JPS5954943A - Method for measuring amount of magnetic particle in fluid - Google Patents

Method for measuring amount of magnetic particle in fluid

Info

Publication number
JPS5954943A
JPS5954943A JP16571782A JP16571782A JPS5954943A JP S5954943 A JPS5954943 A JP S5954943A JP 16571782 A JP16571782 A JP 16571782A JP 16571782 A JP16571782 A JP 16571782A JP S5954943 A JPS5954943 A JP S5954943A
Authority
JP
Japan
Prior art keywords
magnetic particles
fluid
piezoelectric vibrator
amount
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16571782A
Other languages
Japanese (ja)
Inventor
Katsuhiro Kojima
小島 勝洋
Junichi Yano
純一 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP16571782A priority Critical patent/JPS5954943A/en
Publication of JPS5954943A publication Critical patent/JPS5954943A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure the amount of magnetic particles in a fluid, by piercing magnetic flux through a piezoelectric vibrator which is arranged in a fluid, attracting the magnetic particles, and measuring the natural oscillating frequency. CONSTITUTION:A piezoelectric vibrator 12 is fixed in a pipe 10, wherein a fluid including magnetic particles such as waste liquid is flowed. An electromagnet 14 is provided in a cover 16 in order to attract the magnetic particles on the surface of the piezoelectric vibrator. An exciting signal SM is supplied to an exciting power source circuit 22 from an operation control circuit 20, and the excitation of the electromagnet 14 is started. The natural oscillating frequency of the piezoelectric vibrator 12 is memorized. The natural oscillating frequency is changed in esponse to the amount of the magnetic particles attracted to the surface of the piezoelectric vibrator 12. The difference is computed by the operation control circuit 20. Thus the concentration of the magnetic particles included in the fluid is obtained and displayed on a display device 24.

Description

【発明の詳細な説明】 本発明は流体中に含まれる磁性粒子量を測定する方法に
関するものであ・る。 ・       □流体中に含
まれ、磁界中において磁化され得る磁性粒子の量を、測
定することは重要な意義を有する。たとえば、排液中の
磁性懸濁物質を電磁フィルタで取除いて排液浄化したり
、泥漿中の鉄粉等を電磁フィルタで歌劇いて窯業原料を
精製したりする場合等において、□電磁フィルタの洗浄
管献処理液の品質保証などkきわめて効果的なのである
。また、排煙量に含まれる磁性粉塵を取除く場合等のよ
うに、流体が気体であっても同様であ乏。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the amount of magnetic particles contained in a fluid.・□It is important to measure the amount of magnetic particles contained in a fluid that can be magnetized in a magnetic field. For example, when removing magnetic suspended matter from wastewater using an electromagnetic filter to purify the wastewater, or when using an electromagnetic filter to remove iron powder from slurry to refine ceramic raw materials, etc. It is extremely effective in ensuring the quality of cleaning tube donation processing solutions. Furthermore, the same problem applies even when the fluid is gas, such as when removing magnetic dust contained in exhaust smoke.

しかしながら、従来、水、油、排気等の流体中巣さ□れ
た磁性粒子を秤量するといる面倒な作業門要していた。
However, conventional methods require a troublesome process of weighing magnetic particles trapped in fluids such as water, oil, and exhaust gas.

それ故、斯□る従来の測定方法によれば、測定のた□め
のネ問およ□び時間□が浪費されるとともに、流体中の
磁′怖ml子□量を表わ□す情報が遅U′)ため、特に
、工業プロセスにおいては対応がおくれでしまう場合が
ある不都合があった。
Therefore, according to the conventional measurement method, the number of questions and time required for measurement are wasted, and information representing the amount of magnetic flux in the fluid is lost. Because of the delay (U'), there has been a problem that the response may be delayed, especially in industrial processes.

本□発明は以上の事情を背景として為されたものであ□
す、その目的とするところは、流体中に含まれる磁性粒
子の量が自動的且つ迅速に測定され得る測定方法を提供
子ることにある之 斯、る目的を達成するため、本発明の要旨とする。:、
This invention was made against the background of the above circumstances.
The purpose of the present invention is to provide a measuring method that can automatically and quickly measure the amount of magnetic particles contained in a fluid. shall be. :,
.

