JPS5957132A - Diferential pressure transmitter - Google Patents

Diferential pressure transmitter

Info

Publication number
JPS5957132A
JPS5957132A JP16723082A JP16723082A JPS5957132A JP S5957132 A JPS5957132 A JP S5957132A JP 16723082 A JP16723082 A JP 16723082A JP 16723082 A JP16723082 A JP 16723082A JP S5957132 A JPS5957132 A JP S5957132A
Authority
JP
Japan
Prior art keywords
pressure
spacer
pressure side
center diaphragm
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16723082A
Other languages
Japanese (ja)
Other versions
JPH0331212B2 (en
Inventor
Atsumune Kawachi
河内 淳旨
Shunichiro Anami
阿波 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP16723082A priority Critical patent/JPS5957132A/en
Publication of JPS5957132A publication Critical patent/JPS5957132A/en
Publication of JPH0331212B2 publication Critical patent/JPH0331212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To protect a sensot from excessive pressure, by arranging a spacer for partitioning a body inner chamber into two chambers to mount the communication means of an inner sealing liquid in the chamber of a low pressure side and a spring member for energizing said spacer to a center diaphragm side. CONSTITUTION:A center diaphragm 29 is formed into a disc shape having a corrugated cross-sectional area and provided in a body chamber 28 to form two chambers, that is, a low pressure side inner chamber and a high pressure side inner chamber. In addition, a spacer 30 freely advancing and retracting to a far and near direction with respect to the center diaphragm 29 and a leaf spring 31 as a spring member for energizing the spacer 30 to the side of the center diaphragm 29 are arranged in the low pressure side inner chamber formed between the center diaphragm 29 and the inner wall surface of a back plate 22a. By this constitution, the center diaphragm 29 and the spacer 30 are moved to the low pressure side against the repelling force of the leaf spring 31 and a sensor can be protected from excessive pressure.

Description

【発明の詳細な説明】 本発明はプロセス変量である2点間の圧力差を測定する
差圧発信2(;に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a differential pressure transmitter 2 that measures a pressure difference between two points, which is a process variable.

例えば管内流体の流量を測定しようとする場合、管内に
オリスイス板を設けて流体低抗とし、その上流側と下流
側との圧力差を測定して所定の演算式に基づき流量を算
定することが行なわれている。
For example, when trying to measure the flow rate of fluid in a pipe, it is possible to install an oriswiss plate in the pipe to reduce fluid resistance, measure the pressure difference between the upstream side and the downstream side, and calculate the flow rate based on a predetermined calculation formula. It is being done.

この棹の正方差測定に用いられる差圧発信器は、高圧側
と低圧側との受圧ダイヤプラムに各測定圧力を与え、こ
の圧力による内封液の移動を、封入回路全仕切って設け
た半導体センサの歪により電気的出力として取出すよう
に構成されている。
The differential pressure transmitter used to measure the square difference of this rod applies each measurement pressure to the pressure receiving diaphragm on the high pressure side and the low pressure side, and the movement of the sealed liquid due to this pressure is controlled by a semiconductor device installed by dividing the entire sealed circuit. It is configured to extract electrical output based on the distortion of the sensor.

ところが、この種の差圧発信器においては、プロセスの
?jlll定仕様に応じた適切な寸法2強度、材料など
を備えた受圧ダイヤフラムが選定されて用いられたとし
ても、時には過大圧力を受けることがあり、この過圧が
半導体上ンサに及んでこれを損傷させることにより爾後
の測定を不可能にすることがある1、そこで従来この過
大圧力からセンサを保設する各種の装丁11が提案され
て差圧発信器に付設さ才1ている。。
However, in this type of differential pressure transmitter, the process? Even if a pressure-receiving diaphragm with appropriate dimensions, strength, materials, etc. according to the specified specifications is selected and used, it may sometimes be subjected to excessive pressure, and this overpressure may reach the semiconductor sensor and cause it to malfunction. Damage to the sensor may make subsequent measurements impossible. Therefore, various types of bindings 11 have been proposed to protect the sensor from this excessive pressure and are attached to the differential pressure transmitter. .

第1図はこの種の1μ大圧力保Hφ装竹全備えた従来の
差圧イへ信器の断面図であって、これを同図にノ、(い
て説、明すると、半’Itll状のボディ1の両側には
波形円板状に形成された高圧側のバリアダイヤフラム2
と低圧側のバリアダイヤフラム3とが装着されており、
これらの2リアダイヤフラム2,3には、ボディ1にボ
ルト締めさfl、た両側のカバー4とボディ1との間の
孔5,6がら流入する流体に、【つて高圧と低圧とがそ
れぞれ印加されている。
Fig. 1 is a sectional view of a conventional differential pressure signal equipped with this type of 1μ large pressure holding Hφ device, and this is shown in the same figure. A barrier diaphragm 2 on the high pressure side is formed in the shape of a corrugated disk on both sides of the body 1.
and barrier diaphragm 3 on the low pressure side are installed.
These two rear diaphragms 2 and 3 are bolted to the body 1, and high pressure and low pressure are applied to the fluid flowing in through the holes 5 and 6 between the cover 4 on both sides and the body 1, respectively. has been done.

