JPS5955343A - Plasma cvd device - Google Patents

Plasma cvd device

Info

Publication number
JPS5955343A
JPS5955343A JP16444482A JP16444482A JPS5955343A JP S5955343 A JPS5955343 A JP S5955343A JP 16444482 A JP16444482 A JP 16444482A JP 16444482 A JP16444482 A JP 16444482A JP S5955343 A JPS5955343 A JP S5955343A
Authority
JP
Japan
Prior art keywords
gas
film
electrode
uniform
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16444482A
Other languages
Japanese (ja)
Inventor
Tsutomu Otake
大竹 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP16444482A priority Critical patent/JPS5955343A/en
Publication of JPS5955343A publication Critical patent/JPS5955343A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a CVD film of uniform thickness and characteristics by providing plural gas introducing systems which can control independently the introducing rate of a gaseous mixture and evacuation system which can control independently the suction rate of the gase. CONSTITUTION:A photosensitive drum of amorphous silicon is manufactured after the flow rates are empirically verified by mass flow controllers 23a-23d for gaseous mixtures and conductance valves 27a-27d for controlling evacuation rates in such a way that the film forming speed is made uniform in a plasma CVD device having an electrode 25 provided with plural gas blow-out ports and an electrode 26 provided with plural gas suction ports. As a result, the variance in the film thickness is 1.05 ratio between the max. value and the min. value when an average film thickness is 22mu, and the extremely uniform film thickness is obtd. as compared with the prior art. The film has 400+ or -15V electrifying potential thus exhibiting uniform characteristics.

Description

【発明の詳細な説明】 本発明は、独立に混合ガス導入量を制御できる複数個の
ガス導入系と、独立にガス吸入量を制御できる排気系と
を有することにより、OVD膜の厚さおよび特性の均一
性をはかったプラズマCVD装置に関する。
Detailed Description of the Invention The present invention has a plurality of gas introduction systems that can independently control the amount of mixed gas introduced, and an exhaust system that can independently control the amount of gas suction. The present invention relates to a plasma CVD apparatus that aims for uniformity of characteristics.

近年アモルファスシリコンを中心とし、プラズマOVD
法による薄膜デバイスの研究が盛んになってきた。
In recent years, with a focus on amorphous silicon, plasma OVD
Research into thin film devices using this method has become active.

第1図は従来のアモル7アスンリコン感光体の製造装置
の1例を示したブロック図である。同図において、10
11〜10gはそれぞれ、水素、アルゴン、メタン、ジ
ボラン、モノシランのボンベである。また11α〜11
dはバルブ、12a〜12gはガス流量調整用のマスフ
ローコントローラ、13は混合ガスの導入管、14はガ
ス吹き出し口を備えた電極、15はドラム、16は真空
チャンバ、17はシャフト、18はモータ、19はポン
プである。
FIG. 1 is a block diagram showing an example of a conventional Amol 7 Asun Recon photoreceptor manufacturing apparatus. In the same figure, 10
11 to 10 g are hydrogen, argon, methane, diborane, and monosilane cylinders, respectively. Also 11α~11
d is a valve, 12a to 12g are mass flow controllers for adjusting gas flow rate, 13 is a mixed gas introduction pipe, 14 is an electrode equipped with a gas outlet, 15 is a drum, 16 is a vacuum chamber, 17 is a shaft, and 18 is a motor , 19 is a pump.

電極14は、曲率半径の異なる2枚の円筒面が重なり合
った形状をなし側面は密ぺいされている。
The electrode 14 has a shape in which two cylindrical surfaces with different radii of curvature overlap, and the side surfaces are tightly covered.

さらにドラムに向い合う面には多数のガス吹き出しの穴
があけである。反対側の円筒面に複数のガス導入管が取
りつけられて、ガスはこの管から二つの円筒面と側面に
よって囲まれた空間に導入され、穴を通してドラム側へ
と放出される。
Additionally, there are numerous gas blow holes on the side facing the drum. A plurality of gas introduction tubes are attached to the opposite cylindrical surface, and gas is introduced from the tubes into the space surrounded by the two cylindrical surfaces and the side surface, and is discharged through the holes to the drum side.

