JPS5956099A - Manufacture of heat accumulating agent - Google Patents

Manufacture of heat accumulating agent

Info

Publication number
JPS5956099A
JPS5956099A JP16589182A JP16589182A JPS5956099A JP S5956099 A JPS5956099 A JP S5956099A JP 16589182 A JP16589182 A JP 16589182A JP 16589182 A JP16589182 A JP 16589182A JP S5956099 A JPS5956099 A JP S5956099A
Authority
JP
Japan
Prior art keywords
na2so4
particle size
heat
heat storage
heat accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16589182A
Other languages
Japanese (ja)
Inventor
Kenji Saida
健二 才田
Shozo Fujioka
藤岡 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP16589182A priority Critical patent/JPS5956099A/en
Publication of JPS5956099A publication Critical patent/JPS5956099A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To obtain the heat accumulating agent having a large latent heat by a method wherein sodium sulfate, having a particle size constituent below a specified mesh is 79wt% or more, is utilized as the material of the heat accumulating agent. CONSTITUTION:The sodium sulfate (Na2SO4), with particle size constituent below a particle size of 100 mesh and preferably below 150 mesh is 70wt% or more, is utilized as the material of the heat accumulating agent. The adding amount of the sodium sulfate is determined by dividing an amount, in which the amounts of an overcooling preventing agent and other adding agent are substrated from the total amount of the heat accumulating agent, in accordance with the ratio of the sodium sulfate to water.

Description

【発明の詳細な説明】 A7光明は1峨酸ナトリウム+水塩?主制とする蓄熱材
の製造方法に関する。l(!1′に本発明は原料イト1
;酸ナトリウム(+va2so4)とし−C’r!r5
jiの粒度2有するもの全使用する蓄熱材の製造方法に
関する。
[Detailed description of the invention] Is A7 Komei sodium monoformate + hydrate? This article relates to the main method of manufacturing heat storage materials. l(!1') In the present invention, the raw material
; acid sodium (+va2so4) and -C'r! r5
The present invention relates to a method for producing a heat storage material using a particle size of 2.

硫酸ナトリウム+水塩(Na2S1)4 @ 10 +
120 ) ’z主わとする怜熱材については例えば米
国特n′F第4+j77.4J9号明細麹などVこh4
載されておりよく知られているn Na25f34 ”
 10H20lf、 32.’l CK融屏点をイ〕し
、融M繭、′)乞[に0caz/gである。熱エネルギ
ー全t1しにm8という形で貯蔵し、冷時に&:I凝固
熱として放熱させることを目的として蓄熱材が製造され
ている。Na2SO4・10H20は融解φ凝固の相変
化において過冷却現象を呈することが知られている。
Sodium sulfate + water salt (Na2S1) 4 @ 10 +
120) Regarding the reheating materials that are mainly used, for example, US Pat.
The well-known n Na25f34”
10H20lf, 32. The CK melting point is 0 caz/g, and the melting M cocoon is 0 caz/g. Heat storage materials are manufactured for the purpose of storing total thermal energy in the form of t1 and m8, and dissipating the heat as &:I solidification heat when cold. It is known that Na2SO4.10H20 exhibits a supercooling phenomenon during the phase change of melting and solidification.

従ってNa2804− /□H20會主利としてm熱材
ff製造するには一定の温度にて相変化?生起させるた
めに過冷却?防止することが必要となる。
Therefore, in order to produce m-heat material ff as a main interest of Na2804-/□H20, does it undergo a phase change at a constant temperature? Supercooling to cause? It is necessary to prevent this.

上記米国特許においがは、過冷却防止剤として硼砂(N
a2B4O7” 10H20)が添加使用される方法が
記載されている。更にNa2SO4・10 H2Oi”
j:融解時にNa 2SO4と工(20に分離し、Na
:ll SO4が析出する。
The above U.S. patent odor uses borax (N) as a supercooling inhibitor.
A method is described in which a2B4O7" 10H20) is added. Furthermore, Na2SO4.10H2Oi"
j: When melting, Na2SO4 and Na(separated into 20, Na
:ll SO4 precipitates.