一方、ボディ1上方のセンサカプセル7内のセンサ室に
は、図示しない瑞子と接続さ才また半々゛ト体センサ8
が、基板9に保持されて配設されており、このセンサ8
の下1i11である高圧側と上側である低圧側とからは
、液通路10および11がボディ1に向って延設されて
いる。符号12で示すものは波形円板状に形成されたセ
ンタダイヤフラムであって、半割状ボディ1の中央接合
部に設けた内室を高圧側内室13と低圧側内室14とに
隔成するようにボデー1に固定されており、前記各液通
路10.11は内室13,14にそ扛ぞれ開口さ扛てい
る。tた、前記各バリアダイヤフラム2,3とボディ1
との間に形成されたすき間と内室13.14とは、液通
路15.16によってそれぞれ連通さ扛ている。そして
、バリアダイヤフラム2.3とボディ1との間のすき間
から液通路15゜16、内室13,14および液通路1
0,11を経てセンサ8の高圧側と低圧側とに至る間に
は、シリコンオイルqiの内封液17が封入されている
On the other hand, in a sensor chamber in the sensor capsule 7 above the body 1, there is a half-body sensor 8 that is connected to a screw (not shown).
is held and arranged on the substrate 9, and this sensor 8
Liquid passages 10 and 11 extend toward the body 1 from the high pressure side, which is the lower side 1i11, and the low pressure side, which is the upper side. The reference numeral 12 designates a center diaphragm formed in the shape of a corrugated disk, and the inner chamber provided at the central joint of the half-split body 1 is divided into a high-pressure side inner chamber 13 and a low-pressure side inner chamber 14. The liquid passages 10 and 11 are respectively opened into internal chambers 13 and 14. t, each of the barrier diaphragms 2 and 3 and the body 1
The gap formed between the two and the inner chamber 13.14 communicate with each other through liquid passages 15.16. Then, from the gap between the barrier diaphragm 2.3 and the body 1, the liquid passage 15°16, the inner chambers 13, 14 and the liquid passage 1.
An internal sealing liquid 17 of silicone oil qi is sealed between the high pressure side and the low pressure side of the sensor 8 via 0 and 11.

以上のように構成さ扛た差圧発信器において、バリアダ
イヤフラム2,3にプロセスからの高圧と低圧とがそれ
ぞれ印加されると、バリアダイヤフラム2,3が凹んで
その圧縮分だけ内封液1T・が移ML、、両l111の
圧力差による内封液11の移動量の差をセンサ8が検出
してこれを電気1i号として発信することにより差圧が
測定さ11.る。この場合センタダイヤフラム12は両
側の圧力差によって変形するが内室13,14の壁面に
は汲触しない。また、バリアダイヤフラム2,3も正常
な差圧測定中はボディ1に接触しない。そして例えば高
圧側に過大圧力が作用すると、高圧側のバリアダイヤフ
ラム2が大きく変形してボディ1へ全面的に接A1+す
るので、高圧側の圧力が内部に伝達されなくなる。すな
わち、バリアダイヤフラム2が着座することによってj
li大圧力保、Jの働き金する。
In the differential pressure transmitter constructed as described above, when high pressure and low pressure from the process are respectively applied to the barrier diaphragms 2 and 3, the barrier diaphragms 2 and 3 are dented and the internal liquid 1T is compressed by the amount of compression. The differential pressure is measured by the sensor 8 detecting the difference in the amount of movement of the sealed liquid 11 due to the pressure difference between the two l111, and transmitting this as electric number 1i.11. Ru. In this case, the center diaphragm 12 is deformed due to the pressure difference on both sides, but does not come into contact with the walls of the inner chambers 13 and 14. Further, the barrier diaphragms 2 and 3 do not come into contact with the body 1 during normal differential pressure measurement. For example, when excessive pressure acts on the high pressure side, the barrier diaphragm 2 on the high pressure side deforms greatly and comes into full contact A1+ with the body 1, so that the pressure on the high pressure side is no longer transmitted to the inside. That is, by seating the barrier diaphragm 2, j
li maintains large pressure, J's work money.

