JPH0422198B2 - - Google Patents

Info

Publication number
JPH0422198B2
JPH0422198B2 JP19202083A JP19202083A JPH0422198B2 JP H0422198 B2 JPH0422198 B2 JP H0422198B2 JP 19202083 A JP19202083 A JP 19202083A JP 19202083 A JP19202083 A JP 19202083A JP H0422198 B2 JPH0422198 B2 JP H0422198B2
Authority
JP
Japan
Prior art keywords
parts
added
heat storage
water
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19202083A
Other languages
Japanese (ja)
Other versions
JPS6084379A (en
Inventor
Kenji Saida
Shozo Fujioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP19202083A priority Critical patent/JPS6084379A/en
Priority to EP84306900A priority patent/EP0141550A1/en
Priority to NO844075A priority patent/NO844075L/en
Priority to CA000465138A priority patent/CA1221229A/en
Priority to US06/659,883 priority patent/US4556501A/en
Publication of JPS6084379A publication Critical patent/JPS6084379A/en
Publication of JPH0422198B2 publication Critical patent/JPH0422198B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は硫酸ナトリウム10水塩
(Na2SO410H2O)を主材とする長期安定性の優
れた蓄熱材に関する。特に本発明は固液分離防止
剤として水和性硫酸カルシウムおよび増粘剤とし
てシリカ系増粘剤を添加することを特徴とする蓄
熱材に関する。 融解、凝固の相変化による潜熱を有する含水塩
化合物を利用して熱エネルギーを貯蔵しようとす
る考えは古くから知られている。これ迄に報告さ
れている検討結果によると、この方法による蓄熱
の実用化においては2つの問題点があることが指
摘されている。その第1はこれらの含水塩化合物
は融解、凝固の相変化が融点、凝固点で生起しな
い場合が多く、いわゆる過冷却現象を呈すること
である。従つて一定の温度で相変化を生起させる
には過冷却を防止することが必要になる。このよ
うな過冷却を防止する方法としては、例えば米国
特許第2677664号明細書にはNa2SO4・10H2Oの
過冷却防止剤として硼砂(Na2B4O7・10H2O)
が添加使用される方法が記載されている。この
Na2B4O7・10H2Oの結晶はNa2SO4・10H2Oの結
晶に対してエピタキシヤルな関係にあり、
Na2B4O7・10H2Oの結晶がNa2SO4・10H2Oの過
飽和溶液中に存在するとNa2SO4・10H2Oの結晶
析出を促進し過冷却防止に効果があるとの報告が
ある(インダストリアル・アンド・エンジニアリ
ング・ケミストリー(Industrial and
Engineeing chemistry Vol44・1308〜1310頁
1952)。又、CaCl2・6H2Oの過冷却防止剤として
Ba(OH)2、Ba(OH)2・8H2Oなどが用いられる
方法(特公昭53−9596号公報)、同じくBaI2
BaSO4などが用いられる方法(特開昭55−
102675号公報)も知られている。これらの方法は
CaCl2・6H2Oに対してエピタキシヤルな関係に
はないものがあり、結晶形と核発生との関係は必
ずしも明らかではない。 第2の問題点は相変化の過程で生成する無水塩
が沈候することによる固液分離現象が起ることで
ある。例えばNa2SO4・10H2Oは32.4℃で分解し、
無水塩が生成するが、この無水塩は液底に沈降す
る。これを32.4℃以下に冷却すると表面層の無水