この析出したNa2SO4が液ハ、に沈降すると玲却・
凝固時:c Na2SO4@to u2o ヘの復水が
抑制さ)1.一部のNa2日04汀イ以水しない寸まで
残留するようになる0街水が不完全であると融解・凝固
の潜熱が減少することになるので好ましくない。このよ
りなNa2804の液底への沈降分離を防止するために
濃化剤が使J1.’lされる。例えdl(ロス゛[公W
Z昭J−f−、!;O/llu号公報には濃化剤として
ヒユームド二酸化ケイ素をO,S〜オ、o M ハtチ
添力j)する方法が記載されている。j−たNa280
4・10H20の相変化の温度は無機塩の添加によっで
ある範囲内で可能である。例えば特開昭、3 G −3
’ltgt号公報にはNaOノ。
When this precipitated Na2SO4 settles into the liquid, it is removed.
During solidification: condensation of Na2SO4@to u2o is suppressed) 1. It is not preferable that the amount of water remaining to the point where there is no more water than some of the Na2-day-04 water is incomplete because the latent heat of melting and solidification will decrease. In order to prevent this Na2804 from settling and separating to the bottom of the liquid, a thickening agent is used. 'l will be done. For example, dl (loss)
Z Show J-f-,! ; O/llu publication describes a method in which fumed silicon dioxide is added as a thickening agent. j-ta Na280
A phase change temperature of 4.10H20 is possible within certain limits by the addition of inorganic salts. For example, JP-A-Sho, 3G-3
'ltgt issue publication has NaOノ.

KCl、 NH4Oノなどの融点調節剤を添加する方法
が記載されている。このようにNa2SO4’ /□H
20を主材とする蓄熱材Qよ、過冷却防止剤1.識化剤
および必四に応じて融点調節剤を配合して製造されるO 上【i己のようにNa2SO4・10H20に主材とす
る蓄熱材はNa2 so4・10R20の融解・凝固の
相変化における潜熱ケ利用するものであるが、上記公知
の方法で製造された蓄熱材はNa2804−10H20
単味の潜熱の理論値(、<0cal/g )から推測さ
れる値よりもはるかに低い潜熱し2か与ズないという難
点がある。例えば前記特許公表昭J、!;−,30//
ざ0号公報の記載例では、Na2SO437,Y % 
、NaOノq、g%、ホウ酸ナトリウムコ、t%、ヒュ
ームド二酸化ケイ累3、qダへ水l♂、Jチ(重惜チ)
の組成物は3.3BTU/ボンド(/Kcal/g)で
ある。首た施設と園芸誌/り、1′7年q月号ノ?頁の
記載例で177: Na2SO4・10H209A%、
Nα2B407@10H20グ%(屯猜チ)の組成物は
に/ 0PI1. /crtl (比重へllzとして
換よ)−するとぐコcal / ’g )である。この
ように低い潜熱しか−匂えないということは蓄熱材の蓄
熱111が低いということであるから、所定の蓄熱ケ干
るだめの蓄熱材の所要おが多くなり蓄熱装fi7が大型
化し2コストが高くなる。本発明者らにかかる現状VC
鑑み、Na2SO4・10H20を主相とする蓄熱材の
a熱ケ増大させる方θ;について鋭意検d、Fシた結果
、原料Na2E104として特定の粒度を有するものケ
使用することに、しって−上記の問題点を解決すること
ケ見い出し、本発明な完成するに至ったものであるO 即ち本発明):I’、 46fl:酸ナトリウム十水塩
(Na2S04・10 H2O)ケ主月とする蓄熱拐を
製造する方法において、原料の硫酸ナトリウム(lla
2So4)として100メツシー1以下の粒度成分が7
9I¥114−%以上であるものを使用すること不〜’
!、1F微とすイ、蓄熟祠の製造方法である。
A method of adding melting point regulators such as KCl, NH4O, etc. is described. In this way, Na2SO4' /□H
Heat storage material Q mainly composed of 20, supercooling inhibitor 1. The heat storage material, which is produced by blending a discriminating agent and a melting point regulator as necessary, is a heat storage material mainly composed of Na2SO4. Although latent heat is utilized, the heat storage material manufactured by the above-mentioned known method is Na2804-10H20.
It has the disadvantage that it gives a latent heat of only 2, which is much lower than the value estimated from the theoretical value of the latent heat of a simple substance (<0 cal/g). For example, the patent publication Sho J,! ;-,30//
In the description example of Za No. 0, Na2SO437,Y%
, NaO, g%, sodium borate, t%, fumed silicon dioxide 3, q da to water l♂, J chi (heavy regret)
The composition of is 3.3 BTU/bond (/Kcal/g). Facilities and Horticulture Magazine/Re, 1'7 Q issue? Example description on page 177: Na2SO4・10H209A%,
The composition of Nα2B407@10H20g% (Tunxichi) is /0PI1. /crtl (Convert to specific gravity as llz) - then cal/'g). The fact that only a low latent heat can be sensed means that the heat storage 111 of the heat storage material is low, so the required amount of heat storage material for the specified heat storage is increased, the heat storage device FI7 becomes larger, and the cost increases. It gets expensive. Current VC regarding the inventors
In view of this, as a result of a thorough investigation of the method of increasing heat and θ of the heat storage material with Na2SO4.10H20 as the main phase, we decided to use a material with a specific particle size as the raw material Na2E104. In order to solve the above problems, the present invention has been completed. In the method for producing lla, the raw material sodium sulfate (lla
2So4), the particle size component of 100 mesh 1 or less is 7
9I¥114-% or more must not be used.
! , 1F Bito Sui is a method for manufacturing a ripening shrine.