この工うな過大圧力保Fr’l装置全備え/辷従米の差
圧発信器においては、過大圧力が作用しない平常の測定
圧力範囲下でも、内封液17がセンサ8方向だけでなく
センタダイヤスラム12を変位させる方向へも移動し、
バリアダイヤフラム2,3に対する圧力がそのま\セン
サに伝達されないので、伝達効率が低く応答性が悪いば
かりでなく、センタダイヤフラム12の反復変位による
ヒステリシスが犬きくて測定不青度が低下するという欠
点であった。また、この釉の差圧発信器においては、−
50℃から120℃に及ぶ環境温度の、変化に対応させ
かつ製造精度やぼね常数のばらつきを考慮して測定レン
ジの上限値に対しセンサの破壊強度を5倍程度に設定し
ているが、測定レンジを大きくし測定精度を高くするた
めには、上記比率を小さくして測定レンジの上限値をセ
ンサの破壊強度に近づけることが望ましい。
In this type of differential pressure transmitter that is fully equipped with an overpressure protection device, even under the normal measurement pressure range where no overpressure is applied, the internal liquid 17 flows not only toward the sensor 8 but also toward the center diaphragm. It also moves in the direction of displacing 12,
Since the pressure applied to the barrier diaphragms 2 and 3 is not directly transmitted to the sensor, not only is the transmission efficiency low and response is poor, but also the hysteresis due to repeated displacement of the center diaphragm 12 is severe, resulting in a decrease in the measured degree of blueness. Met. In addition, in this glazed differential pressure transmitter, -
The breaking strength of the sensor is set to about 5 times the upper limit of the measurement range in response to changes in environmental temperature ranging from 50℃ to 120℃ and taking into account variations in manufacturing accuracy and damping constant. In order to increase the measurement range and increase the measurement accuracy, it is desirable to reduce the above ratio so that the upper limit of the measurement range approaches the breaking strength of the sensor.

本発明は以上のような点に鑑みなされたもので、ボディ
内室をセンタダイヤスラムで2室に仕切ってそのうちの
低圧側の室内に内封液の連通手段を備えたスペーサとこ
れをセンタダイヤフラム側に付勢するばね部材とを配設
し、所定差圧以下ではスペーサをセンタダイヤスラムに
密着させ、所定差圧以上ではばね部材を圧縮させるとと
もに過大圧力印加時には受圧ダイヤフラムをボディに着
座させるように構成することにJ:り、高圧側と低圧側
との差圧が所定値以下の間はばね部材で弾発されたスペ
ーサでセンタダイヤフラムの移動を規制し、圧力伝達効
率と応答性ならびに測定精度の向上全針るとともに、測
定レンジ上限値をセンサ破壊強度に近づけることを可能
にすることにより測定レンジの拡大と測定精度の向上を
計った差圧発信器を提供するものである。以下本発明の
実施例を図面に基いて詳細に説明する0 第2図は本発明に係る差圧発信器の実施例を示す断面図
である0図において、差圧発信器21のボディ22は、
厚さ方向中央部に達する円形凹部全備えた低圧側のバッ
クプレー) 22aとその凹部に嵌合された高圧側のバ
ックプレート22bとで一体的に形成されており、各バ
ックプレート22a。
The present invention has been made in view of the above points, and consists of dividing the inner chamber of the body into two chambers by a center diaphragm, and incorporating a spacer provided with a means for communicating the internal sealing fluid in the low-pressure side chamber, and a center diaphragm. A spring member is provided to urge the spacer to the side, and when the differential pressure is below a predetermined pressure, the spacer is brought into close contact with the center diaphragm, and when the differential pressure is above a predetermined pressure, the spring member is compressed, and when excessive pressure is applied, the pressure receiving diaphragm is seated on the body. When the differential pressure between the high-pressure side and the low-pressure side is below a predetermined value, the movement of the center diaphragm is restricted by a spacer springed by a spring member, thereby improving pressure transmission efficiency, responsiveness, and measurement. The present invention provides a differential pressure transmitter that expands the measurement range and improves measurement accuracy by making it possible to bring the upper limit of the measurement range close to the sensor breaking strength. Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a sectional view showing an embodiment of a differential pressure transmitter according to the present invention. In FIG. ,
Each back plate 22a is integrally formed with a low-pressure side back plate 22a (all circular recesses reaching the center in the thickness direction) and a high-pressure side back plate 22b fitted in the recess.