ところは、流体中に圧電振動子を配設し、該圧電□□實
□。76.診よt6□社より隘つ、  り圧電振動子に
該流体中の磁性粒子を吸着させた後、  。
However, when a piezoelectric vibrator is disposed in a fluid, the piezoelectric □□actual□. 76. After adsorbing the magnetic particles in the fluid to a piezoelectric vibrator,

該圧電振動子の固有振動数を検出し、該圧電振動子の固
有振動数と流体中に含まれる磁性粒子の量  −との予
め求められた一定の関係から、前記流体中に含まれる磁
性粒子の量を測定することにある。
The natural frequency of the piezoelectric vibrator is detected, and the amount of magnetic particles contained in the fluid is calculated from a predetermined relationship between the natural frequency of the piezoelectric vibrator and the amount of magnetic particles contained in the fluid. The goal is to measure the amount of

このようにすれば、流体中において磁化された粒子が容
易に流体中に解放されるので、磁性粒子のサンプリング
作業および測定後に磁性粒子を除去するクリーニング作
業が全く解消される。しかも、磁性粒子が吸着させられ
た圧電振動子の固有振動数を検出することによって、予
め求められた一定の関係から、流体中の磁性粒子の量が
測定されるので、面倒な秤量作業を要しない。したがっ
て、流体中の磁性粒子の量が自動的且つ迅速に測、定さ
れ得るのである。
In this way, the magnetized particles in the fluid are easily released into the fluid, so that the sampling work of magnetic particles and the cleaning work to remove the magnetic particles after measurement are completely eliminated. Furthermore, by detecting the natural frequency of the piezoelectric vibrator to which the magnetic particles are attracted, the amount of magnetic particles in the fluid is measured from a predetermined relationship, which requires tedious weighing work. do not. Therefore, the amount of magnetic particles in the fluid can be measured and determined automatically and quickly.

以下、本発明方法を好適に実施する一例につい一子説勤
する。
Hereinafter, one example of suitably implementing the method of the present invention will be explained.

、第1図において、排液等の磁性粒子が含まれた流体が
流される配管10内に、(j1圧電振−子I2が固定さ
れており、その圧電振動子12の表面に磁性粒子を吸着
させるための電磁石14が配管10の外側に固定された
カバー16内に設けられている。
In FIG. 1, a piezoelectric vibrator I2 (j1) is fixed in a pipe 10 through which a fluid containing magnetic particles such as waste liquid flows, and the magnetic particles are attracted to the surface of the piezoelectric vibrator 12. An electromagnet 14 is provided in a cover 16 fixed to the outside of the pipe 10.

発振回路18は、圧電振動子12の電極に接続されてお
り、圧電振動子1.2の固有振動数で:定まる周波数に
て発振するとともに、雪の周波数の信号SFを演算制御
回路29・に供給する。演算・制御回路20は、予め記
憶されたプログラムに従って、測定サイクルの開始時に
は、励磁電源回路22に励磁信号SMを供給し、励磁電
源回路22に電磁石14へ一定の励磁電力を供給させる
と同時に、信号SFが表わす測定開始時の圧電振動子1
2の固有振動数「0 を記憶する。そして、測定サイク
ルの開始時から一定時間経過時には、信号SFが表わす
圧電振動子12の固有振動数「を記憶し、から、流体中
の磁性粒子量を決定し、その磁性粒子量を表わす信号S
Cを表示装置24に出力して、磁性粒子量を表示させる
The oscillation circuit 18 is connected to the electrodes of the piezoelectric vibrator 12, and oscillates at a frequency determined by the natural frequency of the piezoelectric vibrator 1.2, and also sends a signal SF of the snow frequency to the calculation control circuit 29. supply The arithmetic/control circuit 20 supplies an excitation signal SM to the excitation power supply circuit 22 at the start of a measurement cycle according to a pre-stored program, and at the same time causes the excitation power supply circuit 22 to supply constant excitation power to the electromagnet 14. Piezoelectric vibrator 1 at the start of measurement represented by signal SF
Then, when a certain period of time has elapsed from the start of the measurement cycle, the natural frequency of the piezoelectric vibrator 12 represented by the signal SF is stored, and from this, the amount of magnetic particles in the fluid is calculated. A signal S representing the amount of magnetic particles is determined.
C is output to the display device 24 to display the amount of magnetic particles.

