JPS6084379A - Thermal energy storage material - Google Patents

Thermal energy storage material

Info

Publication number
JPS6084379A
JPS6084379A JP19202083A JP19202083A JPS6084379A JP S6084379 A JPS6084379 A JP S6084379A JP 19202083 A JP19202083 A JP 19202083A JP 19202083 A JP19202083 A JP 19202083A JP S6084379 A JPS6084379 A JP S6084379A
Authority
JP
Japan
Prior art keywords
solid
liquid separation
parts
storage material
inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19202083A
Other languages
Japanese (ja)
Other versions
JPH0422198B2 (en
Inventor
Kenji Saida
健二 才田
Shozo Fujioka
藤岡 省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP19202083A priority Critical patent/JPS6084379A/en
Priority to EP84306900A priority patent/EP0141550A1/en
Priority to CA000465138A priority patent/CA1221229A/en
Priority to US06/659,883 priority patent/US4556501A/en
Priority to NO844075A priority patent/NO844075L/en
Publication of JPS6084379A publication Critical patent/JPS6084379A/en
Publication of JPH0422198B2 publication Critical patent/JPH0422198B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a thermal energy storage material having excellent long- term stability and an excellent effect of inhibiting solid-liquid separation, consisting of Na2SO4.10H2O, a supercooling inhibitor and a specified solid-liquid separation inhibitor. CONSTITUTION:2-4wt% supercooling inhibitor (e.g. borax), 2-15wt% hydrated CaSO4 (e.g. III type CaSO4, alpha or beta type CaSO4.1/2H2O) as a solid-liquid separation inhibitor, optionally 0.5-10wt% thickener (e.g. finely divided amorphous silica) and 0.2-1.0mol (per mol of Na2SO4) of a melting point modifer (e.g. NaCl) are blended with Na2SO4.10H2O.

Description

【発明の詳細な説明】 本発明は硫酸ナトリウム10水塩(Na2SO410H
20)を主側とする長期安定性の優れfコ蓄熱材に関す
る。特に本発明は固液分離防止剤として水和性硫酸カル
シウムを添加することを特徴とする蓄熱材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses sodium sulfate decahydrate (Na2SO410H
20) Concerning a heat storage material with excellent long-term stability. In particular, the present invention relates to a heat storage material characterized by adding hydrated calcium sulfate as a solid-liquid separation inhibitor.