22bの側部受圧凹陥面には、波形円板状に形成された
低圧側のバリアダイヤフラム23と高圧側のバリアダイ
ヤフラム24とが、同形状の受圧底面との間にすき間2
5.26を残して周縁部をボディ22側に固定されてい
る0また各バックプレー) 22.a 、 22bには
、図示を省略したが第1図に示したものと同じようなカ
バーが接合されており、バリアダイヤフラム23.24
にはカバーの孔から流入する流体の低圧と高圧とがそれ
ぞれ印加されている。すき間25.26は両端部に絞り
を有するバイパス27で連結されており、このバイパス
27上であるバックプレー) 22a 、 22bの接
合部には、ボディ内室28が、大部分をバックプレ) 
22a側に位置させ一部をバンクプレー) 22b側に
位置させて設けられている。
In the side pressure receiving concave surface of 22b, a low pressure side barrier diaphragm 23 and a high pressure side barrier diaphragm 24 formed in the shape of a corrugated disk have a gap 2 between them and the same shaped pressure receiving bottom surface.
5.0 and each back play whose peripheral part is fixed to the body 22 side except for 26) 22. Although not shown, covers similar to those shown in FIG. 1 are joined to the barrier diaphragms 23 and 22b.
A low pressure and a high pressure of the fluid flowing in from the hole in the cover are respectively applied. The gaps 25 and 26 are connected by a bypass 27 having apertures at both ends, and on this bypass 27, at the joint of the back plate 22a and 22b, there is a body interior chamber 28, which is mostly connected to the back plate.
22a side and a part of it is located on the 22b side.

符号29で示すものは、断面波形の円板状に形成されボ
ディ内室28内に低圧側の内室と高圧側の内室′との2
室を隔成するセンタダイヤフラムであって、周縁部をバ
ックプレート22bに溶着されており、バックプレート
22bの内壁面はこのセンタダイヤフラム29と同形状
に形成されている0そしてセンタダイヤフラム29とバ
ックプレート22aの内壁面との間に形成さnた低圧側
の内室内には、センタダイヤフラム29に対する遠近方
向へ進退自任なスペーサ30と、こfLfセンタダイヤ
フラム29側に付勢するばね部材としての皿ばね31と
が配設されている。スペーサ30は円板状に形成されて
いて、そのセンタダイヤフラム29側の側面は、センタ
ダイヤフラム29に密着するようにこれと同形状に形成
されているとともに、この側面にはバイパス27から放
射方向へ十字状をなして延びる液通路30Bが設けられ
ている・。)また皿ばね31は低い頭裁円錐形に形成さ
れており、高圧側からの差圧が所定圧以下のときはこれ
に打ち勝ってスペーサ30をセンタダイヤフラム29に
密着させ、所定圧以上のときにはスペーサ30に押され
て圧縮するようにそのばね圧が設定されでいる。
The one designated by the reference numeral 29 is formed into a disk shape with a corrugated cross section, and has two inner chambers in the body inner chamber 28, an inner chamber on the low pressure side and an inner chamber on the high pressure side.
It is a center diaphragm that separates the chambers, and its peripheral edge is welded to a back plate 22b.The inner wall surface of the back plate 22b is formed in the same shape as this center diaphragm 29.The center diaphragm 29 and the back plate Inside the low-pressure side inner chamber formed between the inner wall surface of the center diaphragm 22a and the center diaphragm 29, there is a spacer 30 that can freely move forward and backward toward the center diaphragm 29, and a disc spring as a spring member that biases the center diaphragm 29 toward the center diaphragm 29. 31 are arranged. The spacer 30 is formed into a disk shape, and the side surface on the center diaphragm 29 side is formed in the same shape as the center diaphragm 29 so as to be in close contact with the center diaphragm 29. A liquid passage 30B extending in a cross shape is provided. ) Also, the disc spring 31 is formed into a low conical shape, and when the differential pressure from the high pressure side is less than a predetermined pressure, it overcomes it and brings the spacer 30 into close contact with the center diaphragm 29, and when the pressure is higher than the predetermined pressure, the spacer 30 closes. The spring pressure is set so that it is pressed and compressed by 30.

一方、ボディ22に一体的に接合されたセンサカプセル
32内には、図示しないが第1図に符号8と9とで示し
て説明した半導体センサと基板とが周縁部を接合させて
載置固定された状態で配設されており、センサの高圧側
は液通路33によってボディ内室28の高圧側内室と連
通されている。
On the other hand, inside the sensor capsule 32 integrally joined to the body 22, a semiconductor sensor and a substrate, which are not shown but are indicated by reference numerals 8 and 9 in FIG. The high pressure side of the sensor is communicated with the high pressure side interior chamber of the body interior chamber 28 through the liquid passage 33.

またセンサの低圧側は液通路34によってボディ内室2
8の低圧側内室と連通されている。そしてバリアダイヤ
フラム23.24裏のすき間25゜26、バイパス2γ
、ボディ内室2B、および液通路33.34内には、液
封入孔35.3(3から注入されたシリコンオイル等の
内封液37が゛内封されており、前記スペーサ30には
、この内封液3Tの連通手段としての複数個の連通孔3
8が穿設されている。
In addition, the low pressure side of the sensor is connected to the body inner chamber 2 by the liquid passage 34.
It communicates with the low-pressure side interior chamber of No. 8. And gap 25°26 behind barrier diaphragm 23.24, bypass 2γ
, the body interior chamber 2B, and the liquid passages 33.34 are sealed with an inner sealing liquid 37 such as silicone oil injected from the liquid sealing hole 35.3 (3). A plurality of communication holes 3 serve as communication means for this internal sealing liquid 3T.
8 is drilled.