Na2SO4−10H,、Oの相変化kl iml! 
Sr時VこNa2SO4とH2Cに分離し、凝固時に復
水してNa2SO4・/引+2otrtcもどることか
らなる。
Phase change of Na2SO4-10H,,O kl iml!
During Sr, it separates into Na2SO4 and H2C, and when it solidifies, it condenses and returns to Na2SO4./+2otrtc.

24゜7Na2so4+10H20(1)融解時の反応
は熱分解反応であるから伝熱゛が十分であれば児全に進
行するが、凝固時の反応な水和灰地、であるから伝熱だ
けでな(Na2SO4およびH2Cの物質移動しこ支配
さiLる。水に溶解しているNa25o4 n周辺の水
分子と結合してNa2SO4・/□H20として析出す
る。結晶として存在するNazso 4は水に溶解した
のち水分子と結合するので固液境膜中で拡散と水利反応
が生起する。生成したNa2SO4・101(20は結
晶として析出するので固液境膜中の拡散を抑制し、その
ため一部のNa2SO4が復水されずにNa2 so4
のままで残留することになりやすい。こ九ヶ防ぐには、
1Ja2sO4の分散をよくしてH2Cとの接触を十分
にすること?必要とする。
24゜7Na2so4+10H20 (1) The reaction during melting is a thermal decomposition reaction, so if heat transfer is sufficient, it will proceed completely, but since it is a hydrated ash that is a reaction during solidification, heat transfer alone is not enough. (The mass transfer of Na2SO4 and H2C is controlled by iL. Na25o4 dissolved in water combines with water molecules around n and precipitates as Na2SO4/□H20. Nazso4, which exists as a crystal, is dissolved in water. It then combines with water molecules, causing diffusion and water utilization reactions in the solid-liquid film.The generated Na2SO4.101 (20) precipitates as crystals, suppressing diffusion in the solid-liquid film, and therefore some is not condensed and becomes Na2 so4
It is likely to remain as it is. To prevent this,
To improve the dispersion of 1Ja2sO4 and ensure sufficient contact with H2C? I need.

そのために鋳化剤が使用されることはtill記の通り
であるが、その効果は十分とは言えない。
As described in Till, a casting agent is used for this purpose, but its effect cannot be said to be sufficient.