第1図の装置によって、感光ドラム用のアモルファスシ
リコン膜の製造方法について説明する。
A method of manufacturing an amorphous silicon film for a photosensitive drum using the apparatus shown in FIG. 1 will be described.

ポンプ19によって、真空チャンバ16の内部ヲ約I 
X 10−3Torr 、まで排気しながら、ドラムの
温度を230〜250℃に保つ、加熱は、ヒータを内蔵
した円柱状のドラムホルダーに円筒状のドラムをセット
し内部から加熱する方法、あるいは赤外線加熱を用いる
The inside of the vacuum chamber 16 is pumped by the pump 19.
The temperature of the drum is maintained at 230 to 250°C while exhausting to 10-3 Torr. Heating can be done by placing the cylindrical drum in a cylindrical drum holder with a built-in heater and heating it from inside, or by infrared heating. Use.

ドラムの温度が所定の温度に達したところで、水素、ア
ルゴン、メタン、ジボラン、およびモノンランガスをそ
れぞれマス70−コントローラによって流量制御を行な
い混合ガスとして真空チャンバ内に流す。各ガスの流量
比は、感光ドラムの感光特性と大きな関係をもち、さら
に最適値は高周波電力や、薄膜堆積時のドラムの温度に
依存する。1例をあげるならば、高周波電力が500W
When the temperature of the drum reaches a predetermined temperature, hydrogen, argon, methane, diborane, and monolan gases are flown into the vacuum chamber as a mixed gas by controlling the flow rates thereof by the mass 70-controller. The flow rate ratio of each gas has a large relationship with the photosensitive characteristics of the photosensitive drum, and the optimum value also depends on the high frequency power and the temperature of the drum during thin film deposition. To give one example, the high frequency power is 500W.
.

ドラムの温度が230℃の場合、各ガスの流量比は水素
を10としたとき、アルゴンが04、メタンが05、ジ
ボランがlX104.モノシランが1.0である。
When the temperature of the drum is 230°C, the flow rate ratio of each gas is 10 for hydrogen, 04 for argon, 05 for methane, and 1 x 104 for diborane. Monosilane is 1.0.

さらに、ガスを流しているときの真空チャンバ内の圧力
がI Torr、になるようにガス流量を調節する。
Furthermore, the gas flow rate is adjusted so that the pressure inside the vacuum chamber when the gas is flowing becomes I Torr.

この状態で電極14とドラム15との間で高周波放電を
起こすと導入ガスが分解して、ドラム15の表面にアモ
ルファスシリコンの膜が形成きれる。膜厚の均一性を得
るために、シャフト17を通してモータ18でドラムを
回転させる。回転速度は1分間に約10回転である。
When a high frequency discharge is generated between the electrode 14 and the drum 15 in this state, the introduced gas is decomposed and an amorphous silicon film is completely formed on the surface of the drum 15. In order to obtain uniformity of film thickness, the drum is rotated by a motor 18 through a shaft 17. The rotation speed is about 10 revolutions per minute.

このような装置でアモルファスシリコンの感光ドラムを
作製することができるが、性能は十分とは言えない。そ
れは膜厚の均一性が十分に得られないことである。
Although it is possible to produce an amorphous silicon photosensitive drum using such an apparatus, the performance cannot be said to be sufficient. The problem is that the film thickness cannot be sufficiently uniform.

すなわち、次のような欠点を有している。That is, it has the following drawbacks.

■ 混合ガス(H2+ A r  OH4、B2H6。■Mixed gas (H2+ A r OH4, B2H6.

S:LH,)が複数個の導入管から¥rt、極14へ導
入されるが各導入管に流量制御機能がないため、わずか
なインピーダンスの違いなどにより、各導入管のガス流
量が異なる。したがって、ドラム上に形成されるアモル
ファスシリコンの膜厚にばらつきが生ずる。
S:LH,) is introduced into the \rt, pole 14 from a plurality of introduction pipes, but since each introduction pipe does not have a flow rate control function, the gas flow rate of each introduction pipe differs due to slight differences in impedance. Therefore, variations occur in the thickness of the amorphous silicon film formed on the drum.