融解、凝固の相変化による潜熱を有する含水塩化金、;
物を利用して熱エネルギーを貯蔵しようとする考えは古
くから知られている。これ迄に報告されている検討結果
によると、この方法による蓄熱の実用化においては2つ
の問題点があることが指摘されている。その第1はこれ
らの含水塩化合物は融解、凝固の相変化が融点、凝固点
で生起しない場合が多く、いわゆる過冷却現象を呈する
ことである。従って一定の温度で相変化を生起させるに
は過冷却を防止することが必要になる。このような過冷
却を防止する方法としては、例えば米国特許82,67
7.664号明細書にはNa2SO4・101120の
過冷却防止剤とシテ硼砂(Na2B407−10HzO
)が添加使用される方法が記載されている。このNa2
B40y・10H20(7)結晶ハNn2804−1O
H20o)結晶に対してエピタキシャルな関係にあり、
Na2B407−10H20ノ結晶がNa2804・1
’0H20(7)過飽和溶液中餐こ存在するとNa28
04・10H20の結晶析出を促進し過冷却防止に効果
があるとの報告がある(インダストリアル・アンド中エ
ンジニアリング・ケミストリー(Industrial
 and Engi −neering chemis
try Vol 44 I+1808〜tato 、i
’b1952 )。又、Ca0I!2・6■20の過冷
却防止剤と(、テBa(OH)2.Ba(OH)2−8
H20などが用いられる方法(特公昭5B−9596号
公報)、同じ(BaI2.BaSO4などが用いられる
方法(特開昭55−102675号公報)も知られてい
る。これらの方法は0aOj’2・6H20に対してエ
ピタキシャルな関係にはないものがあり、結晶形と核発
生との関係は必すしも明らかではない。
Hydrous gold chloride, which has latent heat due to phase changes of melting and solidification;
The idea of using objects to store thermal energy has been known for a long time. According to the study results reported so far, it has been pointed out that there are two problems in the practical application of heat storage using this method. The first is that these hydrated salt compounds often do not undergo a phase change of melting or solidification at the melting point or freezing point, and exhibit a so-called supercooling phenomenon. Therefore, in order to cause a phase change at a constant temperature, it is necessary to prevent supercooling. As a method for preventing such supercooling, for example, US Pat.
7.664 specifies a supercooling inhibitor of Na2SO4.101120 and shite borax (Na2B407-10HzO
) is described. This Na2
B40y・10H20(7) Crystal HaNn2804-1O
H20o) in an epitaxial relationship with the crystal,
Na2B407-10H20 crystal is Na2804.1
'0H20(7) When present in a supersaturated solution, Na28
There is a report that it is effective in promoting crystal precipitation of 04/10H20 and preventing supercooling (Industrial & Medium Engineering Chemistry).
and Engi-neering chemis
try Vol 44 I+1808~tato,i
'b1952). Also, Ca0I! 2.6■20 supercooling inhibitor and (, TeBa(OH)2.Ba(OH)2-8
A method in which H20 or the like is used (Japanese Patent Publication No. 5B-9596) and a method in which BaI2. There are some substances that do not have an epitaxial relationship with 6H20, and the relationship between crystal form and nucleation is not necessarily clear.

第2の問題点は相変化の過程で生成する無水塩が沈候す
ることによる固液分離現象が起るこトチする。例えばN
a2SO4・10■20は824℃で分解し1.無水塩
が生成するが、この無水塩は液底に沈降する。これを3
24℃以下に冷却すると表面層の無水塩は復水してNa
 2804・10H20となるが、この結晶が表面を覆
う為に底部の無水理は復水が抑制される。従って、無水
塩の沈降を防止する必要がある。一般に沈降防止の為に
は固液分離防止剤が使用されるが、蓄熱材としては長期
安定性がtifこされなければならない、天然ゴム、合
成高分子などの有機材料は徐々に加水分解され、又は生
物により分解される可能性があり、好ましくない。無機
材料では多孔性支持体を使用する方法(%公昭58−6
108号公報)、シース様粒子を有する粘土型物質を揺
変剤として使用する方法(特開昭58−84687号公
報)、無水ケイ酸(8102)超微粉を使用する方法(
ケミカル・ウィーク ChemicalWeek 8月
1日号 84負、1978)などが提案されている。し
かしながらこれらは特定地域でしか産出しない天然物で
あるか又は高価なものであって、蓄熱材の本来の目的で
ある省エネルギーという点からの経済性において実用化
に問題がある。またその効果の点においても、蓄放熱の
サイクルを長期間くり返すことによって粘度が次第に低
下し、固液分離現象が発生する傾向があり、未だ十分と
は言えない。
The second problem is that solid-liquid separation occurs due to precipitation of anhydrous salts produced during the phase change process. For example, N
a2SO4・10■20 decomposes at 824℃ and 1. Anhydrous salt is produced, and this anhydrous salt settles to the bottom of the liquid. This is 3
When cooled to below 24°C, the anhydrous salt in the surface layer condenses and becomes Na.
2804.10H20, but since these crystals cover the surface, condensation is suppressed in the anhydrous bottom. Therefore, it is necessary to prevent precipitation of anhydrous salts. Generally, solid-liquid separation inhibitors are used to prevent sedimentation, but as heat storage materials, long-term stability must be maintained.Organic materials such as natural rubber and synthetic polymers are gradually hydrolyzed. Or it may be decomposed by living organisms, which is not preferable. For inorganic materials, a method using a porous support (% Kosho 58-6
108), a method using a clay-type substance having sheath-like particles as a thixotropic agent (JP-A-58-84687), a method using ultrafine silicic anhydride (8102) powder (
Chemical Week August 1 issue 84 negative, 1978) have been proposed. However, these are natural products that are produced only in specific regions or are expensive, and there are problems in putting them into practical use economically from the point of view of energy conservation, which is the original purpose of heat storage materials. Furthermore, in terms of effectiveness, repeating the cycle of heat storage and release over a long period of time tends to gradually reduce the viscosity and cause solid-liquid separation, so it cannot be said to be sufficient.