第3図−詳しくヂされるように、圧電振動子12は、屈
曲振動を為す振動姿勢を有し、その中央部が固定部材2
6によって配管10の内壁面に振動可能に固定されてい
る。、そ、して、電磁石I4は配管10の側壁を挾んで
圧電振動子1.2の反対側に固定され、電磁石14が励
磁されたとき、電磁石14によって形成され今竺束が圧
電振動子12の両端部(振動部分)を貫通して、孟の両
端部、の表面上に流体中の磁性粒子が吸掩されるように
なっている。すなわち、電磁石14はコイル28とその
コア30とから成り、コア30の配管10.側において
、圧、布振動子12の両端部に配管10.の壁、を挾ん
で対向する位置には磁束を集中させるための山形磁極3
2が形成されている。したがって、5− 磁束は山形磁極32に集中するので、多くの磁束がその
山形磁極32の近傍にある圧電振動子120両端部を貫
通し、磁化された磁性粒子が磁束の方向に引きつけられ
て効率良く磁性粒子がその両端部上に吸着させられるの
である。尚、□配管10のうち、少なくとも圧電振動子
12とコア30.とによって挾まれた部分・およびその
近傍は、銅、アルミニウム合金、樹脂等のきわめて僅か
にしか磁化され得ない所謂非磁性体で構成され、磁束が
゛配管10によって短絡されないようにされている。
FIG. 3 - As shown in detail, the piezoelectric vibrator 12 has a vibrating posture in which it performs bending vibration, and its center portion is attached to the fixed member 2.
6 is fixed to the inner wall surface of the pipe 10 so as to be able to vibrate. Then, the electromagnet I4 is fixed on the opposite side of the piezoelectric vibrator 1.2 by sandwiching the side wall of the pipe 10, and when the electromagnet 14 is excited, the electric flux formed by the electromagnet 14 is transferred to the piezoelectric vibrator 12. The magnetic particles in the fluid are absorbed onto the surface of both ends of the fluid by penetrating both ends (vibrating portions) of the fluid. That is, the electromagnet 14 consists of a coil 28 and its core 30, and the piping 10 of the core 30. On the side, pipes 10 are connected to both ends of the cloth vibrator 12. 3 chevron-shaped magnetic poles for concentrating magnetic flux are located opposite the wall.
2 is formed. Therefore, 5- magnetic flux is concentrated on the chevron-shaped magnetic pole 32, so much magnetic flux passes through both ends of the piezoelectric vibrator 120 near the chevron-shaped magnetic pole 32, and the magnetized magnetic particles are attracted in the direction of the magnetic flux, increasing efficiency. Magnetic particles are often attracted onto both ends of the material. Note that among the □ piping 10, at least the piezoelectric vibrator 12 and the core 30. The portion sandwiched between and the vicinity thereof is made of a so-called non-magnetic material such as copper, aluminum alloy, resin, etc. that can be magnetized very slightly, so that the magnetic flux is not short-circuited by the pipe 10.

以上のように構成された装置において、図示しないタイ
ミング信号によって測定サイクルが開始されると同時に
、演算制御回路20から励磁電源回路22に励磁信号8
Mが供給されて電磁石1・4の励磁が開始されるととも
に、この時の圧電振動子12の固有振動数coが記憶さ
れる。そして、圧電振動子12の表面には、流体中に浮
遊する磁性粒子が電磁石14の磁力に従って吸着され始
め、る。
In the apparatus configured as described above, at the same time that a measurement cycle is started by a timing signal (not shown), an excitation signal 8 is sent from the arithmetic control circuit 20 to the excitation power supply circuit 22.
M is supplied and excitation of the electromagnets 1 and 4 is started, and the natural frequency co of the piezoelectric vibrator 12 at this time is stored. Then, magnetic particles floating in the fluid begin to be attracted to the surface of the piezoelectric vibrator 12 according to the magnetic force of the electromagnet 14.