塩は復水してNa2SO4・10H2Oとなるが、この結
晶が表面を覆う為に底部の無水塩は復水が抑制さ
れる。従つて、無水塩の沈降を防止する必要があ
る。一般に沈降防止の為には固液分離防止剤が使
用されるが、蓄熱材としては長期安定性が満たさ
れなければならない。天然ゴム、合成高分子など
の有機材料は徐々に加水分解され、又は生物によ
り分解される可能性があり、好ましくない。無機
材料では多孔性支持体を使用する方法(特公昭58
−6108号公報)、ラース様粒子を有する粘土型物
質を揺変剤として使用する方法(特開昭53−
34687号公報)、無水ケイ酸(SiO2)超微粉を使
用する方法(ケミカル・ウイークChemical
Week3月1日号34頁、1978)などが提案されて
いる。しかしながらこれらは特定地域でしか産出
しない天然物であるか又は高価なものであつて、
蓄熱材の本来の目的である省エネルギーという点
からの経済性において実用化に問題がある。また
その効果の点においても、蓄放熱のサイクルを長
期間くり返すことによつて粘度が次第に低下し、
固液分離現象が発生する傾向があり、未だ十分と
は言えない。 本発明者らは上記の現状に鑑み、Na2SO4
10H2Oを主材とする長期安定性の優れた蓄熱材
について検討を重ねた結果、固液分離防止剤とし
て水和性硫酸カルシイウムおよび増粘剤としてシ
リカ系増粘剤を添加することにより安定性が著し
く改善されることを見い出し本発明を完成するに
至つたものである。 本発明について説明すると水和性硫酸カルシウ
ムとは水中において水和反応が生起し、硫酸カル
シウム2水塩(CaSO4・2H2O)となる硫酸カル
シウムのことである。また硫酸ナトリウムの水溶
液中においては次のような複塩が生成することも
よく知られており、例えば関谷道雄著『石膏』
(技報堂1965)104頁に記載されている。 Na2SO4・CaSO4 Na2SO4・CaSO4・4H2O 2Na2SO4・CaSO4・2H2O Na2SO4・5CaSO4・3H2O 従つて、Na2SO4−H2O系の混合物に水和性硫
酸カルシウムを添加して撹拌するとCaSO4
2H2Oおよび/または上記の複塩が生成する。生
成するCaSO4・2H2Oおよび/または複塩の結晶
は微細な針状晶であるから、これらがからみあつ
て系全体に充満し、マトリツクスを形成する。こ
のようにして形成されたマトリツクスが固液分離
防止の効果を有するのである。ところで上記のよ
うな水中における水和性硫酸カルシウムの水和反
応又は複塩生成反応は、硫酸カルシウムの溶解→
反応→2水塩又は複塩の析出という過程を経るた
めに反応完結までに時間を要する。従つて
Na2SO4−H2O系に水和性硫酸カルシウムを添加
後、ある程度の2水塩又は複塩が析出し、これに
よつてスラリーの粘度が上昇するまで撹拌・混合
を継続する必要がある。この一部分の析出した結
晶によつて未反応の硫酸カルシウムの沈降が防止
され、従つて系内に均一に結晶が析出することに
なる。未反応の硫酸カルシウムの沈降を防止する
ために増粘剤を添加する。特に望ましい増粘剤と
してはシリカ系の増粘剤をあげることができ、こ
れには無定形シリカ微粉末を添加するか、又はケ
イ酸ナトリウムと硫酸とを混合することによつて
系内で重合ケイ酸を生成させるかの方法がある。
いずれもNa2SO4−H2O系の粘度を上昇させ、未
反応の硫酸カルシウムの沈降を防止する効果があ
り、更にそれ自身も固液分離防止剤としての効果
があるので安定性が一層向上される。 なお、先に示したCaSO4・2H2Oや福塩の固体
を水や硫酸ナトリウムと水の混合物に溶かしたの
ではマトリツクスが形成されず蓄熱材としては適
さない。本発明の主材の硫酸ナトリウムとしては
硫酸ナトリウム10水塩又は無水硫酸ナトリウムと
水が使用され、H2O/Na2SO4モル比は10〜15の
範囲とする。水の添加量がこの範囲より少量では
Na2SO4の復水量に不足のため蓄熱量が低下し、
またこの範囲より大量の場合にはNa2SO4の濃度
が減少するため蓄熱量が低下するので好ましくな
い。過冷却防止剤としてはホウ砂(Na2B4O7
10H2O)が有効に使用され、その添加量は2〜
4重量%である。固液分離防止剤として使用され
る水和性硫酸カルシウムとしては、水和性無水硫
酸カルシウム(型CaSO4)、α型およびβ型半
水硫酸カルシウム(α型およびβ型CaSO4・1/2
H2O)が使用される。添加量は蓄熱材組成物中
2〜15重量%好ましくは3〜7重量%で、この範
囲以下の添加量では少量すぎてマトリツクスの形
成が不十分であり、離防止効果が低く好ましくな