以上のように措成された差圧発信器の動作を説明する0
バリアダイヤフラム23.24にプロセスからの高圧と
低圧とがそれぞれ印加されると、バリアダイヤフラム2
3.24が凹んでその圧縮分だけ内判液37が移動し、
それぞれの圧力がセンサの高圧側と低圧側とに印加され
る。センサは両側の圧力差を検出してこれ全電気信号と
して発信することにより差圧が測定される。この場合、
プロセスからの圧力は、高圧側のバリアダイヤフラム2
4に印加される圧力が、低圧側のバリアダイヤフラム2
3に印加される圧力エリも高い場合がほとんどであって
先ずこの場合について説明する。差圧がOのときはスペ
ーサ30が皿はね31で弾発されてセンタダイヤフラム
29に密着しており、これに対して差馬が高圧側の同封
液37 f、H介してセンタダイヤフラム29に印加さ
rると、この差圧が所定圧力以下の場合には、スペーサ
30とセンタダイヤフラム29との密着状態が保たれる
。したがってこの間内封液3Tはセンサ方向へのみ移動
し差圧に比例した圧力がセンサに印加される。プロセス
からの差圧が所定圧力以下えると、センタダイヤフラム
29とスペーサ30とが皿ばね31の弾発力に抗して低
圧側へ移動し、この圧力がセンサを破壊するに至る手前
の過大圧力の場合には高圧側のバリアダイヤフラム24
がハックフレート22bの受圧面に着座するので、これ
以上の圧力がセンサに伝達されず、センサを過大圧力か
ら保謁することがでぺる。
The operation of the differential pressure transmitter constructed as described above will be explained below.
When high pressure and low pressure from the process are respectively applied to the barrier diaphragms 23 and 24, the barrier diaphragms 2
3.24 is depressed and the internal liquid 37 moves by the amount of compression,
Respective pressures are applied to the high and low pressure sides of the sensor. The sensor detects the pressure difference between both sides and transmits it as an electric signal, thereby measuring the pressure difference. in this case,
The pressure from the process is transferred to the barrier diaphragm 2 on the high pressure side.
The pressure applied to the barrier diaphragm 2 on the low pressure side
In most cases, the pressure applied to No. 3 is also high, and this case will be explained first. When the differential pressure is O, the spacer 30 is bounced by the countersunk spring 31 and is in close contact with the center diaphragm 29, whereas the spacer is in close contact with the center diaphragm 29 through the enclosed liquid 37f and H on the high pressure side. When the pressure is applied, the spacer 30 and the center diaphragm 29 are kept in close contact with each other if this differential pressure is less than a predetermined pressure. Therefore, during this time, the inner sealing liquid 3T moves only toward the sensor, and a pressure proportional to the differential pressure is applied to the sensor. When the differential pressure from the process falls below a predetermined pressure, the center diaphragm 29 and the spacer 30 move toward the low pressure side against the elastic force of the disc spring 31, and this pressure causes excessive pressure before it destroys the sensor. In this case, the barrier diaphragm 24 on the high pressure side
is seated on the pressure receiving surface of the hack plate 22b, so no more pressure is transmitted to the sensor, and the sensor can be protected from excessive pressure.

次にまれではあるが低圧側のバリアダイヤフラム23へ
の圧力が高圧側のバリアダイヤフラム24への圧力よυ
も大きい場合があるので、これについて説明する。すな
わち差圧が低圧側に印加されると、すき間25内の内封
液37はバイパス27と連通)し3E1通ってセンタダ
イヤフラム29とスペーサ30との間へ移動し、センタ
ダイヤフラム29が高圧側へ変位する。この場合センサ
へ向う内封液3Tの移動は、第1図に示す従来の装Q”
j、と同じであって、伝達効率が必ずしも良好でないが
、低圧側の圧力が高圧側よりも高くなることがまれであ
るから差支えない。そして、差圧がセンサを破壊さぜる
に至る手前の所定の圧力に達すると、低圧側のバリアダ
イヤフラム23がバック7”レ−) 22aの受圧面に
着座するので、これ以上の圧力がセンサに伝達されず、
センサを過大圧力から保穫することができる。
Next, although it is rare, the pressure on the barrier diaphragm 23 on the low pressure side is equal to the pressure on the barrier diaphragm 24 on the high pressure side.
In some cases, this is also large, so this will be explained below. That is, when differential pressure is applied to the low pressure side, the sealing liquid 37 in the gap 25 communicates with the bypass 27) and moves through 3E1 between the center diaphragm 29 and the spacer 30, and the center diaphragm 29 moves to the high pressure side. Displace. In this case, the movement of the sealing liquid 3T toward the sensor is similar to that of the conventional device Q" shown in FIG.
j, and the transmission efficiency is not necessarily good, but there is no problem because the pressure on the low pressure side is rarely higher than the high pressure side. Then, when the differential pressure reaches a predetermined pressure that is short of destroying the sensor, the barrier diaphragm 23 on the low pressure side seats on the pressure receiving surface of the back 7" ray 22a, so that no pressure higher than this reaches the sensor. is not communicated to
The sensor can be protected from overpressure.

