WO2007018187A1 - Measurement instrument, measurement kit using the same, measurement method, measurement device, and piezoelectric oscillator reproducing method - Google Patents
Measurement instrument, measurement kit using the same, measurement method, measurement device, and piezoelectric oscillator reproducing method Download PDFInfo
- Publication number
- WO2007018187A1 WO2007018187A1 PCT/JP2006/315614 JP2006315614W WO2007018187A1 WO 2007018187 A1 WO2007018187 A1 WO 2007018187A1 JP 2006315614 W JP2006315614 W JP 2006315614W WO 2007018187 A1 WO2007018187 A1 WO 2007018187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement object
- measurement
- piezoelectric vibrator
- sample
- measuring instrument
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N5/00—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
- G01N5/02—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
Definitions
- Measuring instrument measuring kit using the same, measuring method, measuring device, and method of regenerating piezoelectric vibrator
- the present invention relates to a measuring instrument for measuring a measurement object contained in a sample to be analyzed such as a living body, food, or soil, and in particular, has a piezoelectric vibrator at a detection site of a reaction vessel, BACKGROUND ART Related to a measuring instrument effective in an aspect in which a reaction with an object to be measured is performed on the surface portion of the piezoelectric vibrator, a measuring kit, a measuring method, a measuring apparatus using the same, and a method for regenerating a piezoelectric vibrator
- a piezoelectric vibrator such as a quartz vibrator
- SA M Self Assembled Monolayer
- a method of reusing a crystal resonator sensor after supporting a target substance on the crystal resonator is known.
- Non-Patent Document 1 a method of reusing a crystal resonator sensor by separating smoke particles (adsorbed molecules) adsorbed on the crystal resonator using a hot air source
- Patent Document 1 a method of reusing the crystal resonator sensor by making the surface of the crystal substrate in the crystal resonator sensor flat to facilitate cleaning of this surface
- Patent (Ref. 2) a method of reusing the crystal resonator sensor by making the surface of the crystal substrate in the crystal resonator sensor flat to facilitate cleaning of this surface.
- the SAM method has a technical problem that, for example, the process of generating a sensor film made of a predetermined target substance on the electrode surface of a crystal resonator is very complicated and time-consuming.
- the quartz vibrator sensor uses an expensive gold electrode, so that it is desired to reuse the gold electrode.
- All of the conventional methods for reusing a quartz crystal sensor are: a sensor film generated on the surface of the crystal oscillator electrode, or thermal treatment by a hot air source. Since the separation process is complicated, for example, by giving a detachment, a simple method for reusing a crystal resonator sensor is desired.
- POCT point-of-care testing
- Non-Patent Document 1 “Biochemistry” American Chemical Society, 1998, 37th, 5666- 5672
- Patent Document 1 Japanese Patent Laid-Open No. 2000-275157
- Patent Document 2 JP 2000-283905 A
- the present invention has been made to solve the above technical problem, and in a mode in which a piezoelectric vibrator is disposed at a detection site of a reaction vessel, a piezoelectric vibrator sensor film can be easily generated.
- Another object of the present invention is to provide a measuring instrument, a measuring kit, a measuring method, and a measuring apparatus that can be reused by easily regenerating the sensor.
- the present invention relates to the following (1) to (29).
- a measurement instrument for measuring a measurement object in a sample using a reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and for applying a magnetic field to the piezoelectric vibrator A measuring instrument comprising: a magnetic force generating member, wherein the carrier is magnetically supported on the piezoelectric vibrator by the magnetic force of the magnetic force generating member.
- the reaction container is bonded to the measurement object or the measurement object analog, or the binder or the measurement object analog.
- a measuring instrument comprising a binder or a labeled body supply site capable of supplying a labeled body formed by binding to an insoluble endoplasmic reticulum.
- the reaction container is a flow cell type in which the measurement object and the support body can move along the flow path, and the flow path of the flow cell type reaction container A measuring instrument, wherein a sample addition site and a detection site are provided.
- the reaction container is a flow cell type in which the measurement object, the support, and the label can move along the flow path.
- a measuring instrument comprising a sample addition site, a detection site, and a binder or label supply site in the flow path of the reaction vessel.
- a measuring instrument according to any one of (1) to (8), wherein a plurality of types of carriers are used.
- a measuring kit comprising the measuring instrument according to any one of (1) to (13) and a carrier.
- a measuring kit comprising the measuring instrument according to any one of (1) to (13), a support, and a binder or a label.
- a reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and a trapper that specifically binds to a measurement object or a measurement object analog and magnetic particles are combined.
