transmitter

Publications (2)

Publication Number Publication Date
JPS5956136A true JPS5956136A (en) 1984-03-31
JPH0322572B2 JPH0322572B2 (en) 1991-03-27

Family

ID=15824586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16607982A Granted JPS5956136A (en) 1982-09-24 1982-09-24 Differential pressure transmitter

Country Status (1)

Country Link
JP (1) JPS5956136A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129832A (en) * 1980-02-13 1981-10-12 Honeywell Inc Differential pressure transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129832A (en) * 1980-02-13 1981-10-12 Honeywell Inc Differential pressure transmitter

Also Published As

Publication number Publication date
JPH0322572B2 (en) 1991-03-27

Similar Documents

Publication Publication Date Title
US4135408A (en) Differential pressure measuring transducer assembly
US4668889A (en) Static overpressure protection system for differential pressure transducer
US4285244A (en) Non-symmetrical overload protection device for differential pressure transmitter
JP3133759B2 (en) Pressure transmitter with recess for stress interruption
US4163395A (en) Pressure transmitter with simplified pressure sensing head
WO1998012527A1 (en) Differential pressure transducer
US4543832A (en) Overload protected pressure transducer
US5780748A (en) Flow device having parallel flow surfaces which move toward and away from one another to adjust the flow channel in proportion to applied force
US4135407A (en) Method and apparatus for overrange protection of the transducer in a differential pressure transmitter
US4329877A (en) Adjustable overload mechanism for a differential pressure transmitter
US3313158A (en) High overload pressure transducer
JPS5956136A (en) Differential pressure transmitter
US3756085A (en) Differential pressure transmitter overrange protection
JPH0322573B2 (en)
JPS6236114Y2 (en)
JPS5957132A (en) Diferential pressure transmitter
JPS5956140A (en) Differential pressure transmitter
JPH0536739B2 (en)
JPH0322575B2 (en)
RU2801783C2 (en) Device for protecting differential pressure sensor from overpressure
JPS5957134A (en) Apparatus for detecting pressure
JPS5930444Y2 (en) differential pressure detector
JPS5956139A (en) Differential pressure transmitter
JPS5956138A (en) Differential pressure transmitter
JPS5912127B2 (en) Liquid ring type differential pressure detector