■ 真空チャンバの排気口が下についているため、電極
14のガス吹出し口から等量のガスが吠き出した場合で
もドラムの下部の方が接するガス量は多くなる。従って
ドラムの下部が膜厚は厚くなる。
(2) Since the exhaust port of the vacuum chamber is located at the bottom, even if the same amount of gas is blown out from the gas outlet of the electrode 14, the amount of gas that comes into contact with the lower part of the drum will be larger. Therefore, the film thickness becomes thicker at the bottom of the drum.

膜厚にばらつきが生じると、当然帯電電位にもばらつき
が生じ複写の感度のばらつきが大きな問題となる。
When the film thickness varies, the charging potential naturally varies, causing variations in copying sensitivity, which becomes a major problem.

従来の装置で最適条件で作製した感光ドラムにおいても
膜厚の最大値と最小値の比は1.1〜1.2である。
Even in a photosensitive drum manufactured under optimal conditions using a conventional apparatus, the ratio between the maximum value and the minimum value of the film thickness is 1.1 to 1.2.

本発明はかかる欠点を除去したものであって、その目的
とするところは、プラズマOVD法において得られる膜
の厚さおよび特性の均一性をはかることにある。さらに
他の目的は!極とガス吹き出し部とを兼用することによ
り、成膜スピードをあげることにある。
The present invention eliminates these drawbacks, and its purpose is to improve the uniformity of the thickness and properties of a film obtained by plasma OVD. Yet another purpose! The purpose is to increase the film formation speed by using both the electrode and the gas blowing part.

第2図は本発明の実施例のブロック図である。FIG. 2 is a block diagram of an embodiment of the invention.

実施例としてアモルファスシリコン感光ドラムの製造装
置について説明する。第2図において、’lOa〜20
gはそれぞれ、水素、アルゴン、メタン、ジボラン、モ
ノシランのガスボンベ、21a〜21gはパルプ、22
α〜22gはそれぞれ水素、アルゴン等容ガスのマスフ
ローコントローラ、23α〜26dは混合ガスのマスフ
ローコントローラ、24a〜24dは混合ガス導入管、
25はガス吹き出し口を有する電極、26はガス排気口
を有する電極、27a〜27dは排気量を調節するコン
ダクタンスバルブ、28はポンプ、29は真空チャンバ
である。
As an example, an apparatus for manufacturing an amorphous silicon photosensitive drum will be described. In Figure 2, 'lOa ~ 20
g are hydrogen, argon, methane, diborane, and monosilane gas cylinders, 21a to 21g are pulp, 22
α~22g are hydrogen and argon gas mass flow controllers, respectively, 23α~26d are mixed gas mass flow controllers, 24a~24d are mixed gas introduction pipes,
25 is an electrode having a gas outlet, 26 is an electrode having a gas exhaust port, 27a to 27d are conductance valves for adjusting the exhaust amount, 28 is a pump, and 29 is a vacuum chamber.

第3図は第2図の電極25と26を拡大して描いたもの
である。
FIG. 3 shows an enlarged view of the electrodes 25 and 26 in FIG.

同図において31は、ガス吹き出し口を有する電極の外
側の円筒面、32は内側の円筒面、63はガスの吹き出
し口である。また35はガスの排気口を有する電極の外
側の円筒面、36は内側の円筒面、37はガスの排気口
である。さらに、38 a N38 dは混合ガスの導
入管、3917〜39dは排気用配管である。
In the figure, 31 is an outer cylindrical surface of the electrode having a gas outlet, 32 is an inner cylindrical surface, and 63 is a gas outlet. Further, 35 is an outer cylindrical surface of the electrode having a gas exhaust port, 36 is an inner cylindrical surface, and 37 is a gas exhaust port. Further, 38 a N38 d is a mixed gas introduction pipe, and 3917 to 39 d are exhaust pipes.