い。この範囲以上ではマトリツクスの形成の点で
は問題ないが、Na2SO4の濃度が減少するため蓄
熱量が低下するので好ましくない。増粘剤として
添加される無定形シリカ微粉末としては乾式およ
び湿式により製造される無定形シリカ微粉末が使
用され、通常ホワイトカーボンと称されてよく知
られている。これらは市販商品名でアエロジル
(日本アエロジル製)、トクシール (徳山曹達
製)、ニツプシール (日本シリカ製)、サイロイ
ド (富士デヴイソン化学製)などがあり、容易
に入手できる。添加量は0.5〜10重量%好ましく
は1〜7重量%で、この範囲以下の添加量では少
量すぎて増粘効果が低いため好ましくなく、また
この範囲以上ではNa2SO4の濃度が減少するため
蓄熱量が低下する上、コスト高となるので好まし
くない。またケイ酸ナトリウムと硫酸を混合する
ことによつて重合ケイ酸を生成させる場合におい
て、ケイ酸ナトリウムとしては水ガラス又はメタ
ケイ酸ナトリウムが使用され、水ガラスの場合は
重量で1:1程度に希釈する方が望ましい。硫酸
濃度も低い方が望ましい。ケイ酸ナトリウムと硫
酸の混合方法は硫酸中にケイ酸ナトリウムを添加
する方法、即ち、酸性側から中和することによつ
て、増粘効果のある重合ケイ酸が得られやすく、
逆の添加方法よりも望ましい。ケイ酸ナトリウム
と硫酸の添加量は両者の混合によつて中性となる
混合割合であつて、しかもSiO2換算で上記無定
形シリカ微粉末と同範囲の添加量である。 上記のほかに必要に応じて融点調節剤を添加す
ることは差しつかえない。その例としてNaCl、
KCl、NH4Cl、NaNO3などの無機塩が使用され、
その添加量はNa2SO41モルに対して0.2〜1.0モル
の範囲で所望の融点を得るのに必要な量である。 以上説明してきたように、本発明方法によれば
固液分離抑制効果が著しく、安定性が飛躍的に向
上するものであり、これによつて蓄熱材の実用化
に寄与するところ大である。 次に本発明を実施例によつて更に詳細に説明す
るが、本発明はこの実施例によつて何等限定され
るものではない。又融解熱の測定は次のようにし
て行つた。即ち蓄熱材30gをポリエチレン製小袋
に入れ、これをジユワー瓶中の300mlの温水中に
投入し温水の温度変化から融解熱を算出する方法
によつた。 実施例 1 無水硫酸ナトリウム 37.27部 水 57.03部 α半水石膏 2.53部 微粉末シリカ(トクシール P 徳山ソーダ(株)
製) 3.0部 上記混合物を35℃で80分間撹拌後ホウ砂3部を
加え粘稠な組成物を得た。このものは35℃で1日
放置後には揺変性のない固形物となり浮水の発生
も見られず融解熱を測定した結果49.6Cal/gの
値を示した。 実施例 2 無水硫酸ナトリウム 35.29部 水 54.97部 α半水石膏 6.74部 微粉末シリカ(トクシール P 徳山ソーダ(株)
製) 3.0部 を実施例2と同様に80分間撹拌後ホウ砂3部を加
え粘稠な組成物を得た。このものは1日放置後実
施例2の組成物よりも更に硬度のあるものであ
り、融解熱を測定した結果43.7Cal/gの値を示
した。 実施例 3 無水硫酸ナトリウム 36.47部 水 56.30部 α半水石膏 4.22部 微粉末シリカ(トクシール P 徳山ソーダ(株)
製) 3.0部 を実施例2と同様に80分間撹拌後ホウ砂3部を加
え粘稠な組成物を得た。このものは1日放置後40
℃10℃の温度サイクルを28回行ない硬度の変化
および融解熱の変化を見た。結果は比較例と共に
第1表に示す。 実施例 4 無水硫酸ナトリウム 33.73部 水 52.12部 塩化ナトリウム 6.94部 α半水石膏 4.22部 微粉末シリカ(トクシール P 徳山ソーダ(株)
製) 3部 上記混合物を25℃で80分間撹拌後ホウ砂3部を
加え粘稠な組成物を得た。このものを約25℃で1
日放置すると揺変性のない固形物となつた。この
組成物を35℃10℃の温度サイクルを28回行ない
硬度および融解熱の変化を見た。結果は比較例と
共に第1表に示す。 実施例 5 微粉末シリカをアエロジル 200(日本アエロジ
ル(株)製)に変えた以外は実施例5と同組成、同方
法で調合した結果、浮水の発明もなく硬度も充分
なものが得られた。 この組成物を35℃10℃の温度サイクルを28回
行ない、硬度、浮水の発生状態および融解熱を測
定した結果を第1表に示す。 実施例 6 1.54wt%の硫酸43.64部に無水硫酸ナトリウム
30.15部を約30℃で撹拌下に加え、次に3号水ガ
ラス/水=1/1のもの10.20部を徐々に添加し
た。更に塩化ナトリウム6.40部とα−半水石膏