第3図は本発明の他の実施例を示す断面図であって、本
実施例においてはスペーサ30とボディ22との間の空
間部にベローズ39を設けてその固定端をバックプレー
ト22bに固定し、可動端をスペーサ30に固定した他
は前記実施例と同じであるから同じ符号を付してその説
明を省略する。
FIG. 3 is a sectional view showing another embodiment of the present invention. In this embodiment, a bellows 39 is provided in the space between the spacer 30 and the body 22, and its fixed end is fixed to the back plate 22b. However, since it is the same as the previous embodiment except that the movable end is fixed to the spacer 30, the same reference numerals are given and the explanation thereof will be omitted.

こうすることによって高圧側と低圧側との間の内封液・
37の移動をシールすることができる。
By doing this, the sealing liquid between the high pressure side and the low pressure side
37 movements can be sealed.

なお、前記各実施例においてはスペーサ30と皿ばね3
1を設けたために低圧側の内室が高圧側の内室りりも大
きくなっており、画室の液量に差がある。したがって環
境温度の変化によってボディ22と内封液3Tとが同時
に膨張した場合、金属とシリコンオイルとの膨張係数が
大きく異なることと画室の液量が異なることとにエフセ
ンサに伝達される差圧に影響する。そこで別の実施例と
してスペーサ30をセラミックまたはアンバなど熱膨張
率の低い材料で形成すれば、低圧側内室内の内IHff
l 37が大きく膨張してもスペーサ30の低膨張率に
よってこれ全相殺することができ、液1−11−の少な
いi6圧側との差をなくしてセンサへの差圧伝達量に対
する影響全解消することができる。
In addition, in each of the above embodiments, the spacer 30 and the disc spring 3
1, the inner chamber on the low-pressure side is larger than the inner chamber on the high-pressure side, and there is a difference in the amount of liquid in the compartments. Therefore, if the body 22 and the internal liquid 3T expand simultaneously due to a change in environmental temperature, the differential pressure transmitted to the F-sensor will increase due to the large difference in the coefficient of expansion between the metal and silicone oil and the difference in the amount of liquid in the compartment. Affect. Therefore, as another embodiment, if the spacer 30 is formed of a material with a low coefficient of thermal expansion such as ceramic or invar, the inner IHff in the low pressure side inner chamber
Even if l 37 expands greatly, this can be completely offset by the low expansion rate of the spacer 30, eliminating the difference with the i6 pressure side where liquid 1-11- is less, completely eliminating the influence on the amount of differential pressure transmitted to the sensor. be able to.

また、前記各実施例ではスペーサ30をセンタダイヤフ
ラム29から離間させる内封液の連通手段として十字状
の液通路30a k設けた例を示したが、スペーサ30
の側面に、例えば星打ち加工と呼ばれるポンチ式の突起
形成加工により多数の突起を設けるなどの塑性加工を施
してスペーサ30をセンタダイヤフラム29から隔離す
るようにすれば、液通路形成のための加工が容易になり
加工費を削減することができる。
Further, in each of the above embodiments, an example was shown in which a cross-shaped liquid passage 30a k was provided as a communication means for the inner sealing liquid to separate the spacer 30 from the center diaphragm 29, but the spacer 30
If the spacer 30 is isolated from the center diaphragm 29 by performing plastic processing such as forming a large number of protrusions on the side surface using a punch-type protrusion forming process called star punching, the process for forming the liquid passage can be performed. This makes it easier to reduce processing costs.

さらに前記各実施例ではスペーサ30に設ける内封液3
7の連通手段として連通孔38を設けた例を示したが、
スペーサ30を、通気性のある多孔質の焼結金属や気泡
状の金属tたはセラミックなどの桐料で形成してもよく
、これによって孔加工や曲面加工などの必懺がなくなっ
て加工費を大幅に削減することができるとともに、内封
液の流通が円滑になり過大圧力任h〃装置の連応性を向
上させることができる。
Furthermore, in each of the above embodiments, the inner sealing liquid 3 provided in the spacer 30
Although the example in which the communication hole 38 is provided as the communication means of 7 is shown,
The spacer 30 may be formed of a porous sintered metal with air permeability, a cellular metal, or a paulownia material such as ceramic, which eliminates the need for hole drilling or curved surface processing, thereby reducing processing costs. Not only can the internal liquid flow be smoothed, but also the compatibility of the overpressure device can be improved.