本発明者らは上記の現状に鑑み、Na 2804・10
H20を主材とする長期安定性の優れた蓄熱材について
検討を重ねた結果、固液分離防止剤として水和性硫酸カ
ルシウムを添加することにより安定性が著しく改善され
ることを見い出し本発明を完成するに至ったものである
In view of the above-mentioned current situation, the present inventors
As a result of repeated studies on heat storage materials with excellent long-term stability that are mainly composed of H20, it was discovered that the stability was significantly improved by adding hydrated calcium sulfate as a solid-liquid separation inhibitor. It has been completed.

本発明について説明すると水和性硫酸カルシウムとは水
中において水和反応が生起し、硫酸カルシウム2水塩(
CaSO4・2H20)となる硫酸カルシウムのことで
ある。また硫酸ナトリウムの水溶液中においては次のよ
うな複塩が生成することもよく知られており、例えば関
谷道雄著「石膏」(技報堂 1965)104頁に記載
されている。
To explain the present invention, hydratable calcium sulfate is a calcium sulfate dihydrate (calcium sulfate dihydrate) that undergoes a hydration reaction in water.
It refers to calcium sulfate, which becomes CaSO4.2H20). It is also well known that the following double salts are formed in an aqueous solution of sodium sulfate, as described, for example, in Michio Sekiya, "Gypsum" (Gihodo, 1965), p. 104.

Na2504−CaS04NazSO4−CaSO4−
4H202Na2804−Ca804−2H20Na2
504−5CiaSO4−3H20従って、Na2SO
4−H2O系の混合物に水和性硫酸カルシウムを添加し
て攪拌するとCB 804・2H20および/または上
記の複塩が生成する。
Na2504-CaS04NazSO4-CaSO4-
4H202Na2804-Ca804-2H20Na2
504-5CiaSO4-3H20 Therefore, Na2SO
When hydrated calcium sulfate is added to a 4-H2O-based mixture and stirred, CB 804.2H20 and/or the above-mentioned double salt are produced.

生成するOa、804・、 2H20および/まtコは
複塩の結晶は微細な針状晶であるから、これらがからみ
あって系全体に充満し、マトリックスを形成する。この
ようにして形成されたマトリックスが固液分離防止の効
果を有するのである。ところで上記のような水中におけ
る水和性硫酸カルシウムの水和反応又は複塩生成反応は
、硫酸カルシウムの溶解→反応→2水塩又は複塩の析出
という過程を経るために反応完結までに時間を要する。
Since the double salt crystals of Oa, 804., 2H20 and /Mt produced are fine needle-like crystals, these are intertwined and fill the entire system to form a matrix. The matrix thus formed has the effect of preventing solid-liquid separation. By the way, the hydration reaction or double salt formation reaction of hydratable calcium sulfate in water as described above involves a process of dissolution of calcium sulfate → reaction → precipitation of dihydrate or double salt, so it takes time to complete the reaction. It takes.