- the measurement object in the sample is measured using the support, and the measurement object in the sample and the support are reacted in a reaction container, and the composite including the support is measured.
- the sample reaction step to be generated, the magnetic force acting on the magnetic particles of the carrier, the carrier carrying step of magnetically carrying the magnetic particles on the piezoelectric vibrator, and the amount of the composite carried on the piezoelectric vibrator is piezoelectric
- a measurement method comprising: reacting a labeled body formed by binding with a cell body to generate a complex including a carrier, a measurement object, and a binder; and a carrier, a measurement object, and a complex including the label. .
- a reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and a trapper that specifically binds to a measurement object or a measurement object analog and magnetic particles are combined.
- the measurement object in the sample is measured using the carrier, and the measurement object in the sample and the analog of the measurement object are bound to the insoluble endoplasmic reticulum in the reaction container.
- the sample reacts with the carrier to form a complex containing the carrier, and the carrier carries the magnetic particles on the piezoelectric vibrator by applying a magnetic force to the magnetic particles of the carrier.
- a body supporting step a frequency measuring step for measuring the amount of the composite supported on the piezoelectric vibrator as a change amount of the frequency of the piezoelectric vibrator, and a frequency of the piezoelectric vibrator measured in the frequency measuring step.
- a measurement method comprising a concentration determination step for determining the concentration of a measurement object in a sample from a change amount of the sample and a calibration curve prepared in advance.
- a reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, a carrier formed by binding a measurement object analogue and magnetic particles, and a measurement object or measurement object A method for measuring a measurement object in a sample using a binder that specifically binds to an analog or a label formed by binding the binder to an insoluble endoplasmic reticulum.
- the object to be measured and the object to be measured and the magnetic object are bonded to each other.
- the carrier and the binder that specifically binds to the object to be measured or the object to be measured or the binder and the insoluble vesicle are reacted.
- Support body Sample reaction process for generating a composite containing a binder or a support body-a label body, a support body support that applies magnetic force to the magnetic particles of the support body and magnetically supports the magnetic particles on the piezoelectric vibrator Process, supported on piezoelectric vibrator Frequency measurement step of measuring the amount of the composite as a change amount of the vibration frequency of the piezoelectric vibrator, and the change amount of the vibration frequency of the piezoelectric vibrator measured in this frequency measurement step and a calibration curve prepared in advance And a concentration determination step for determining the concentration of the measurement object in the sample.
- the reaction vessel is a flow cell type in which the measurement object and the support can move along the flow path, and the flow cell type reaction is performed.
- a measuring apparatus comprising:
- a method for reproducing a piezoelectric vibrator in measurement of a measurement object in a sample using a carrier and a piezoelectric vibrator comprising: a carrier and a measurement object carried on the piezoelectric vibrator by a magnetic force generating means.
- a method for regenerating a piezoelectric vibrator comprising: measuring a composite body, and then dissociating the carrier by a magnetic field release means.
- a support formed by binding a trapper that specifically binds to a measurement object or a measurement object analog and a magnetic particle, or a measurement object analog
- a measuring instrument for measuring an object to be measured in a sample using a carrier bonded to magnetic particles, the reaction container having a sample addition site and a detection site equipped with a piezoelectric vibrator, and this A magnetic force generating member for selectively applying a magnetic field to the piezoelectric vibrator is provided, and the carrier is magnetically supported on the piezoelectric vibrator by the magnetic force of the magnetic force generating member.
- a carrier functioning as a sensor film can be easily generated on the piezoelectric vibrator and can be removed. For this reason, in a measuring instrument equipped with a piezoelectric vibrator at the detection site, Thus, the piezoelectric vibrator sensor film can be easily generated, and the force can be reused by easily regenerating the sensor.
- the measurement kit includes a measuring instrument and a carrier according to the present invention, and further includes a noinder or a label, the measurement object can be measured very easily.
- a measuring instrument that can easily generate a piezoelectric vibrator sensor film and regenerate the sensor can be used to measure a large number of items in a sample. It is possible to measure quickly and accurately for each object.
- the piezoelectric vibrator sensor can be easily reproduced.
- FIG. 1 (a) is an explanatory plan view showing a basic configuration of a measuring instrument according to the present invention, and (b) is an explanatory view showing a detection site thereof.
- FIG. 2] (a) to (c) are explanatory views showing the measurement principle by the measuring instrument of FIG.
- FIG. 3 is an explanatory view showing a state after the reaction of the measuring instrument of FIG. 1 is completed.