予め定められた一定の時間が経過すると、演算制御回路
20において、圧電振動子12の固有振動 6− 数fが検1)シ記憶されるとともに、測定開始時の固有
振動数foと一定時間経過後の固有−動@fとの振動数
の差りが算出される。その後、その振動数の差りに基づ
いて、第2図に示された磁性粒、子濃度と固有振動数の
差D(「o f)との関係から、。
When a predetermined period of time has elapsed, the arithmetic and control circuit 20 stores the natural frequency f of the piezoelectric vibrator 12, and also records the natural frequency fo at the start of measurement and the elapsed period of time. The difference in frequency from the subsequent eigen-dynamic @f is calculated. Then, based on the difference in frequency, from the relationship between the magnetic particle concentration and the natural frequency difference D ('o f) shown in FIG.

流体中に含ま0る磁性粒子0濃度を表わ烹信号8Cが表
示装置24に出力され、その磁性□粒子の濃すなわち、
圧電振動子12の固有振動Jは、そ□れに吸着さぜられ
た磁性粒子の質量に応じて減少させられるので、その固
有振動数と磁性粒子の質□量との一定の対応関係を予め
求め、その対応□関、係  。
A signal 8C representing the zero concentration of magnetic particles contained in the fluid is output to the display device 24, indicating the concentration of the magnetic particles, that is,
Since the natural vibration J of the piezoelectric vibrator 12 is reduced according to the mass of the magnetic particles adsorbed to it, a certain correspondence relationship between the natural frequency and the mass of the magnetic particles is determined in advance. Request and response □Relationship, relationship.

から、磁性粒子量が測定されるのである。尚□、この対
応関係は磁性粒子の種類毎に定められることは言うまで
もない。また、本実施例の場合において、配管10中に
一定に流される流体の流量が予め知られているので、流
体中に含まれる磁性粒子・量は濃度(単位体積当たりの
磁性粒子量)と尤て一方、測定サイクルが開始されて一
定時間経過後に固有振動数「が検出されると、演算制御
回路2.0から励磁電源回路22に出力されていた励磁
信:号SMが一定時間停止されて、圧電振動子12に吸
着されていた磁性粒子が流体中に解放除去され、ひとつ
の測定ザイクルが終了する。
From this, the amount of magnetic particles is measured. It goes without saying that this correspondence relationship is determined for each type of magnetic particle. In addition, in the case of this embodiment, since the flow rate of the fluid that is constantly flowing into the pipe 10 is known in advance, the amount of magnetic particles contained in the fluid is equal to the concentration (amount of magnetic particles per unit volume). On the other hand, when the natural frequency "is detected after a certain period of time has elapsed after the start of the measurement cycle, the excitation signal SM output from the arithmetic control circuit 2.0 to the excitation power supply circuit 22 is stopped for a certain period of time. , the magnetic particles adsorbed on the piezoelectric vibrator 12 are released into the fluid and removed, and one measurement cycle is completed.

そして、以上のような測定サイクルが自動的に繰返し実
行され、流体中の磁性粒子量が、サンプリング作業、ク
リーニング作業および秤量作業等の手間および時間のか
かる作業を要することなく、迅速且つ連続的に測定され
るのである。したがって、以上のような測定方法を工業
プロセスに用いれば、流体中の磁性粒子量に対して迅速
に且つ連続的に対応できるのである。
The above-mentioned measurement cycle is automatically repeated, and the amount of magnetic particles in the fluid can be measured quickly and continuously without the need for labor-intensive and time-consuming operations such as sampling, cleaning, and weighing. It is measured. Therefore, if the above measurement method is used in an industrial process, it is possible to quickly and continuously respond to the amount of magnetic particles in a fluid.

以」二、、本発明方法が実施される一例について図面に
基づいて説明したが、本発明方法はその他の態様におい
ても適用される。
Hereinafter, an example in which the method of the present invention is implemented has been described based on the drawings, but the method of the present invention is also applicable to other embodiments.

:たとえば、圧電振動子12はその一端部または両端部
が固定部材26によって配管10内に固定されても良く
、また、圧電振動子12が円板状を成し、その外周縁が
固定部材に支持されても良い。
For example, one or both ends of the piezoelectric vibrator 12 may be fixed in the pipe 10 by the fixing member 26, or the piezoelectric vibrator 12 may be disk-shaped and its outer periphery may be fixed to the fixing member. May be supported.

後者の場合には、圧電振動子12と配管10との隙間に
異物が侵入することに起因して圧電振動子12の振動が
影響されることが防止される。
In the latter case, the vibration of the piezoelectric vibrator 12 is prevented from being affected by foreign matter entering the gap between the piezoelectric vibrator 12 and the pipe 10.