従ってNa2SO4−[20系に水和性硫酸カルシウム
を添加後、ある程度の2水塩又は複塩が析出し、これに
よってスラリーの粘度が上昇するまで攪拌・混合を継続
する必要がある。この一部分の析出した結晶によって未
反応の硫酸カルシウムの沈降が防止され、従って系内に
均一に結晶が析出することになる。未反応の硫酸カルシ
ウムの沈降を防止するために増粘剤を添加することは望
ましいことである。特に望ましい増粘剤としてはシリカ
系の増粘剤をあげることができ、これには無定形シリカ
倣粉末を添加するか、又はケイ酸ナトリウムと硫酸とを
混合することによつ゛C系内で重合ケイ酸を生成させる
かの方法がある。いずれもNa2SO4−H2O糸の粘
度を上昇させ、未反応の硫酸カルシウムの沈降を防止す
る効果があり、更にそれ自身も固液分離防止剤としての
効果があるので安定性が一層内上される。
Therefore, after adding hydrated calcium sulfate to the Na2SO4-[20 system, it is necessary to continue stirring and mixing until a certain amount of dihydrate or double salt precipitates, thereby increasing the viscosity of the slurry. This part of the precipitated crystals prevents unreacted calcium sulfate from settling, and therefore the crystals are uniformly precipitated in the system. It is desirable to add a thickener to prevent precipitation of unreacted calcium sulfate. Particularly desirable thickeners include silica-based thickeners, which can be prepared in the C system by adding amorphous silica imitation powder or by mixing sodium silicate and sulfuric acid. There is a method of producing polymerized silicic acid. Both have the effect of increasing the viscosity of the Na2SO4-H2O thread and preventing the precipitation of unreacted calcium sulfate, and also have the effect of acting as solid-liquid separation inhibitors, thereby further improving stability.