6.55部を添加し20分間撹拌した後、ホウ砂3部を
加え60分間撹拌を続けた。この組成物は約30℃で
1日放置後には固形物となり浮水の発生も見られ
なかつた。 比較例 1 無水硫酸ナトリウム 42.76部 水 54.23部 微粉末シリカ(アエロジル 200 日本アエロジ
ル(株)製) 7.0部 ホウ砂 3.0部 上記組成物を調合し40℃10℃の温度サイクル
を12回行ない硬度および融解熱の変化を見た。結
果を実施例と共に第1表に示す。 比較例 2 無水硫酸ナトリウム 31.60部 水 52.15部 塩化ナトリウム 6.50部 α−半水石膏 6.75部 上記混合物を30℃で130分撹拌後、ホウ砂3部
を加え粘稠な組成物を得た。このものは約30℃で
1日放置後には揺変性のない固形物となり浮水の
発生も見られなかつた。 つづいて40℃10℃の温度サイクルを12回行つ
たところ、約5容量%の浮水の発生が見られた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage material having excellent long-term stability and having sodium sulfate decahydrate (Na 2 SO 4 10H 2 O) as a main material. In particular, the present invention relates to a heat storage material characterized by adding hydratable calcium sulfate as a solid-liquid separation inhibitor and a silica-based thickener as a thickener. The idea of storing thermal energy by utilizing a hydrous salt compound having latent heat due to phase changes of melting and solidification has been known for a long time. According to the study results reported so far, it has been pointed out that there are two problems in the practical application of heat storage using this method. The first is that these hydrated salt compounds often do not undergo a phase change of melting or solidification at the melting point or freezing point, and exhibit a so-called supercooling phenomenon. Therefore, in order to cause a phase change at a constant temperature, it is necessary to prevent supercooling. As a method for preventing such supercooling , for example , US Pat.
A method is described in which the additive is used. this
The crystal of Na 2 B 4 O 7・10H 2 O is in an epitaxial relationship with the crystal of Na 2 SO 4・10H 2 O,
When crystals of Na 2 B 4 O 7・10H 2 O exist in a supersaturated solution of Na 2 SO 4・10H 2 O, they promote crystal precipitation of Na 2 SO 4・10H 2 O and are effective in preventing supercooling. (Industrial and Engineering Chemistry)
Engineering chemistry Vol44・pages 1308-1310
1952). Also, as a supercooling inhibitor for CaCl 2 6H 2 O.