本発明者らに、原料のNa2sO4を粉砕して篩にて分
級し、粒度の異なるNa2sO4を用いて蓄熱材を製造
してその融解熱を測定した結果、Na−2sO4の粒度
の影響が大きく、100メツシユ以下の微粒Na2 S
O’4の粒度に依存するのである。Na25(14” 
10H20の相変化が、(1)式の如く熱分解と水利反
応のくり返しであり、従ってNa2SO4は熱4)解の
ときに新たに生成踵水和反応のときに消失してNa2S
O4m10H20が生成する。i料として仕込んだNa
2SO4は水和反応のときに消失してしまうので、熱分
解と水利反応のくり返しを経た後においても原料Na2
804の粒度の影響があるのは予想できないことであっ
た。この現象に、蓄熱材の%9造時に仕°込み/ Na
2日04の粒度が微粒子に珍るほどNa2SO4の表面
積が大となり、H2Cとの接触が良くなること、また濃
化剤による3次元網状構造の中でNa2804の分散が
十分になされ、Na2SO4の周囲に十分な■の112
0分子が存在することに起因するものと推シ1tされる
。Na2SO4の粒度が犬となるとJ次元網状第1り造
の中で局所的にNa2so4 の周囲にH2O分子の過
不足が発生し、また沈降速度が犬きくなるため沈降分離
する可能性も大きくなる。このようにNa2so4の粒
度全微粒子とすること分 によって3次元網状構造においてNa2SO4の窒散を
十分とし、Na 2804とH2O1局所的に過不足な
くすることが融解熱の増大に効果があることが見い出さ
れたのである。
The present inventors crushed the raw material Na2sO4 and classified it with a sieve, manufactured heat storage materials using Na2sO4 with different particle sizes, and measured the heat of fusion. As a result, the particle size of Na-2sO4 has a large influence. Fine particles of Na2S less than 100 mesh
It depends on the particle size of O'4. Na25 (14”
The phase change of 10H20 is a repetition of thermal decomposition and water utilization reaction as shown in equation (1). Therefore, Na2SO4 is newly generated during thermal 4) solution, disappears during the heel hydration reaction, and becomes Na2S.
O4m10H20 is produced. Na prepared as i charge
Since 2SO4 disappears during the hydration reaction, the raw material Na2 remains even after repeated thermal decomposition and water utilization reactions.
It was unexpected that there would be an effect of the 804 grain size. This phenomenon is caused by the addition of Na to the heat storage material at the time of manufacture.
The finer the particle size of 2-day 04, the larger the surface area of Na2SO4, which improves the contact with H2C.Also, Na2804 is sufficiently dispersed in the three-dimensional network structure created by the thickening agent, and the surrounding area of Na2SO4 increases. ■112 sufficient for
It is assumed that this is due to the presence of 0 molecules. When the particle size of Na2SO4 becomes large, excess or deficiency of H2O molecules occurs locally around Na2so4 in the first J-dimensional network structure, and the sedimentation rate becomes too large, increasing the possibility of sedimentation separation. In this way, it was found that by making the particle size of Na2SO4 entirely fine, sufficient nitridation of Na2SO4 was achieved in the three-dimensional network structure, and that local excess and deficiency of Na2804 and H2O1 was effective in increasing the heat of fusion. It was.

本発明に使用されるNa2804は二[業用製品が使用
されるが、粒度100メツシユ以下、好ましくid: 
lj;0メツシユ以下の粒度のものが7oTfc量Z以
上である必要があり、そのために必要に応じて粉砕・分
級の操作が行なわれる。100メツシユ以下の粒度のも
のが70重量%より少ない場合に融解熱が低くなる傾向
?有し奸才しくない。
The Na2804 used in the present invention is a commercial product, but the particle size is 100 mesh or less, preferably ID:
It is necessary that the particle size of lj:0 mesh or less is 7oTfc amount Z or more, and for this purpose, pulverization and classification operations are performed as necessary. Does the heat of fusion tend to decrease when the particle size of 100 mesh or less is less than 70% by weight? It's not very clever.