なお、先に示したCn804.2)II20や福塩の固
体を水や硫酸ナトリウムと水の混合物に溶かしたのでは
マトリックスが形成されず蓄熱材としては適さない33
本発明の主胴の硫酸ナトリウムとしては竹、酸ナトリウ
ム10水塩又は無水硫酸ナトリウムと水が使用され、H
zO/Na 2804 モル比は10〜I5の範囲とす
る。水の添加量がこの範囲誹り少量、ではNa 280
4の復水量に不足の1こめ蓄熱量が低下し、またこの範
囲より大量の場合にはNa 2804の濃度が減少する
ため蓄熱量が低下するので好ましくない。過冷却防止剤
としテハホウ砂(NazB407−10H20)が有効
に使用され、その添加量は2〜4重量%である。固液分
離防止剤として使用されろ水相性硫酸カルシウムとして
は、水和性無水硫酸カルシウム(■型CaSO4) 、
α型およびβ型半水硫酸カルシウム(α型およびβ型C
a 804・1/2H20)が使用される一1添加量は
蓄熱材組成物中2〜15重量%好ましくは3〜7重量%
で、この範囲以下の添加量では少量すぎてマトリックス
の形成が不十分であり、離防止効果が低く好ましくない
。この範囲以上ではマトリックスの形成の点では問題な
いが、Na2SO4の濃度が減少するため蓄熱量が低下
するので好ましくない。増粘剤として任意ニ添加される
無定形シリカ矛微粉末としてハ乾式および湿式により製
造される無定形シリカ微粉末が使用され、通常ホワイト
カーボンと称されてよく知られている。これらは市販商
品名でアエロジル■(日本アエロジル製)、トクシー■ ル(徳山1f達M)、ニップシール[有](日本シリカ
製)、サイロイド■(富士デヴイソン化学製)などがあ
り、容易に入手できる。添加量は0.5〜10重量%好
ましくは1〜7M量チで、この範囲以下の添加量では少
量すぎて増粘効果が低いため好ましくなく、またこの範
囲以上ではNB2804の濃度が減少するtコめ蓄熱量
が低下する上、コスト高となるので好ましくない。また
ケイ酸ナトリウムと硫酸を混合することによって重合ケ
イ酸を生成させる場合において、ケイ酸ナトリウムとし
ては水力ラス又はメタケイ酸ナトリウムが使用され、水
力ラスの場合は重量でtit程度に希釈する方が望まし
い。硫酸濃度も低い方が望ましい。ケイ酸ナトリウムと
硫酸の混合方法は硫酸中にケイ酸ナトリウムを添加する
方法、即ら、酸性側から中和することによって、増粘効
果のある重合ケイ酸が得られやすく、逆の添加方法より
も望ましい。ケイ酸ナトリウムと硫酸の添加量は両者の
混合によって中性となる見合割合であって、しかも5i
02換算で上記無定形シリカ微粉末と同範囲の添加量で
ある。
In addition, if the solid Cn804.2) II20 shown above or Fukusio is dissolved in water or a mixture of sodium sulfate and water, a matrix will not be formed and it is not suitable as a heat storage material33.
As the sodium sulfate in the main body of the present invention, bamboo, sodium acid decahydrate or anhydrous sodium sulfate and water are used.
The zO/Na 2804 molar ratio is in the range of 10 to I5. If the amount of water added is small within this range, then Na 280
If the amount of condensate is insufficient, the amount of heat storage will decrease, and if the amount is larger than this range, the concentration of Na 2804 will decrease, which is not preferable. Tejaborax (NazB407-10H20) is effectively used as a supercooling inhibitor, and the amount added is 2 to 4% by weight. Examples of filtrate phase calcium sulfate used as a solid-liquid separation inhibitor include hydratable anhydrous calcium sulfate (■ type CaSO4),
α-type and β-type hemihydrate calcium sulfate (α-type and β-type C
A 804.1/2H20) is used in an amount of 2 to 15% by weight, preferably 3 to 7% by weight in the heat storage material composition.
If the amount added is less than this range, the amount is too small and the formation of the matrix is insufficient, resulting in a low anti-separation effect, which is not preferable. If it exceeds this range, there is no problem in terms of matrix formation, but it is not preferable because the concentration of Na2SO4 decreases and the amount of heat storage decreases. As the amorphous silica fine powder optionally added as a thickener, an amorphous silica fine powder produced by a dry method or a wet method is used, and is commonly known as white carbon. These are commercially available product names such as Aerosil ■ (manufactured by Nippon Aerosil), Toxy ■ Lu (manufactured by Tokuyama 1F Tatsu M), Nip Seal (manufactured by Nippon Silica), Thyroid ■ (manufactured by Fuji Davison Chemical), etc., and are easily available. . The amount added is 0.5 to 10% by weight, preferably 1 to 7M. If the amount is less than this range, it is too small and the thickening effect is low, so it is not preferable, and if it exceeds this range, the concentration of NB2804 will decrease. This is not preferable because it reduces the amount of heat stored in the rice and increases the cost. In addition, when producing polymerized silicic acid by mixing sodium silicate and sulfuric acid, hydraulic lath or sodium metasilicate is used as the sodium silicate, and in the case of hydraulic lath, it is preferable to dilute it to about tit by weight. . It is also desirable that the sulfuric acid concentration be low. The mixing method of sodium silicate and sulfuric acid is to add sodium silicate to sulfuric acid, that is, by neutralizing from the acidic side, it is easier to obtain polymerized silicic acid with a thickening effect, compared to the reverse addition method. is also desirable. The amounts of sodium silicate and sulfuric acid added are such that the mixing of the two will result in neutrality, and the addition of 5i
The amount added is in the same range as the above-mentioned amorphous silica fine powder in terms of 0.02.

上記のほかに必要に応じて融点調節剤を添加することは
差しつかえない。その例としてNaC/、KO/?、N
H40,/’、NaN03t(どの無機塩が使用サレ、
その添加量はNa28041モルに対して0.2〜i、
In addition to the above, melting point regulators may be added as necessary. Examples include NaC/, KO/? , N
H40,/', NaN03t (Which inorganic salt is used,
The amount added is 0.2 to i per 1 mol of Na2804,
.