前述の実施例において、測定サイクル毎に固有振動数f
oを記憶し、その固有振動数foと一定時間後の固有振
動数「との差りを求めることによって磁性粒子量を測定
しているが、若干の精度の低下を我慢ずれば、予め求め
られた関係から、固有振動数fのみによって磁性粒子量
を測定することができる。
In the example described above, the natural frequency f
The amount of magnetic particles is measured by memorizing the natural frequency fo and calculating the difference between the natural frequency fo and the natural frequency after a certain period of time. From this relationship, the amount of magnetic particles can be measured only by the natural frequency f.

前述の実施例において、比較用圧電振動、子金澁け、こ
の比較用圧電振動子の固有振動数fcと圧電振動子12
の一定時間後の固有振動数fとの差を求めることによっ
て流体中の磁性粒子量を求めても良い。この場合、比較
用圧電振動子を圧電振動子12と同じ形状および取付は
条件として、配管10内の電磁石14から離れた位置に
配設すると、温度および流体の粘性等の振動に対する影
響が補償されて高い測定精度が得られる利点がある。
In the above-mentioned embodiment, the comparison piezoelectric vibration, the metal ring, the natural frequency fc of this comparative piezoelectric vibrator, and the piezoelectric vibrator 12
The amount of magnetic particles in the fluid may be determined by determining the difference between f and the natural frequency f after a certain period of time. In this case, if the piezoelectric vibrator for comparison has the same shape and mounting condition as the piezoelectric vibrator 12, and is placed in a position away from the electromagnet 14 in the piping 10, the effects of temperature and fluid viscosity on vibration can be compensated for. This has the advantage of providing high measurement accuracy.

尚、上述したのはあくまでも本発明の一実施例−9= であり、本発明はその精神を逸脱しない範囲において種
々変更が加えられ得るものである。
It should be noted that the above-mentioned embodiment is merely one embodiment-9 of the present invention, and various modifications may be made to the present invention without departing from the spirit thereof.

るので、磁性粒子のサンプリング作業およびクリーニン
グ作業〃i全く解消されるとともに、磁性粒子が吸着さ
れた圧電振動子の固有振動数を知るこ、 とによって、
予め求められた一定の関係から、流椅中に含まれる磁性
粒子量が求められるので、面倒な秤量作業を要すること
なく、迅速且つ自動的に磁性粒子量が測定され得るので
ある。
Therefore, the sampling and cleaning work of magnetic particles can be completely eliminated, and by knowing the natural frequency of the piezoelectric vibrator to which the magnetic particles are adsorbed,
Since the amount of magnetic particles contained in the flow chair is determined from a certain relationship determined in advance, the amount of magnetic particles can be measured quickly and automatically without the need for troublesome weighing operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法が実施される装置の構成を説明する
図である。第2図は第1図の実施例において用いられる
予め求められた一定の関係を示す図である。第3図は第
1図の要部を示す図である。 12:圧電振動子 14:電磁石(磁石) 10−
FIG. 1 is a diagram illustrating the configuration of an apparatus in which the method of the present invention is implemented. FIG. 2 is a diagram showing a predetermined constant relationship used in the embodiment of FIG. 1. FIG. 3 is a diagram showing the main part of FIG. 1. 12: Piezoelectric vibrator 14: Electromagnet (magnet) 10-

Claims (1)

【特許請求の範囲】 流体中に含まれる磁性粒子の量を測定する゛方法であっ
て、       ・: 該流体中に圧電振動子を配設し、該圧・電振動子を貫通
する磁:束を形成する磁石によって該圧電振動子に前記
磁性粒子を吸着させ□た後、該圧電振動子の固有振動数
を検出し、該圧電□振動子の固有振動数と流体中に含ま
れる磁性粒子の量との早め求められた一定の関係から、
□前□記流体中に含まれる磁性粒子の量を測定すること
を特徴どする磁性粒子量測定方法。
[Claims] A method for measuring the amount of magnetic particles contained in a fluid, comprising: arranging a piezoelectric vibrator in the fluid, and measuring magnetic flux passing through the piezoelectric vibrator. After the magnetic particles are attracted to the piezoelectric vibrator by a magnet forming a From the predetermined constant relationship with the quantity,
□Previous□A magnetic particle amount measurement method characterized by measuring the amount of magnetic particles contained in the fluid.
JP16571782A 1982-09-22 1982-09-22 Method for measuring amount of magnetic particle in fluid Pending JPS5954943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16571782A JPS5954943A (en) 1982-09-22 1982-09-22 Method for measuring amount of magnetic particle in fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16571782A JPS5954943A (en) 1982-09-22 1982-09-22 Method for measuring amount of magnetic particle in fluid