- FIG. 4 (a) and (b) are explanatory views showing another embodiment of the measuring instrument according to the present invention and the measurement principle thereof.
- FIG. 5 is an explanatory diagram showing a measurement principle of measurement in another aspect by the measurement instrument of FIG. 1.
- FIG. 6 (a) is an explanatory view showing an embodiment in which the present invention is applied to a measuring instrument including a flow cell type reaction vessel, and (b) is an arrow view seen from the M direction in (a).
- FIG. 7 (a) is an explanatory view showing a more preferred embodiment in which the present invention is applied to a measuring instrument including a flow cell type reaction vessel, and (b) is an arrow view seen from the M direction in (a).
- FIG. 8 (a) is an explanatory view showing a measuring method using the measuring instrument according to the present invention, and (b) is an explanatory view showing a measuring apparatus embodying the measuring method.
- FIG. 9 is an explanatory view showing Embodiment 1 of a measuring apparatus to which the present invention is applied.
- FIG. 10 is a schematic plan view of a measuring instrument used in Embodiment 1.
- FIG. 11 is an explanatory diagram showing an equivalent circuit of the crystal resonator used in the first embodiment.
- FIG. 12 (a) is an explanatory plan view showing a sensor substrate used in Embodiment 1
- FIG. 12 (b) is an arrow view as viewed from the M direction in (a).
- FIG. 13 (a) is an explanatory plan view showing the crystal resonator used in the first embodiment
- FIG. 13 (b) is a cross-sectional explanatory view taken along line MM in (a).
- FIG. 14 is an explanatory view showing Embodiment 2 of a measuring apparatus to which the present invention is applied.
- FIG. 15 is a schematic plan view of a measuring instrument used in Embodiment 2.
- FIG. 17 An explanatory diagram showing a third embodiment of a measuring apparatus to which the present invention is applied.
- FIG. 19 is an explanatory view showing a modification of the crystal oscillation circuit used in the third embodiment.
- FIG. 20 (a) is a schematic plan view showing a measuring instrument used in Embodiment 4 of the measuring apparatus to which the present invention is applied, and (b) is an arrow view seen from the M direction in (a). .
- FIGS. 21 (a) and 21 (b) are explanatory diagrams showing an operation example of the measuring instrument according to the fourth embodiment.
- FIG. 22 (a) is a schematic plan view showing a variation of the measuring instrument according to Embodiment 4, and (b) is (a
- reaction vessel (flow cell type reaction vessel)
- the representative embodiment of the measuring instrument according to the present invention specifically binds to the measurement object 10 (see FIG. 2 (a)) or the measurement object analog as shown in FIGS. L (a) and (b).
- a measuring instrument for measuring the measurement object 10 in the sample using the carrier 11 formed by binding the trapper l ib and the magnetic particles 11a, the measurement object 10 in the sample (Fig. 2) (see (a)) includes a reaction container 2 that can be supplied, and the reaction container 2 includes a piezoelectric vibrator 6 provided at a detection site 5 where the measurement target 10 can be detected, and the piezoelectric vibrator 6.
- a magnetic force generating member 7 that selectively and reversibly applies a magnetic field, and a carrier 11 that is magnetically supported on the surface of the piezoelectric vibrator 6 when the magnetic field is applied to the piezoelectric vibrator 6 are provided. It is characterized by.
- FIGS. 4 (a) and 4 (b) another representative embodiment of the measuring instrument according to the present invention is, as shown in FIGS. 4 (a) and 4 (b), a carrier formed by combining a measurement object analogue 11c and magnetic particles 11a.
- 11 is a measuring instrument for measuring the measurement object 10 in the sample, and includes a reaction vessel 2 to which the measurement object 10 in the sample can be supplied.
- the piezoelectric vibrator 6 provided in the detection part 5 that can detect 10
- the magnetic force generating member 7 that selectively and reversibly applies a magnetic field to the piezoelectric vibrator 6, and the magnetic field applied to the piezoelectric vibrator 6 And a carrier 11 that is magnetically supported on the surface of the piezoelectric vibrator 6.
- the difference between the former and the latter is that the former carrier 11 is a magnetic particle 11a and a trapper l ib, whereas the latter carrier 11 is a magnetic particle 1 la and a measurement object analogue 1 lc. It is a point.
- the trapper l ib or the measurement object analog 11c is used alone. These are not carried directly on the surface of the piezoelectric vibrator 6 but are carried on the surface of the piezoelectric vibrator 6 in the form of a carrier 11 combined with the magnetic particles 1 la.