モルの範囲で所望の融点を得るのに必侠な量である。The amount is in the molar range necessary to obtain the desired melting point.

以上説明してきfこように、本発明方法によれば固液分
離抑制効果が著しく、安定性が飛躍的に向上するもので
あり、これによって蓄熱材の実用化に寄与するところ大
である。
As explained above, the method of the present invention has a remarkable effect of suppressing solid-liquid separation and dramatically improves stability, which greatly contributes to the practical application of heat storage materials.

次に本発明を実施例によって更に詳細に説明するが、本
発明はこの実施例によって何等限定されるものではない
。又融解熱の測定は次のようにして行った。即ち蓄熱i
80 Fをポリエチレン製小袋に入れ、これをジュワー
瓶中の800−の温水中に投入し温水の温度変化から融
解熱を算出する方法によった。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. The heat of fusion was measured as follows. That is, heat storage i
The heat of fusion was calculated from the temperature change of the hot water by putting 80 F into a polyethylene sachet and putting it into 800 F hot water in a dewar bottle.

実施例1 無水硫酸ナトリウム 81.60部 水 52.1 5部 塩化ナトリウム 6.50部 α−半水石膏 6.75部 上記混合物を30℃で130分攪拌後、ホウ砂8部を加
え粘稠な組成物を得た。このものは約80℃で1日放置
後には揺変性のない固形物となり浮氷の発生も見・ちれ
なかった。
Example 1 Anhydrous sodium sulfate 81.60 parts Water 52.1 parts Sodium chloride 6.50 parts α-Gypsum hemihydrate 6.75 parts After stirring the above mixture at 30°C for 130 minutes, 8 parts of borax was added to make it viscous. A composition was obtained. After being left at about 80° C. for one day, this material became a solid substance with no thixotropy, and no floating ice was observed.

実施例2 無水硫酸ナトリウム 87.27部 水 57.08部 上上記台物を85℃で80分間攪拌後ホウ砂B部を加え
粘稠な組成物を得た。このものは85℃で1日放置後に
は倍変性のない固形物となり浮氷の発生も見られず融解
熱を測定した結果49.6 CaJ/S’の値を示した
Example 2 Anhydrous sodium sulfate 87.27 parts Water 57.08 parts After stirring the above-mentioned platform at 85° C. for 80 minutes, part B of borax was added to obtain a viscous composition. After being left at 85°C for one day, this product became a solid with no fold change, and no floating ice was observed, and the heat of fusion was measured and showed a value of 49.6 CaJ/S'.

実施例3 無水硫酸ナトリウム 85.29部 水 54.97部 を実施例2と同様に80分間攪拌後ホウ砂8部を加え粘
稠な組成物を得jこ。このものは1日放置後実施例2の
組成物よりも更に硬度のあるものであり、融解熱を測定
した結果48,7Cat/fの値を示した。
Example 3 85.29 parts of anhydrous sodium sulfate and 54.97 parts of water were stirred for 80 minutes in the same manner as in Example 2, and then 8 parts of borax was added to obtain a viscous composition. After being left for one day, this product was even harder than the composition of Example 2, and the heat of fusion was measured and showed a value of 48.7 Cat/f.

実施例4 無水硫酸ナトリウム 86.47部 水 56.80部 を実施例2と同様に80分間攪拌後ホウ砂8部を加え粘
稠な組成物を得た。このものを1日放置後40℃−1θ
℃の温度サイクルを28回行ない硬度の変化および融解
熱の変化を見た。結果は比較例と共に第1表に示す。
Example 4 86.47 parts of anhydrous sodium sulfate and 56.80 parts of water were stirred for 80 minutes in the same manner as in Example 2, and then 8 parts of borax was added to obtain a viscous composition. After leaving this thing for one day, 40℃-1θ
C temperature cycles were performed 28 times to observe changes in hardness and heat of fusion. The results are shown in Table 1 along with comparative examples.