利゛ Iね2S04の添加量は、蓄熱零臀総量から下記に説明
する過冷却防止剤、濃化剤および融点調節剤?差引いた
鼠′jtNa2So4とH2Oに割当てた量であり、こ
れは容易に算出できる。通常蓄熱材総量の中、27〜1
l−7重値チ程度である。過冷却防止剤としては硼砂(
Na2B40□・/にlH2O)が有効に使用され、そ
の添加量は、2〜4を重量%である。
The amount of Addition 2S04 is based on the total amount of heat storage, and the following are the supercooling inhibitors, thickeners, and melting point regulators. This is the amount allocated to the subtracted Na2So4 and H2O, which can be easily calculated. Of the total amount of normal heat storage materials, 27 to 1
It is about 1-7 weight. Borax (
Na2B40□/lH2O) is effectively used, and its addition amount is 2 to 4% by weight.

濃化剤としてはヒユームド二酸化ケイ素、アバタルガイ
ド粘土その他の増粘作用のあるものが使用される。ヒュ
」ムド二酸化ケイ素ケ使用のときtよ3− j llt
 t7t%添加する。融点調節剤としてlj Nap/
 、 IC+37. NH4Oノなどの無機塩が使用さ
れ、その添加量は19a2日041モルに対してo、q
〜7.0モルの範囲で所望の融点?得るのに必要な量で
ある。
As the thickening agent, humid silicon dioxide, abatal guide clay or other substances having a thickening effect are used. When using hygroscopic silicon dioxide
Add t7t%. lj Nap/ as a melting point regulator
, IC+37. Inorganic salts such as NH4O are used, and the amount added is o, q per 19a2041 mol per day.
Desired melting point in the range of ~7.0 mol? is the amount needed to obtain it.

このように本発明方法によれば原料Na2SO4に特定
粒度のものを使用することによりNa25O4の分散性
全向上さぜ、Na2SO4と水の接触を良くする結果、
11a2 SO4・10H20の相変化における潜熱全
増加させることを可能にしたものである。この結果蓄熱
材の所要贋が減少し蓄熱装置の小型化に寄与するところ
大である。
As described above, according to the method of the present invention, by using a specific particle size as the raw material Na2SO4, the dispersibility of Na25O4 is completely improved, and as a result, the contact between Na2SO4 and water is improved.
This makes it possible to increase the total latent heat during the phase change of 11a2SO4.10H20. As a result, the number of counterfeit heat storage materials is reduced, which greatly contributes to downsizing of the heat storage device.

以下に実倫例紮挙げて本発明を四に具体的に説明するが
、本発明はこれら実/7fli例によって何等限定され
るものではない。父、実り亀例中のチは特d己しない限
りすべて争:d条ケ示す。
The present invention will be described in detail below with reference to practical examples; however, the present invention is not limited to these practical examples in any way. Father, the child in the example is all disputed unless he has a special case: Article d shows.

実施例/および比較例/ 工業薬品Naz so 4 ’f(粉砕して篩にて分級
し、下記、2種の粒にのNa2 SO4がtto、s%
とH2O、!;/J係、硼砂3.0%、アエロジル、2
OO(日本アエロジル社製品、ヒユームド二酸化ケイ素
)s、o%ケ混合して蓄熱拐を製造した。(H2O/ 
Na25O4モル比10)このものの融解熱に一下記の
通りであった。尚融解熱の測定1l−j蓄熱材30gを
ポリエチレン製小袋に入れジュワーびん中の300 m
lの温水中に投入し温水の温度変化から融解熱を算出す
る方法によった。
Examples / and Comparative Examples / Industrial chemical Naz so 4'f (pulverized and classified with a sieve, as shown below, Na2SO4 in the two types of grains is tto, s%
and H2O! ;/J Section, Borax 3.0%, Aerosil, 2
OO (manufactured by Nippon Aerosil Co., Ltd., fumed silicon dioxide) was mixed with s and 0% to produce a heat storage material. (H2O/
Na25O4 molar ratio 10) The heat of fusion of this product was as follows. Measurement of heat of fusion 1l-j 30g of heat storage material was placed in a polyethylene bag and placed in a 300m dewar bottle.
A method was used in which the heat of fusion was calculated from the temperature change of the hot water by pouring it into 1 of hot water.