以上の説明により明らかなように、本発明によれば差圧
発信器においてボディ内室をセンタダイヤフラムで2室
に仕切ってそのうちの低圧側の室内に内封液の連通手段
を備えたスペーサとこれをセンタダイヤ72ム側に付勢
するばね部材とを配設し、所定差圧以下ではスペーサを
センタダイヤフラムに密着させ、所定差圧以上ではばね
部材を圧縮させるとともに、過大圧力印加時には受圧ダ
イヤフラムをボディに着座させる工うに構成することに
より、センサを過大圧力から保護することができること
はもとより、差圧が所定値以下のときはばね部材で弾発
されたスペーサによってセンタダイヤフラムの移動が規
制され差圧がそのま\センサに伝達されるので、伝達効
率を向上させることができるとともに、センタダイヤフ
ラムの静止に工9ヒステリシスを小さくすることができ
る。
As is clear from the above explanation, according to the present invention, in a differential pressure transmitter, the inner chamber of the body is partitioned into two chambers by a center diaphragm, and the lower pressure side chamber is provided with a spacer and a spacer provided with a means for communicating the internal sealing liquid. The spacer is placed in close contact with the center diaphragm when the differential pressure is below a predetermined pressure, and the spring member is compressed when the differential pressure is above the predetermined pressure. By configuring the sensor to be seated on the body, not only can the sensor be protected from excessive pressure, but when the differential pressure is less than a predetermined value, the movement of the center diaphragm is restricted by the spacer that is spring-loaded by the spring member. Since the pressure is directly transmitted to the sensor, the transmission efficiency can be improved and the hysteresis caused by the center diaphragm being stationary can be reduced.

iたセンサ方向以外への内封液の移動がないので、圧力
の応答性がきわめて良好であって測定精度が向上すると
ともに、高圧側からの過大圧力任にφの動作点をばね部
材のばね圧調節によつ寸容易に辿択することができるの
で、あらゆる条件に容易に対応することができる。さら
に、測定レンジの上限値をセンサの破壊強pLに近づけ
ることができるので、測定レンジを拡大することができ
、センサの伝達効率の高い測定レンジを使用できること
により測定精度および計器のオ・8度が大幅に向上する
Since there is no movement of the sealing liquid in directions other than the direction of the sensor, pressure response is extremely good and measurement accuracy is improved. Since the size can be easily adjusted by adjusting the pressure, it is possible to easily respond to all conditions. Furthermore, since the upper limit of the measurement range can be brought closer to the sensor's destructive strength pL, the measurement range can be expanded, and a measurement range with high sensor transmission efficiency can be used, improving measurement accuracy and measuring accuracy. is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は過大圧力保進装置aをψ1dえた従来の差圧発
信器の断面図、第2図および第3図は本発明に係る差圧
発信器の実施例を示し、第2図はその断面図、第3図は
本発明の他の実施例としての差圧発信器の断面図である
。 21.21A ・・・・差圧発信器、22・・・・ボデ
ィ、23.24−・・Φバリアダイヤ72ム、25.2
6・・・・すき間、27・・・・バイパス、2811・
・・ボディ内室、29−・・・センタダイヤフラム、3
0・・・eスペーサ、31昏・・・皿ばね、33,34
・奢・・液通路、3T・・・・内封液、38・・・・連
通孔。 特許出願人 山武ハネウェル株式会社 代理人山川政樹(ほか1名) 第1図 第2図
Fig. 1 is a sectional view of a conventional differential pressure transmitter in which an overpressure holding device a is separated by ψ1d, and Figs. 2 and 3 show an embodiment of the differential pressure transmitter according to the present invention. 3 is a cross-sectional view of a differential pressure transmitter as another embodiment of the present invention. 21.21A...Differential pressure transmitter, 22...Body, 23.24-...Φ barrier diamond 72mm, 25.2
6... Gap, 27... Bypass, 2811.
...Inner body chamber, 29-...Center diaphragm, 3
0...e spacer, 31 K...disc spring, 33, 34
・Deluxe...Liquid passage, 3T...Internal sealing liquid, 38...Communication hole. Patent applicant: Yamatake Honeywell Co., Ltd. Agent Masaki Yamakawa (and one other person) Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)ボディ両側の各受圧ダイヤフラムとボディとの間
のすき間を中心部で連結するバイパス上にボディ内室金
膜け、このボディ内室内にセンサの高圧側、低圧側との
間を液通路でそれぞれ連結された2室を隔成するセンタ
ダイヤスラムを設けるとともに、前記2室のうちの低圧
側の室内に、内封液の連通手段を備え平時の測定圧力下
において前記センタダイヤスラムの外周固定部に密着す
るスペーサをボディ壁面との間にばね部材を介在させて
配設したことを特徴とする差圧発信器。
(1) A gold film is placed inside the body on the bypass that connects the gap between each pressure-receiving diaphragm on both sides of the body and the body at the center, and a liquid passage is provided between the high-pressure side and the low-pressure side of the sensor within this body interior. A center diaphragm is provided to separate two chambers which are connected to each other, and the lower pressure side of the two chambers is provided with communication means for internal sealing fluid, so that the outer periphery of the center diaphragm is provided under normal measurement pressure. A differential pressure transmitter characterized in that a spacer that is in close contact with a fixed part is disposed with a spring member interposed between the spacer and the wall surface of the body.
(2)スペーサ金ボデイエ9も熱膨張率の小さい材料を
用いて形成したこと1%徴とする特許請求の範囲第1項
記載の差圧発信器。
(2) The differential pressure transmitter according to claim 1, wherein the spacer gold body 9 is also formed using a material with a small coefficient of thermal expansion.
(3)スペーサに設ける内封液の連通手段としてこのス
ペーサを通液性材料で形成したことを特徴とする特許請
求の範囲第1項記載の差圧発4N器。
(3) A 4N differential pressure generator according to claim 1, characterized in that the spacer is formed of a liquid-permeable material as a communication means for the internal liquid provided in the spacer.
JP16723082A 1982-09-25 1982-09-25 Diferential pressure transmitter Granted JPS5957132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16723082A JPS5957132A (en) 1982-09-25 1982-09-25 Diferential pressure transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16723082A JPS5957132A (en) 1982-09-25 1982-09-25 Diferential pressure transmitter