実施例5 無水硫酸ナトリウム 88.78部 水 52.1 2部 塩化すトリウム 694部 α半水石膏 4.22部 上記混合物を25℃で80分子tJJ攪拌後ホウ砂3部
を加え粘稠な組成物を得た。このものを約25℃で1日
放置すると倍変性のない固形物となった。この組成物を
35℃=10℃の温度サイクルを28回行ない硬度およ
び融解熱の変化を見た。結果は比較例♂共に第1表に示
す。
Example 5 Anhydrous sodium sulfate 88.78 parts Water 52.1 parts Thorium chloride 694 parts Alpha hemihydrate gypsum 4.22 parts After stirring the above mixture at 25°C for 80 molecules tJJ, 3 parts of borax was added to form a viscous composition. I got something. When this product was left at about 25° C. for one day, it became a solid with no fold degeneration. This composition was subjected to a temperature cycle of 35°C = 10°C 28 times to observe changes in hardness and heat of fusion. The results are shown in Table 1 together with Comparative Example ♂.

実施例6 微粉末シリカをアエロジル”200(8本アメ5ル■M
)に変えjこ以外は実施例5と同組成、同方法で調合し
1こ結果、浮氷の発生もなく硬度も充分なものが得られ
tこ。
Example 6 Finely powdered silica was added to Aerosil “200” (8 bottles of American 5L M
) was prepared using the same composition and method as in Example 5, except for the above, and as a result, a product with sufficient hardness and no floating ice was obtained.

この組成物を35℃二lO℃の温度サイクルを28回行
ない、硬度、浮氷の発生状態および融解熱を測定した結
果を第1表に示す。
This composition was subjected to 28 temperature cycles of 35° C. to 210° C., and the hardness, state of floating ice formation, and heat of fusion were measured. Table 1 shows the results.

実施例7 1.54Wtチの硫酸4164部に無水硫酸ナトリウム
80.15部を杓30℃で攪拌下に加え、次に3耐水カ
ラス/水−1/l のもの10.20部を徐々に添加し
tこ。更に塩化ナトリウム6.40部とα−半水石膏6
,55部を添加し20分間攪拌しjコ後、ホウ砂3部を
加え60分間攪拌を続けた。この組成物は約Bθ℃で1
日放置後には固形物となり浮氷の発生も見られなかった
Example 7 80.15 parts of anhydrous sodium sulfate was added to 4164 parts of 1.54 Wt sulfuric acid in a ladle at 30°C with stirring, and then 10.20 parts of 3 waterproof glass/water-1/l were gradually added. Shitko. Additionally, 6.40 parts of sodium chloride and 6 parts of α-hemihydrate gypsum.
After adding 55 parts of borax and stirring for 20 minutes, 3 parts of borax was added and stirring was continued for 60 minutes. This composition has a temperature of about 1 at Bθ°C.
After being left in the sun, it became solid and no floating ice was observed.

比較例1 無水硫酸ナトリウム 42.76部 上記組成物を調合し40℃′:10°Cの温度サイクル
を12回行ない硬度および融解熱の変化を見た。結果を
実施例と共をこ第1表をと示す。
Comparative Example 1 Anhydrous sodium sulfate 42.76 parts The above composition was prepared and subjected to a temperature cycle of 40°C':10°C 12 times to observe changes in hardness and heat of fusion. The results are shown in Table 1 along with Examples.