A method using Ba ( OH) 2 , Ba(OH) 2.8H 2 O, etc. (Japanese Patent Publication No. 53-9596), also BaI 2 ,
A method using BaSO 4 etc.
102675) is also known. These methods are
There are some substances that do not have an epitaxial relationship with CaCl 2 .6H 2 O, and the relationship between crystal form and nucleation is not necessarily clear. The second problem is that solid-liquid separation occurs due to precipitation of anhydrous salts produced during the phase change process. For example, Na 2 SO 4 10H 2 O decomposes at 32.4℃,
Anhydrous salt is produced, and this anhydrous salt settles to the bottom of the liquid. When this is cooled to below 32.4°C, the anhydrous salt in the surface layer condenses to become Na 2 SO 4 .10H 2 O, but since these crystals cover the surface, the anhydrous salt at the bottom is suppressed from condensing. Therefore, it is necessary to prevent precipitation of anhydrous salts. Solid-liquid separation inhibitors are generally used to prevent sedimentation, but long-term stability must be met as a heat storage material. Organic materials such as natural rubber and synthetic polymers are undesirable because they may be gradually hydrolyzed or biodegraded. Method of using porous supports for inorganic materials
-6108 Publication), a method of using a clay-type material having lath-like particles as a thixotropic agent (Japanese Patent Application Laid-open No. 1983-
34687), a method using ultrafine silicic acid (SiO 2 ) powder (Chemical Week Chemical
Week March 1 issue, p. 34, 1978), etc. have been proposed. However, these are natural products that can only be produced in specific regions or are expensive.
There is a problem in practical application of this material in terms of economics from the point of view of energy conservation, which is the original purpose of heat storage materials. Also, in terms of its effectiveness, by repeating the cycle of heat storage and release over a long period of time, the viscosity gradually decreases.
There is a tendency for solid-liquid separation phenomenon to occur, and it is still not considered sufficient. In view of the above - mentioned current situation, the present inventors
As a result of repeated studies on a heat storage material with excellent long-term stability based on 10H 2 O, we found that it was stabilized by adding hydrated calcium sulfate as a solid-liquid separation inhibitor and a silica-based thickener as a thickener. The present invention was completed based on the discovery that the properties are significantly improved. To explain the present invention, hydrated calcium sulfate refers to calcium sulfate that undergoes a hydration reaction in water and becomes calcium sulfate dihydrate (CaSO 4 .2H 2 O). It is also well known that the following double salts are formed in an aqueous solution of sodium sulfate; for example, in "Gypsum" by Michio Sekiya,
(Gihodo 1965), page 104. Na 2 SO 4・CaSO 4 Na 2 SO 4・CaSO 4・4H 2 O 2Na 2 SO 4・CaSO 4・2H 2 O Na 2 SO 4・5CaSO 4・3H 2 O Therefore, Na 2 SO 4 −H 2 When hydrated calcium sulfate is added to an O-based mixture and stirred, CaSO4 .
2H 2 O and/or the above double salts are formed. Since the CaSO 4 .2H 2 O and/or double salt crystals produced are fine needle-like crystals, they become entangled and fill the entire system to form a matrix. The matrix thus formed has the effect of preventing solid-liquid separation. By the way, the above-mentioned hydration reaction or double salt formation reaction of hydratable calcium sulfate in water involves the dissolution of calcium sulfate→
It takes time to complete the reaction as it goes through the process of reaction → precipitation of dihydrate or double salt. Accordingly
After adding hydrated calcium sulfate to the Na 2 SO 4 -H 2 O system, a certain amount of dihydrate or double salt precipitates, which requires continued stirring and mixing until the viscosity of the slurry increases. be. This portion of precipitated crystals prevents unreacted calcium sulfate from settling, and therefore the crystals are uniformly precipitated within the system. A thickener is added to prevent precipitation of unreacted calcium sulfate. Particularly desirable thickeners include silica-based thickeners, which can be polymerized in situ by adding amorphous silica fine powder or by mixing sodium silicate and sulfuric acid. There is a method to generate silicic acid.