- the magnetic force generating member 7 also has a means for releasing the magnetic field applied to the piezoelectric vibrator 6.
- a typical embodiment of the reaction vessel 2 includes one having a sample addition site 4 where a sample is usually added (see FIGS. 6 (a) and 6 (b)).
- a labeled body 13 in which a binder 12 or a binder 13b or a target object analog 13c that specifically binds to a measurement object 10 is bound to an insoluble endoplasmic reticulum 13a can be supplied.
- a binder Z labeled body supply site 8 see FIG. 2 (b) (c), FIG. 5, FIG. 7 (a) (b)).
- the measuring instrument 1 of the present invention includes not only a flow cell type reaction vessel as long as it includes the reaction vessel 2, but also includes a well plate type reaction vessel.
- the binder Z labeled body supply site 8 is the binder 12 or the labeled body 13 (see FIGS. 2 (b) and (c)). ) Can be selected as long as it can be supplied! /.
- the binder 12 or the labeling body 13 is held in advance in the flow path 3 of the flow cell type reaction vessel 2, the binder 12 or the labeling body 13 is held in a part of the flow path 3, It can be moved with the added sample.
- it may be provided downstream of the sample addition site 4 in the flow path 3 of the flow cell type reaction vessel 2.
- the sample addition site 4 may also be used.
- a detection site 5 in the flow path 3 of the flow cell type reaction vessel 2 is used. It is preferable to provide an absorption site 9 on the downstream side.
- a typical example of the piezoelectric vibrator 6 is a quartz crystal vibrator.
- the magnetic force generating member 7 includes a wide range of members that generate magnetic force, but a permanent magnet, an electromagnet or the like is typically used. [0025] ⁇ Element description>
- the sample that can be used in the present embodiment is not particularly limited, and examples thereof include biological samples such as whole blood, plasma, serum, spinal fluid, saliva, amniotic fluid, urine, sweat, spleen, and tears.
- biological samples such as whole blood, plasma, serum, spinal fluid, saliva, amniotic fluid, urine, sweat, spleen, and tears.
- these samples or those derived from stool, food or soil can be used as samples by diluting, concentrating or extracting by adding an aqueous medium.
- the aqueous medium is not particularly limited as long as it dissolves the above-described sample or label. Force buffers such as deionized water, distilled water, and buffer solutions are preferable.
- the buffer used in the buffer is not particularly limited as long as it has a buffering capacity.
- pH 1 to: L 1 For example, lactate buffer, citrate buffer, acetate buffer, succinate buffer, phthalate buffer , Phosphate buffer, triethanolamine buffer, diethanolamine buffer, lysine buffer, barbitur buffer, tris (hydroxymethyl) aminomethane buffer, imidazole buffer, malate buffer, oxalate buffer Agents, glycine buffer, borate buffer, carbonate buffer, glycine buffer, Good buffer, and the like.
- Examples of good buffering agents include 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), N- (2-acetamido) iminoniacetic acid (ADA), Piperazine-N, N, monobis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) 2-aminoethanesulfonic acid (ACES), 3 morpholino-2-hydroxypropanesulfonic acid (MOPSO), N , N Bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [Tris (hydroxymethyl) methyl] 2 aminoethanesulfonic acid (TES) ), 2- [4 (2 Hydroxyethyl) 1-piperadi-l] ethanesulfonic acid (HEPES), 3- [N, N bis (2 hydroxy
- foods and soils that have been pretreated can be used as samples.
- the pretreatment of food and soil includes, for example, extraction of ingredients in food and soil with an appropriate solvent, chemical modification, and the like.
- the solvent include the above-mentioned aqueous media, organic solvents such as acetolyl, hexane, methanol, ethanol, dichloromethane, chloroform, and acetone.
- Examples of the chemical modification include structural conversion of components in food and soil with chemical reagents.
- the measurement object in the present embodiment is not particularly limited as long as it binds to a specific substance, for example, a component measured using an antigen-antibody reaction, a component measured using an enzyme reaction, and other specificities.
- a component measured using an antigen antibody reaction for example, a component measured using an antigen-antibody reaction, a component measured using an enzyme reaction, and other specificities.
- Ingredients measured by a chemical reaction can be mentioned, but a component measured using an antigen antibody reaction is preferred.