第2図に示した装置を用いて、マスフローコントローラ
2311〜23dとコンダクタンスバルブ27α〜27
dで成膜スピードが均一になるように流量を実験的に確
認したのち、アモルファスシリコンの感光ドラムを作製
した結果、膜厚のばらつきは平均膜厚が22μmのとき
最大値と最小値の比は105であり、従来に比べて非常
に均一なものが得られた。また、膜の特性も帯電電位が
400±15Vで均一な特性を示した。
Using the apparatus shown in FIG. 2, mass flow controllers 2311 to 23d and conductance valves 27α to 27
After experimentally confirming the flow rate to make the film formation speed uniform in step d, we fabricated an amorphous silicon photosensitive drum.As a result, the variation in film thickness was as follows: When the average film thickness was 22 μm, the ratio of the maximum value to the minimum value was 105, and a much more uniform product was obtained compared to the conventional method. Furthermore, the film exhibited uniform characteristics with a charging potential of 400±15V.

さらに本発明は電極がガスの吹き出しと吸い通口とを兼
用した電極を用いたため、チャンバの外側に電極を配置
したものに比べ、電極がドラム面に近くプラズマ密度が
高いため成膜スピードが7〜8μm/)(と非常に大き
いこともわかった。
Furthermore, since the present invention uses an electrode that serves both as a gas blowout and gas suction port, compared to an electrode placed outside the chamber, the electrode is closer to the drum surface and the plasma density is higher, resulting in a film formation speed of 7. It was also found that it was very large, ~8 μm/).

本発明について円筒型の電極について述べたが第4図に
示すような平面型の電極でも、膜の均一性をはかる点で
はまったく同じ効果がある。
Although the present invention has been described with respect to a cylindrical electrode, a planar electrode as shown in FIG. 4 has exactly the same effect in terms of measuring the uniformity of the film.

第4図では40は電極兼ガス吹き出し部、41a〜41
cはドラム、42a〜42dは混合ガス導入管である。
In Fig. 4, 40 is an electrode/gas blowing part, 41a to 41
c is a drum, and 42a to 42d are mixed gas introduction pipes.

このように本発明は感光ドラムばかりでなく、アモルフ
ァスシリコンデバイス、さらには5102やSi3N、
等のアモルファス膜の均一性をはかる上で大きな効果を
もたら・すものである。
In this way, the present invention applies not only to photosensitive drums but also to amorphous silicon devices, such as 5102, Si3N,
This has a great effect on measuring the uniformity of amorphous films such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアモルファスシリコン感光体の製造装置
、第2図は本発明のブロック図、第3図は第2図の電極
25と26を拡大した図、そして第4図は平面型の電極
構造を示す図である。 20α〜20g・・・・・・ガスボンベ21a〜21g
・・・・・・バルブ 22α〜22e・・・・・・マスフローコントローラ2
5a〜23d・・・・・・マスフローコントローラ24
α〜24d・・・・・・混合ガス導入管25・・・・・
・・・・・・・・・・・・・・・・ガス吹き出し口26
・・・・・・・・・・・・・・・・・・・・・ガス排気
口27a〜27d・・・・・・コンダクタンスバルブ2
8・・・・・・・・・・・・・・・・・・・・・ポンプ
29・・・・・・・・・・・・・・・・・・・・真空チ
ャンバ以  上 出願人  株式会社諏訪精工舎 代理人  弁理士 最上  務 を 第1図
Figure 1 shows a conventional amorphous silicon photoreceptor manufacturing apparatus, Figure 2 is a block diagram of the present invention, Figure 3 is an enlarged view of electrodes 25 and 26 in Figure 2, and Figure 4 is a planar electrode. It is a figure showing a structure. 20α~20g...Gas cylinder 21a~21g
...Valves 22α to 22e...Mass flow controller 2
5a to 23d...Mass flow controller 24
α~24d...Mixed gas introduction pipe 25...
・・・・・・・・・・・・・・・Gas outlet 26
・・・・・・・・・・・・・・・・・・Gas exhaust ports 27a to 27d・・・Conductance valve 2
8・・・・・・・・・・・・・・・・・・・・・Pump 29・・・・・・・・・・・・・・・・・・・・・Vacuum chamber and above Applicant Figure 1: Tsutomu Mogami, Patent Attorney, Suwa Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】 1)複数個のガス吹出し口と複数個のガス吸入口を有す
るプラズマCVD装置において、独立にガス導入量を制
御できる複数個の混合ガス導入系と、独立してガス排気
量を制御できる排気系とを有するプラズマCVD装置。 2)ガス吹出し口を有する面およびガス排気口を有する
面の少なくとも一つが放電電極を兼用したことを特徴と
する特許請求範囲第1項記載のプラズマCVD装置。
[Scope of Claims] 1) In a plasma CVD apparatus having a plurality of gas outlets and a plurality of gas inlets, a plurality of mixed gas introduction systems capable of independently controlling the amount of gas introduced, and an independent gas exhaust system are provided. A plasma CVD apparatus having an exhaust system that can control the amount. 2) The plasma CVD apparatus according to claim 1, wherein at least one of the surface having the gas outlet and the surface having the gas exhaust port also serves as a discharge electrode.
JP16444482A 1982-09-21 1982-09-21 Plasma cvd device Pending JPS5955343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16444482A JPS5955343A (en) 1982-09-21 1982-09-21 Plasma cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16444482A JPS5955343A (en) 1982-09-21 1982-09-21 Plasma cvd device