Both have the effect of increasing the viscosity of the Na 2 SO 4 -H 2 O system and preventing the precipitation of unreacted calcium sulfate, and also have the effect of being solid-liquid separation inhibitors, making them even more stable. Improved. Note that if the solid CaSO 4 .2H 2 O or Fukusio described above is dissolved in water or a mixture of sodium sulfate and water, no matrix will be formed and it is not suitable as a heat storage material. As the main material of sodium sulfate in the present invention, sodium sulfate decahydrate or anhydrous sodium sulfate and water are used, and the H2O / Na2SO4 molar ratio is in the range of 10 to 15. If the amount of water added is less than this range,
Due to insufficient condensate amount of Na 2 SO 4 , the amount of heat storage decreases,
Further, if the amount is larger than this range, the concentration of Na 2 SO 4 will decrease and the amount of heat storage will decrease, which is not preferable. Borax (Na 2 B 4 O 7 .
10H 2 O) is used effectively, and the amount added is 2~
It is 4% by weight. Hydrateable calcium sulfate used as a solid-liquid separation inhibitor includes hydrated anhydrous calcium sulfate (type CaSO 4 ), α-type and β-type hemihydrate calcium sulfate (α-type and β-type CaSO 4 1/2
H2O ) is used. The amount added is 2 to 15% by weight, preferably 3 to 7% by weight, in the heat storage material composition.If the amount added is less than this range, it is too small and the formation of the matrix is insufficient, resulting in a low release prevention effect, which is not preferable. If it exceeds this range, there will be no problem in terms of matrix formation, but it is not preferable because the concentration of Na 2 SO 4 decreases and the amount of heat storage decreases. As the amorphous silica fine powder added as a thickener, an amorphous silica fine powder produced by a dry method or a wet method is used, and is commonly known as white carbon. These are commercially available product names such as Aerosil.
(manufactured by Nippon Aerosil), Toxil (manufactured by Tokuyama Soda), Nipsil (manufactured by Nippon Silica), Thyroid (manufactured by Fuji Davison Chemical), etc., and are easily available. The amount added is 0.5 to 10% by weight, preferably 1 to 7% by weight. If the amount is less than this range, it is too small and the thickening effect is low, so it is not preferable, and if it exceeds this range, the concentration of Na 2 SO 4 decreases. Therefore, the amount of heat storage decreases and the cost increases, which is not preferable. In addition, when producing polymerized silicic acid by mixing sodium silicate and sulfuric acid, water glass or sodium metasilicate is used as the sodium silicate, and in the case of water glass, it is diluted to about 1:1 by weight. It is preferable to do so. It is also desirable that the sulfuric acid concentration be low. The mixing method of sodium silicate and sulfuric acid is a method of adding sodium silicate to sulfuric acid, that is, by neutralizing from the acidic side, it is easy to obtain polymerized silicic acid with a thickening effect.
This is preferable to the reverse addition method. The amounts of sodium silicate and sulfuric acid added are at a mixing ratio that makes the mixture neutral, and moreover, in terms of SiO 2 , the amounts added are in the same range as the above-mentioned amorphous silica fine powder. In addition to the above, melting point regulators may be added as necessary. Examples include NaCl,
Inorganic salts such as KCl, NH4Cl , NaNO3 are used,
The amount added is in the range of 0.2 to 1.0 mol per 1 mol of Na 2 SO 4 and is the amount necessary to obtain the desired melting point. As explained above, the method of the present invention has a remarkable effect of suppressing solid-liquid separation and dramatically improves stability, which greatly contributes to the practical application of heat storage materials. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. The heat of fusion was measured as follows. That is, 30 g of the heat storage material was placed in a polyethylene pouch, which was poured into 300 ml of hot water in a brewer bottle, and the heat of fusion was calculated from the temperature change of the hot water. Example 1 Anhydrous sodium sulfate 37.27 parts Water 57.03 parts α-hemihydrate gypsum 2.53 parts Finely powdered silica (Tokusil P Tokuyama Soda Co., Ltd.)