Publications (2)

Publication Number Publication Date
JPS5957132A true JPS5957132A (en) 1984-04-02
JPH0331212B2 JPH0331212B2 (en) 1991-05-02

Family

ID=15845859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16723082A Granted JPS5957132A (en) 1982-09-25 1982-09-25 Diferential pressure transmitter

Country Status (1)

Country Link
JP (1) JPS5957132A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956138A (en) * 1982-09-25 1984-03-31 Yamatake Honeywell Co Ltd Differential pressure transmitter
JPS5958333A (en) * 1982-09-28 1984-04-04 Yamatake Honeywell Co Ltd Differential pressure transmitter
JPS60220838A (en) * 1984-04-17 1985-11-05 Yamatake Honeywell Co Ltd Differential pressure transmitter
JPS61112247U (en) * 1984-12-26 1986-07-16

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129832A (en) * 1980-02-13 1981-10-12 Honeywell Inc Differential pressure transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129832A (en) * 1980-02-13 1981-10-12 Honeywell Inc Differential pressure transmitter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956138A (en) * 1982-09-25 1984-03-31 Yamatake Honeywell Co Ltd Differential pressure transmitter
JPS5958333A (en) * 1982-09-28 1984-04-04 Yamatake Honeywell Co Ltd Differential pressure transmitter
JPH0536739B2 (en) * 1982-09-28 1993-05-31 Yamatake Honeywell Co Ltd
JPS60220838A (en) * 1984-04-17 1985-11-05 Yamatake Honeywell Co Ltd Differential pressure transmitter
JPS61112247U (en) * 1984-12-26 1986-07-16

Also Published As

Publication number Publication date
JPH0331212B2 (en) 1991-05-02

Similar Documents

Publication Publication Date Title
US4135408A (en) Differential pressure measuring transducer assembly
CA1076832A (en) Differential pressure transmitter with pressure sensor protection
US4285244A (en) Non-symmetrical overload protection device for differential pressure transmitter
US4565096A (en) Pressure transducer
CA1057969A (en) Differential pressure sensor
US3559488A (en) Differential pressure measuring apparatus
US4173149A (en) Differential pressure sensing devices
WO1992017757A1 (en) Differential pressure device
JPS6034688B2 (en) Pressure detection head of differential pressure transmitter
EP0403256A3 (en) Making an O-Ring/Back-up Seal for High Pressure Transducers
GB1363208A (en) Differential pressure transducer
US4072057A (en) Differential pressure cell with diaphragm tension and overpressure protection
JPS5957132A (en) Diferential pressure transmitter
JPS59125032A (en) Differential pressure measuring device
JPS5956137A (en) Differential pressure transmitter
JPS5956138A (en) Differential pressure transmitter
JPS5956139A (en) Differential pressure transmitter
JPH0536739B2 (en)
US3020504A (en) Pressure transducer
JPS6329217Y2 (en)
JPH0322575B2 (en)
JPS5956140A (en) Differential pressure transmitter
JPS6333148Y2 (en)
JPS5957134A (en) Apparatus for detecting pressure
JPH0322576B2 (en)