- Components measured by antigen-antibody reaction include, for example, IgG, IgM, IgA, IgE, apoprotein AI, apoprotein ⁇ , apoprotein ⁇ , apoprotein ⁇ , rheumatoid factor, D-dimer, oxidized LDL, glycated LDL , Glycoalbumin, adiponectin, T3, ⁇ 4, drug (anti-tencan, etc.), C-reactive protein (CRP), cytodynamic ins, a-fetoprotein (AFP), cancer fetal antigen (CEA) ⁇ CA19 — 9, CA— 125, PIVKA- II (Protein induced by vitamin
- biological components measured using an enzymatic reaction include glucose, 1,5-anhydroglucitol, hemoglobin Alc, glycoalbumin, fucose, urea, uric acid, ammonia, creatine, total cholesterol, free cholesterol, and high-density lipoprotein.
- Cholesterol in protein (HDL—C), cholesterol in low density lipoprotein (LDL—C), cholesterol in very low density lipoprotein (VLDL—C), cholesterol in remnant-like lipoprotein (RLP—C), Triglyceride, phospholipid, total protein, albumin, globulin, pyrilvin, bile acid, sialic acid, lactic acid, pyruvic acid, free fatty acid, cell mouth plasmin, alanine aminotransferase (ALT), aspartate aminotransferase (A ST), Creatine phosphokinase (CPK) Over peptidase (PK), amylase, lipase, cholinesterase, I Monteagle Tamil trans peptidase, leucine aminopeptidase Daze, L-lactic acid dehydrogenase (LDH), aldolase, alkaline phosphatase, acid phosphatase, New ⁇ cetyl Darco Sami - Daze, Guanaze And monoamine
- Examples of other components to be measured by specific binding include methods using nucleic acids, lectins and the like.
- DNA or RNA encoding cancer genes such as ras, cancer suppressor genes such as p53, peptide nucleic acids, and abutama 1, glycoprotein and the like.
- the analog of the measurement object is the measurement pair in the sample with respect to the binder or trapper.
- the measurement object itself, a substance containing an epitope for a noinder or trapper, and the like.
- a typical embodiment of the reaction vessel 2 is a flow cell type.
- the flow cell type reaction vessel 2 widely includes those having a flow path 3 through which a sample flows, and is applied to immunochromatography, liquid chromatography, microchemical systems, and the like.
- immunochromatography the sample solution added to the sample addition site moves through the membrane by capillary action and is measured at the detection site.
- liquid chromatography a sample containing a measurement object is injected into a sample addition site installed in a flow cell through which liquid flows by a pump, and measurement is performed at a detection site.
- a micro chemical system is an analytical sensor that integrates chemical devices such as semiconductor integrated circuits by processing minute flow paths on a substrate such as glass or plastic using micro processing technology.
- Examples of the material of the flow cell type reaction vessel 2 include plastic, silica, ceramics, glass, metal, graphite, resin, and porous membrane.
- reaction vessel a fixed cell type such as a well plate can be selected as appropriate.
- the flow path 3 installed in the flow cell type reaction vessel 2 holds the measurement object, binder, and label together with the sample, flows without adsorption, and can form at least the sample addition site 4 and the detection site 5
- plastic, silica, ceramics, glass, metal, graphite, porous membrane, etc. are preferable.
- the material of the porous membrane include glass fiber, cellulose, nylon (registered trademark), crosslinked dextran, various chromatographic papers, nitrocellulose, and the like, and nitrocellulose is preferable.
- the channel diameter is preferably lnm to 10 cm, more preferably lOOnm to lcm, and particularly preferably 1 ⁇ m to 2 mm.
- At least one flow path 3 of the flow cell type reaction vessel 2 may be used. From the viewpoint of expanding the range, it is also possible to provide multiple lines of flow paths 3 and provide at least the sample addition site 4 and the detection site 5 in the flow path 3 of each line.
- the sample addition site 4 is a site for adding the sample to the flow cell type reaction vessel 2.
- Examples of the material of the sample addition site 4 include glass fiber, cellulose, nylon, cross-linked dextran, various chromatographic papers, and nitrocellulose. Nitrocellulose is preferable.
- the binder Z label supply part 8 is a part for supplying a binder or a label, and the sample addition part 4 is also used as the binder Z label supply part 8, and the binder Z label is supplied from the same part as the sample addition part 4. It is also possible to supply a point force different from the sample addition site 4. In this case, the binder Z label can be added from the noinder Z label supply site 8, but the binder Z label may be held in the member.
- Examples of the material of the Norder Z labeled substance supply site 8 include glass fiber, cellulose, nylon, cross-linked dextran, various chromatographic papers, nitrocellulose, and the like, which are the same as or different from those of the sample addition site 4.
- the binder 12 in the present embodiment is present in a state where it can move in the flow path 3, and can be bound to magnetic particles.