After stirring the above mixture at 35°C for 80 minutes, 3 parts of borax was added to obtain a viscous composition. After being left at 35°C for one day, this product became a solid with no thixotropy, and no floating water was observed, and the heat of fusion was measured and showed a value of 49.6 Cal/g. Example 2 Anhydrous sodium sulfate 35.29 parts Water 54.97 parts α-hemihydrate gypsum 6.74 parts Finely powdered silica (Tokusil P Tokuyama Soda Co., Ltd.)
After stirring 3.0 parts of borax for 80 minutes in the same manner as in Example 2, 3 parts of borax was added to obtain a viscous composition. This product was even harder than the composition of Example 2 after being left for one day, and the heat of fusion was measured and showed a value of 43.7 Cal/g. Example 3 Anhydrous sodium sulfate 36.47 parts Water 56.30 parts α-hemihydrate gypsum 4.22 parts Finely powdered silica (Tokusil P Tokuyama Soda Co., Ltd.)
After stirring 3.0 parts of borax for 80 minutes in the same manner as in Example 2, 3 parts of borax was added to obtain a viscous composition. This one is 40% after being left for 1 day.
A temperature cycle of 10°C was performed 28 times to observe changes in hardness and heat of fusion. The results are shown in Table 1 along with comparative examples. Example 4 Anhydrous sodium sulfate 33.73 parts Water 52.12 parts Sodium chloride 6.94 parts α-hemihydrate gypsum 4.22 parts Finely powdered silica (Tokusil P Tokuyama Soda Co., Ltd.)
After stirring the above mixture at 25°C for 80 minutes, 3 parts of borax was added to obtain a viscous composition. 1 of this at about 25℃
When left for a day, it became a solid with no thixotropy. This composition was subjected to temperature cycles of 35°C and 10°C 28 times to observe changes in hardness and heat of fusion. The results are shown in Table 1 along with comparative examples. Example 5 The composition was the same as in Example 5, except that the fine powder silica was replaced with Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.), and the same method was used. As a result, no floating water was produced and sufficient hardness was obtained. . This composition was subjected to a temperature cycle of 35° C. and 10° C. 28 times, and the hardness, generation of floating water, and heat of fusion were measured. Table 1 shows the results. Example 6 Anhydrous sodium sulfate in 43.64 parts of 1.54wt% sulfuric acid
30.15 parts were added under stirring at about 30°C, and then 10.20 parts of No. 3 water glass/water = 1/1 were gradually added. Additionally, 6.40 parts of sodium chloride and α-hemihydrate gypsum.
After adding 6.55 parts and stirring for 20 minutes, 3 parts of borax was added and stirring was continued for 60 minutes. This composition became solid after being left at about 30° C. for one day, and no floating water was observed. Comparative Example 1 Anhydrous sodium sulfate 42.76 parts Water 54.23 parts Finely powdered silica (Aerosil 200 manufactured by Nippon Aerosil Co., Ltd.) 7.0 parts Borax 3.0 parts The above composition was prepared and subjected to temperature cycles of 40°C and 10°C 12 times to determine hardness and melting. I saw the change in heat. The results are shown in Table 1 along with Examples. Comparative Example 2 Anhydrous sodium sulfate 31.60 parts Water 52.15 parts Sodium chloride 6.50 parts α-Gypsum hemihydrate 6.75 parts After stirring the above mixture at 30°C for 130 minutes, 3 parts of borax was added to obtain a viscous composition. After being left at about 30°C for one day, this product became a solid with no thixotropy and no floating water was observed. Subsequently, a temperature cycle of 40°C and 10°C was performed 12 times, and approximately 5% by volume of floating water was observed to be generated. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸ナトリウム10水塩を主材とし、過冷却防
止剤、固液分離防止剤および増粘剤からなる蓄熱
材組成物において、固液分離防止剤として水和性
硫酸カルシウムを2〜15重量%(該蓄熱材組成物
中)、および増粘剤としてシリカ系増粘剤を添加
することを特徴とする蓄熱材。
1. In a heat storage material composition mainly composed of sodium sulfate decahydrate and comprising a supercooling inhibitor, a solid-liquid separation inhibitor, and a thickener, 2 to 15% by weight of hydratable calcium sulfate is added as a solid-liquid separation inhibitor. (in the heat storage material composition) and a silica-based thickener as a thickener.