第1表Table 1

Claims (1)

【特許請求の範囲】[Claims] 硫酸ナトリウム10水塩を生月とし、過冷却防止剤、固
液分離防止剤からなる蓄熱材組成物において、固液分離
防止剤として水和性硫酸カルシウムを2〜15重量%(
該蓄熱材組成物中)添加することを特徴とする蓄熱材。
In a heat storage material composition that uses sodium sulfate decahydrate as a raw moon and consists of a supercooling inhibitor and a solid-liquid separation inhibitor, 2 to 15% by weight of hydratable calcium sulfate (as a solid-liquid separation inhibitor)
A heat storage material characterized in that the heat storage material is added to the heat storage material composition.
JP19202083A 1983-10-13 1983-10-13 Thermal energy storage material Granted JPS6084379A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19202083A JPS6084379A (en) 1983-10-13 1983-10-13 Thermal energy storage material
EP84306900A EP0141550A1 (en) 1983-10-13 1984-10-10 Heat storage composition
CA000465138A CA1221229A (en) 1983-10-13 1984-10-11 Heat storage composition
US06/659,883 US4556501A (en) 1983-10-13 1984-10-11 Heat storage composition
NO844075A NO844075L (en) 1983-10-13 1984-10-11 COMPOSITION FOR HEAT STORAGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19202083A JPS6084379A (en) 1983-10-13 1983-10-13 Thermal energy storage material

Publications (2)

Publication Number Publication Date
JPS6084379A true JPS6084379A (en) 1985-05-13
JPH0422198B2 JPH0422198B2 (en) 1992-04-15

Family

ID=16284257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19202083A Granted JPS6084379A (en) 1983-10-13 1983-10-13 Thermal energy storage material

Country Status (1)

Country Link
JP (1) JPS6084379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262882A (en) * 1984-06-08 1985-12-26 Sumitomo Chem Co Ltd Thermal energy storage material
EP0620261A1 (en) * 1993-04-12 1994-10-19 Mitsubishi Chemical Corporation Latent heat storage material composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262882A (en) * 1984-06-08 1985-12-26 Sumitomo Chem Co Ltd Thermal energy storage material
JPH0579714B2 (en) * 1984-06-08 1993-11-04 Sumitomo Chemical Co
EP0620261A1 (en) * 1993-04-12 1994-10-19 Mitsubishi Chemical Corporation Latent heat storage material composition
US5453213A (en) * 1993-04-12 1995-09-26 Mitsubishi Petrochemical Co., Ltd. Latent heat storage material containing Na2 SO4.10H2 O, NH4 Cl, NaCl and (NH4)2 SO4

Also Published As

Publication number Publication date
JPH0422198B2 (en) 1992-04-15

Similar Documents

Publication Publication Date Title
KR850001785B1 (en) Liquid/solid reversible phase change compositions
KR840000576B1 (en) Heat or cold storage composition
US4287076A (en) Product suitable for the storage and conveyance of thermal energy
US4556501A (en) Heat storage composition
JPS5966480A (en) Reversible phase converting composition between calcium chl-oride hexahydrate and potassium salt
JPS6084379A (en) Thermal energy storage material
JP6801938B2 (en) Radioactive waste solidification treatment method
FI58078C (en) FAST FLOCKNINGSMEDELPREPARAT INNEHAOLLANDE POLYMER
JPS61107992A (en) Water purification agent
JPS60262882A (en) Thermal energy storage material
JPS58183784A (en) Heat-storing material
Kameda et al. Synthesis of hydrotalcite from seawater and its application to phosphorus removal
JPS5918785A (en) Manufacture of heat storage composition
JPS6043388B2 (en) heat storage material
JPS6251993B2 (en)
JPH09235115A (en) Promoter for production of tobermorite crystal, production of calcium silicate hydrate slurry using the same and calcium silicate hydrate slurry produced by the same method
JPH0237957B2 (en)
CA1206980A (en) Conversion of fluoroanhydrite to plaster
JPS60181185A (en) Thermal energy storage agent composition
US3698924A (en) Saline resistant cementitious binders
JPS5941668B2 (en) heat storage material
JPH02124993A (en) Heat storage material composition
KR940005189B1 (en) Heat sink material for using carboxymethyl celluolose
DK157033B (en) Reversible liquid/solid phase change agent and application thereof
JPS59138289A (en) Heat-accumulation material and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term