- antibodies and antibodies that specifically bind to the antigen and the antigen, saccharides and lectins for the saccharides, DNA and DNA complementary to the DNA, etc., each of which is used it can.
- the labeled body 13 is composed of a measurement object analog or binder 13b and an insoluble vesicle 13a, and transmits information depending on the amount of the complex containing the carrier 11 formed on the piezoelectric vibrator 6.
- a material in which the frequency change of the piezoelectric vibrator 6 is increased by the marker 13 is preferable.
- the object recognition site on the label 13 The measurement object recognition site in the carrier 11 may be the same, but is preferably different.
- insoluble vesicle 13a that binds to the measurement object analog or the binder 13b as long as the complex formed on the piezoelectric vibrator 6 can be detected as the amount of change in the frequency. What can increase the change in the frequency of the piezoelectric vibrator 6 having a large mass is preferable.
- insoluble vesicles having a large mass include metal colloids and latex, and examples of metal colloids include gold colloids and silver colloids.
- magnetic particles can also be used as the insoluble vesicle.
- the particle size of the insoluble endoplasmic reticulum is preferably 0.1 to: LOOOO nm 1 to: 5 to 500 nm, more preferably LOOOnm.
- the concentration of the insoluble endoplasmic reticulum used is preferably 0.001% to 10%, more preferably 0.01% to 5%, and particularly preferably 0.1% to 1%.
- Insoluble endoplasmic reticulum can also be used in which the surface of the insoluble endoplasmic reticulum is coated with a hydrophilic protein such as bovine serum albumin or a polymer compound such as polyethylene glycol (PEG) or polyvinylpyrrolidone (PVA). .
- the insoluble endoplasmic reticulum and the binder or the analog to be measured may be physically bonded or may be chemically bonded.
- physical bonds include non-covalent bonds such as physical adsorption.
- chemical bond include a covalent bond.
- non-covalent bonds include electrostatic bonds, hydrogen bonds, hydrophobic bonds, and coordinate bonds.
- the detection part 5 is preferably a quartz crystal vibrator as the piezoelectric vibrator 6 that is not particularly limited as long as it has the piezoelectric vibrator 6 that is a sensor.
- the piezoelectric vibrator 6 is not particularly limited as long as it is made of a crystal having a piezoelectric effect.
- crystals include crystals such as crystal, Rossiel salt, and electron stone, lithium tantalate (
- Quartz is preferable.
- the carrier 11 is composed of magnetic particles 1 la and a trapper 1 lb or a measurement object analogue 1 lc, and is not particularly limited as long as it is supported on the piezoelectric vibrator 6 by a magnetic force, but the trapper 1
- the measurement object recognition site of the trapper l ib constituting the support 11 and the measurement target recognition site of the binder or label I prefer to be the same, but different! /.
- the magnetic particles in the present embodiment are ferrite or magnetite (magnetite, Fe SO)
- the particle size of the magnetic particles is preferably 1 to: LOOOOOnm force S, more preferably 10 to: LOOOOnm force S, and particularly preferably 100 to 500 Onm.
- the concentration of magnetic particles supplied to the flow path as a labeling body is preferably 0.001% to 10%, more preferably 0.01% to 5%, and particularly preferably 0.1% to 1%. That's right.
- magnetic particles whose surface is coated with a hydrophilic protein such as bovine serum albumin or a polymer compound such as polyethylene glycol (PEG) or polybulurpyrrolidone (PVA) can be used.
- the trapper is not particularly limited as long as the trapper specifically binds to an object to be measured and is fixed on the crystal unit 25 together with magnetic particles.
- Examples of the method for binding the trapper or the analog to be measured to the magnetic particle include physical bonding and chemical bonding.
- physical bonds include non-covalent bonds such as physical adsorption.
- Examples of the chemical bond include a covalent bond.
- Examples of non-covalent bonds include electrostatic bonds, hydrogen bonds, hydrophobic bonds, and coordinate bonds.
- Examples of the method of binding the trapper or the measurement object analogue to the magnetic particles by covalent bonding include a method of binding via a crosslinking agent using a crosslinking agent such as bivalent dartalaldehyde.
- the magnetic force generating member 7 also has means for releasing the magnetic field applied to the piezoelectric vibrator 6.
- the magnetic force generating member 7 is not particularly limited, such as a permanent magnet or an electromagnet. However, it is preferable that the magnetic force generating member 7 can generate a magnetic field reversibly so that the magnetic force can be applied or released as necessary. .