JP19202083A 1983-10-13 1983-10-13 Thermal energy storage material Granted JPS6084379A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19202083A JPS6084379A (en) 1983-10-13 1983-10-13 Thermal energy storage material
EP84306900A EP0141550A1 (en) 1983-10-13 1984-10-10 Heat storage composition
NO844075A NO844075L (en) 1983-10-13 1984-10-11 COMPOSITION FOR HEAT STORAGE
CA000465138A CA1221229A (en) 1983-10-13 1984-10-11 Heat storage composition
US06/659,883 US4556501A (en) 1983-10-13 1984-10-11 Heat storage composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19202083A JPS6084379A (en) 1983-10-13 1983-10-13 Thermal energy storage material

Publications (2)

Publication Number Publication Date
JPS6084379A JPS6084379A (en) 1985-05-13
JPH0422198B2 true JPH0422198B2 (en) 1992-04-15

Family

ID=16284257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19202083A Granted JPS6084379A (en) 1983-10-13 1983-10-13 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS6084379A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262882A (en) * 1984-06-08 1985-12-26 Sumitomo Chem Co Ltd Thermal energy storage material
US5453213A (en) * 1993-04-12 1995-09-26 Mitsubishi Petrochemical Co., Ltd. Latent heat storage material containing Na2 SO4.10H2 O, NH4 Cl, NaCl and (NH4)2 SO4

Also Published As

Publication number Publication date
JPS6084379A (en) 1985-05-13

Similar Documents

Publication Publication Date Title
KR850001785B1 (en) Liquid/solid reversible phase change compositions
KR840000576B1 (en) Heat or cold storage composition
KR850001786B1 (en) Reversible liquid/solid phase change compositions
US4556501A (en) Heat storage composition
JP2018030924A (en) Heat storage material composition and heating pack containing the same
KR100556902B1 (en) A manufacturing method of inorganic binder for liquefied sodium-silicate
JPH0558622A (en) Consolidation inhibition method of sodium hydrogen carbonate
JPH0422198B2 (en)
JP6801938B2 (en) Radioactive waste solidification treatment method
JPH0579714B2 (en)
JP2624266B2 (en) Alumina cementitious composition
JPS6251311B2 (en)
JP2574137B2 (en) Method for producing heat storage material composition and method for producing heat storage device
JPS5918785A (en) Manufacture of heat storage composition
JPH05279009A (en) Sodium silicofluoride composition
JP2929418B2 (en) Heat storage device
DK157033B (en) Reversible liquid/solid phase change agent and application thereof
JPS58183784A (en) Heat-storing material
JPH0417236B2 (en)
JPS6035076A (en) Reversible phase transfer composition of calcium chloride hexahydrate and potassium chloride
JPH0261995B2 (en)
FR2544735A1 (en) Dilute grout improved using soluble lime reducers
JPH09157639A (en) Latent heat storing composition
JPS6197380A (en) Thermal energy storage material
JPS5948679B2 (en) How to prevent scale from adhering to heat exchangers, etc.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term