Publications (1)

Publication Number Publication Date
JPS5955343A true JPS5955343A (en) 1984-03-30

Family

ID=15793282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16444482A Pending JPS5955343A (en) 1982-09-21 1982-09-21 Plasma cvd device

Country Status (1)

Country Link
JP (1) JPS5955343A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253367A (en) * 1985-05-04 1986-11-11 Inoue Japax Res Inc Vapor growth method
EP0318395A2 (en) * 1987-11-27 1989-05-31 Fujitsu Limited An apparatus for metal organic chemical vapor deposition and a method using the same
US20080093341A1 (en) * 2000-04-26 2008-04-24 Unaxis Balzers Aktiengesellschaft RF Plasma Reactor Having a Distribution Chamber with at Least One Grid
EP1968098A1 (en) 2007-03-08 2008-09-10 Applied Materials, Inc. Suction device for plasma coating chamber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61253367A (en) * 1985-05-04 1986-11-11 Inoue Japax Res Inc Vapor growth method
JPH0521987B2 (en) * 1985-05-04 1993-03-26 Inoue Japax Res
EP0318395A2 (en) * 1987-11-27 1989-05-31 Fujitsu Limited An apparatus for metal organic chemical vapor deposition and a method using the same
US20080093341A1 (en) * 2000-04-26 2008-04-24 Unaxis Balzers Aktiengesellschaft RF Plasma Reactor Having a Distribution Chamber with at Least One Grid
US9045828B2 (en) * 2000-04-26 2015-06-02 Tel Solar Ag RF plasma reactor having a distribution chamber with at least one grid
EP1968098A1 (en) 2007-03-08 2008-09-10 Applied Materials, Inc. Suction device for plasma coating chamber

Similar Documents

Publication Publication Date Title
JP2003166059A (en) Film-forming apparatus and film-forming method
JPS6137354B2 (en)
JPS5955343A (en) Plasma cvd device
JPS6046029A (en) Equipment for manufacturing semiconductor
JPH08260154A (en) Induction coupling plasma cvd apparatus
JPS62146268A (en) Apparatus for producing thin film
JPH10102256A (en) Cvd device
JPH0694591B2 (en) Plasma CVD equipment
JPS6063370A (en) Apparatus for manufacturing amorphous silicon hydride
JPH0152052B2 (en)
JPH0565590B2 (en)
JPS60162777A (en) Plasma cvd apparatus
JPS5817612A (en) Film forming device by glow discharge
JP3060468B2 (en) Method for manufacturing semiconductor device
JPH01240644A (en) Apparatus for producing amorphous silicon film
JPH01301862A (en) Silicon nitride film-growing apparatus by plasma cvd method
JPS62142772A (en) Deposited film forming device by cvd method
JPS5990629A (en) Plasma chemical vapor deposition device
JPH09213640A (en) Low pressure cvd film forming method and apparatus
JPS6280275A (en) Formation of deposited film by chemical vapor phase method and apparatus used therefor
JPS6013074A (en) Plasma cvd device
JPS58146436A (en) Film former by glow discharge
JPS6115977A (en) Plasma cvd device
TW202002008A (en) Vacuum processing apparatus and support shaft
JPS616278A (en) Plasma cvd device