- the magnetic field application range can be changed reversibly by making the position of the magnet relative to the surface of the piezoelectric vibrator 6 variable. It suffices to turn on / off the power supply to the coil.
- the arrangement of the magnetic force generation member 7 is not particularly limited as long as the magnetic field can be selectively and reversibly formed on the piezoelectric vibrator 6.
- the magnetic force generating member 7 may be present in the flow path 3, but if the viewpoint is such that the flow of the sample is not impaired, the flow cell type reaction vessel 2 It is preferably provided outside the channel 3.
- the absorption site 9 is a site provided in the flow cell type reaction vessel 2 for absorbing the unreacted sample and label, and is preferably located downstream of the sample addition site 4 and the detection site 5.
- the absorption site 9 can absorb unreacted components that have passed through the detection site 5 as long as it can absorb unreacted components (unreacted sample or label). The influence of the component on the detection site 5 can be reduced.
- an absorptive polymer compound can be used as the absorption site 9.
- the polymer compound include cellulose, glass fiber, cotton, polyurethane and the like.
- the absorption part 9 can use a forced discharge means such as a pump.
- washing liquid The cleaning liquid is not particularly limited as long as it can wash the sample components and the label that cannot react on the piezoelectric vibrator 6, but an aqueous medium is preferable. In particular, the above-mentioned aqueous medium containing a surfactant is more preferable.
- the buffer used for the buffer is not particularly limited as long as it has a buffer capacity.
- the surfactant is not particularly limited as long as it has a surfactant effect, and examples thereof include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant. Nonionic surfactants are preferred.
- Nonionic surfactants include polyoxyethylene sorbitan monolaurate (Tween 20) and polyoxyethylene octyl ether (TritonX-lOO).
- concentration of the surfactant is not particularly limited, but is preferably 0.001 to 20%, more preferably 0.01 to 10%, and particularly preferably 0.05 to 1%.
- the method for controlling the temperature of the reaction liquid in the flow cell type reaction vessel 2 is not particularly limited as long as the temperature can be controlled by heating the entire bottom surface force of the flow cell type reaction vessel 2, but for example, the temperature using a Peltier element Control.
- the measurement object recognition site in the binder 12 or the label 13 may be the same as the measurement object recognition site in the carrier 11 (trapper l ib), but differently. I prefer to do that!
- the reaction at the detection site 5 it is necessary to remove the reaction product generated on the piezoelectric vibrator 6 after the reaction is completed.
- the magnetic interaction magnetic force or magnetic attractive force
- the support 11 disengages from the surface force of the piezoelectric vibrator 6, the reactant on the piezoelectric vibrator 6 is released, and the surface of the piezoelectric vibrator 6 can be easily reset.
- the support 11 is composed of the magnetic particles 1 la and the measurement object analogue 1 lc
- the support 11 is supported on the piezoelectric vibrator 6.
- the supported body 11 reacts competitively with the measurement object 10 with respect to the binder 12 or the label body 13.
- a measurement object-like substance binder or a complex having a label strength is generated.
- the measurement object analogue 11c reacts competitively with the measurement object 10, so if the reaction is accelerated with the measurement object analogue 11c, the corresponding amount in the sample is increased.
- the number of measurement objects 10 is small, and the opposite reaction tendency means that there are many measurement objects 10 in the sample. Therefore, it is possible to indirectly increase the measurement sensitivity of the measurement object 10 by accurately measuring the amount of reaction with the measurement object analog 11c.
- the magnetic field action by the magnetic force generating member 7 is solved in the same manner as in FIG. 3 in order to remove the reaction product generated on the piezoelectric vibrator 6 after the reaction is completed. It can be removed.
- a carrier 11 for example, magnetic particles 1 la + trapper ib
- a label 13 for example, measurement object analogue 13c
- the measurement object 10 in a competitive manner, a composite body having a carrier measurement object or a measurement object analog force is generated on the piezoelectric vibrator 6.
- the measuring instrument 1 in which the carrier 11 is a magnetic particle 11a and a trapper l ib.
- the sample addition site 4 and the piezoelectric vibration A reaction vessel 2 having a detection site 5 with a child 6 and a carrier 11 formed by binding a trapper l ib that specifically binds to a measurement object or a measurement object analog and a magnetic particle 11a.
- a sample reaction step for generating a magnetic material, a magnetic material 11a of the carrier 11 is made to act on a magnetic force, and a magnetic material 11a is magnetically supported on the piezoelectric vibrator 6 and a composite supported on the piezoelectric vibrator 6
- the frequency measurement process for measuring the amount of the body as the amount of change in the frequency of the piezoelectric vibrator 6, and the piezoelectric measured in this frequency measurement process
- a previously prepared calibration curve and the frequency of variation of Doko 6 as long as it includes a concentration determination step of determining the concentration of the measuring object 10 in the sample.