Na2日04の粒ハVli+1(角了%j6(cal/
g )実ブ崩伊]し  −/、50メツシュ〜+、20
0メソシュ    ’Ig、9比較1川/   −#0
メツシュ〜−ト100メツシュ    Q0g実施例ノ
および比較例コ NaZSO4の粒度を下記のようVこ変えた頃外は実施
例/と同じ方法によって蓄熱+jを製造し融解熱?測定
し下記の結果4・得た。
Na 2 days 04 grains Vli+1 (Kakuryo%j6(cal/
g) Real time] -/, 50 mesh ~ +, 20
0 mesosh 'Ig, 9 comparison 1 river/-#0
Mesh~-T 100 mesh Q0g Example and Comparative Example Heat storage +j was produced by the same method as in Example except that the particle size of NaZSO4 was changed to V as shown below. The measurement was performed and the following result 4 was obtained.

Claims (1)

【特許請求の範囲】[Claims] 硫酸ナトリウム+水塩を主4Aとする蓄熱材を製造する
方法において、原料の硫酸ナトリウム(Na2S()4
)に100メソシユ以下の粒度成分が701!I鰯係以
上であるものを使用すること全特徴とする蓄熱イAの製
造方法
In a method for producing a heat storage material mainly containing 4A of sodium sulfate + hydrate, the raw material sodium sulfate (Na2S()4
) contains 701 particles with a particle size of 100 mesoyu or less! A manufacturing method for heat storage A, which is characterized by using sardines of I or higher grade.
JP16589182A 1982-09-22 1982-09-22 Manufacture of heat accumulating agent Pending JPS5956099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16589182A JPS5956099A (en) 1982-09-22 1982-09-22 Manufacture of heat accumulating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16589182A JPS5956099A (en) 1982-09-22 1982-09-22 Manufacture of heat accumulating agent

Publications (1)

Publication Number Publication Date
JPS5956099A true JPS5956099A (en) 1984-03-31

Family

ID=15820933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16589182A Pending JPS5956099A (en) 1982-09-22 1982-09-22 Manufacture of heat accumulating agent

Country Status (1)

Country Link
JP (1) JPS5956099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257020A (en) * 2019-06-28 2019-09-20 深圳市爱能森科技有限公司 A kind of phase-changing energy storage material and preparation method thereof with two-phase changing temperature degree

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257020A (en) * 2019-06-28 2019-09-20 深圳市爱能森科技有限公司 A kind of phase-changing energy storage material and preparation method thereof with two-phase changing temperature degree

Similar Documents

Publication Publication Date Title
JPH0225947B2 (en)
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
JPS5956099A (en) Manufacture of heat accumulating agent
FI69442C (en) EXTENSION OF MAGNESIUM NITRATHEXAHYDRAT
US4556501A (en) Heat storage composition
JPH0151515B2 (en)
US3397947A (en) Stabilized polyphosphate products
JP4100590B2 (en) Latent heat storage material composition and heat storage method
JPS6317769B2 (en)
JPS58136684A (en) Thermal energy storage material
JPH07504391A (en) Hydrothermal method for growing optical quality single crystals and aqueous mineralizing agent for this method
JPS6251311B2 (en)
US3247251A (en) Cyclohexylamine borates and production thereof
Jani et al. In Situ Powder X-Ray Diffraction Study on Hydrous Ferrous Sulfate Minerals
US3397948A (en) Polyphosphate processes and products
JPS5918785A (en) Manufacture of heat storage composition
JPS58195796A (en) Heat accumulating material for use in space heating
JPS58183786A (en) Heat-storing material
JPH0422198B2 (en)
JPS6035076A (en) Reversible phase transfer composition of calcium chloride hexahydrate and potassium chloride
ATANASOVA et al. SYNTHESIS AND PHYSICOCHEMICAL STUDIES OF SOME ALKALI TELLURATES.
JPS5860198A (en) Heat accumulating material
JPS6111276B2 (en)
Maneva et al. Thermal and calorimetric investigations of M (IO 3) 2· 2H 2 O for M 2+= Ni 2+ and Zn 2+ and their deuterated analogues
JP2022035499A (en) Method for producing kenyaite