Publications (1)

Publication Number Publication Date
JPS5954943A true JPS5954943A (en) 1984-03-29

Family

ID=15817721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16571782A Pending JPS5954943A (en) 1982-09-22 1982-09-22 Method for measuring amount of magnetic particle in fluid

Country Status (1)

Country Link
JP (1) JPS5954943A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295965A2 (en) * 1987-06-18 1988-12-21 Amoco Corporation Oscillator-based methods of detecting a member of a specific binding pair
WO2007018187A1 (en) * 2005-08-05 2007-02-15 Kyowa Medex Co., Ltd. Measurement instrument, measurement kit using the same, measurement method, measurement device, and piezoelectric oscillator reproducing method
JP2017026410A (en) * 2015-07-21 2017-02-02 富士電機株式会社 Magnetic oxygen analyzer
DE102017006676A1 (en) * 2017-07-14 2019-01-17 Vdeh-Betriebsforschungsinstitut Gmbh Apparatus and method for determining a concentration of particles in a fluid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295965A2 (en) * 1987-06-18 1988-12-21 Amoco Corporation Oscillator-based methods of detecting a member of a specific binding pair
WO2007018187A1 (en) * 2005-08-05 2007-02-15 Kyowa Medex Co., Ltd. Measurement instrument, measurement kit using the same, measurement method, measurement device, and piezoelectric oscillator reproducing method
JP2017026410A (en) * 2015-07-21 2017-02-02 富士電機株式会社 Magnetic oxygen analyzer
DE102017006676A1 (en) * 2017-07-14 2019-01-17 Vdeh-Betriebsforschungsinstitut Gmbh Apparatus and method for determining a concentration of particles in a fluid
WO2019012034A1 (en) 2017-07-14 2019-01-17 Vdeh-Betriebsforschungsinstitut Gmbh Apparatus and method for determining a concentration of particles in a fluid
DE102017006676B4 (en) 2017-07-14 2024-08-01 Vdeh-Betriebsforschungsinstitut Gmbh Device and method for determining a concentration of particles in a fluid

Similar Documents

Publication Publication Date Title
US3902365A (en) Mass flow monitoring system and method
RU2465557C1 (en) Electromagnetic device, as well as vibration-type sensor with said electromagnetic device
US4391338A (en) Microbalance and method for measuring the mass of matter suspended within a fluid medium
JP2859591B2 (en) Coriolis mass flow detector
EP0311610B1 (en) Coriolis mass flowmeters
KR870004294A (en) Wear detection and detection method of ferromagnetic material
JPH08152395A (en) Viscosimeter
JPS6330721A (en) Mass flowmeter
EP1019681B1 (en) Combined pickoff and oscillatory driver for use in coriolis flowmeters and method of operating the same
JPS5954943A (en) Method for measuring amount of magnetic particle in fluid
US3763692A (en) Measuring of fluid density
US6465749B1 (en) Magnetostrictive mass sensing apparatus and method
JPH09196730A (en) Vibration-type measuring apparatus
JPS5954955A (en) Measurment of amount of magnetic particle in fluid
CN111417841A (en) Method for determining the viscosity of a medium by means of a coriolis mass flowmeter and coriolis mass flowmeter for carrying out the method
US3191430A (en) Testing means used in determining the presence of loose particles within a container
JPS585614A (en) Flowmeter
JPS61283827A (en) Mass flowmeter
JP2002055036A (en) Oscillation-tube type density sensor
JPH11142492A (en) Magnetometric sensor
SU129357A1 (en) Instrument for measuring fluid flow
JP2014106175A (en) Electromagnetic flow meter
JPH1151733A (en) Vibration type measuring device
JP2801849B2 (en) Coriolis flow meter
RU2718123C1 (en) Device for measuring flow rate of liquid medium