- a washing step for the detection site 5 is included between the sample reaction process and the frequency measurement step, and unnecessary components at the detection site 5 are removed. It is preferable.
- a sample addition site 4 and a piezoelectric vibrator 6 are provided.
- the reaction vessel 2 having the detection site 5 and the support 11 formed by binding the trapper 11b specifically binding to the measurement object or the measurement object analog and the magnetic particle 11a are used.
- the sample reaction step of reacting with the body 11 to generate a complex containing the label body, the magnetic particles 11a of the carrier 11 acting magnetically, and the magnetic particles 11a are magnetically supported on the piezoelectric vibrator 6
- Supporting process Measures the amount of composite supported on the piezoelectric vibrator 6 as the amount of change in the frequency of the piezoelectric vibrator 6
- a frequency measurement step and a concentration determination step for determining the concentration of the measurement object 10 in the sample from the amount of change in the frequency of the piezoelectric vibrator 6 measured in the frequency measurement step and a calibration curve prepared in advance. If you do,
- FIG. 4 and FIG. 8 (a As shown in (b) , A reaction vessel 2 having a detection part 5 provided with a sample addition part 4 and a piezoelectric vibrator 6, a carrier 11 formed by combining a measurement object analogue 11c and a magnetic particle 11a, and a measurement object 10 or A method for measuring a measurement object 10 in a sample using a binder 12 that specifically binds to a measurement object analog or a labeled body 13 formed by binding the binder 13b and an insoluble vesicle 13a, In reaction container 2, specifically binds to the measurement object 10 or the measurement object analogue in the reaction object 10 and the measurement object analog 1 lc and magnetic particles 1 la.
- Magnetic particle 11a magnetically piezoelectric vibrator A carrier supporting process for supporting the piezoelectric vibrator 6, a frequency measuring process for measuring the amount of the composite supported on the piezoelectric vibrator 6 as a change in the frequency of the piezoelectric vibrator 6, and this frequency measuring process
- a concentration determining step for determining the concentration of the measurement object 10 in the sample from the amount of change in the frequency of the piezoelectric vibrator 6 measured in step 1 and a calibration curve prepared in advance may be provided.
- the supply step includes the step of supplying the sample and the binder 12 or the label 13 from the sample addition part 4. It may be added at the same time or before and after.
- the supply step Any sample may be used as long as the sample is added from the sample addition site 4 and the binder 12 or the label 13 held in advance in the Noinder Z label supply site 8 moves together with the sample.
- any plurality of detection part 5 may be provided corresponding to the above, and the detection site 5 may be set at an arbitrary location. According to this aspect, it is possible to cause the magnetic fields generated by the plurality of magnetic force generating members 7 to act separately, and to allow only the magnetic field acting region to function as the detection portion 5.
- the above-described measuring instrument 1 that supplies the analyte 13c to the detection site 5 with the labeled body 13 bound to the insoluble endoplasmic reticulum 13a and the piezoelectric vibrator 6 at the detection site 5 of the measurement instrument 1 were generated.
- Trapper--measurement object or trapper--measurement object--binder or trapper--one measurement object Composite consisting of a label or measurement object analogue Non-one or measurement object analogue
- the frequency measuring means 15 that measures the amount of the complex as the labeled body force as the amount of change in the vibration frequency of the piezoelectric vibrator 6, and the amount of change in the vibration frequency of the piezoelectric vibrator 6 that is measured by the vibration frequency measuring means 15 and created in advance. Measurement in the sample from the measured calibration curve That a density determining means 16 for determining the concentration of an object 10 and the like.
- the measuring instrument 1, the frequency measuring means 15, and the concentration determining means 16 may be provided separately, or the measuring instrument 1 is provided with the frequency measuring means 15 and the concentration determining means 16. You may make it provide integrally by incorporating.
- FIG. 9 is an explanatory view showing Embodiment 1 of the measuring apparatus to which the present invention is applied.
- the measurement apparatus includes a measurement instrument 20 for measuring a measurement object in a sample, and an analysis processing apparatus 100 that performs analysis processing based on a sensor output from the measurement instrument 20.
- the measuring instrument 20 has a flow cell type reaction vessel 21 in which a measurement object in a sample can move along a flow path 22 as shown in FIG. 9 and FIG.
- the flow cell type reaction vessel 21 is sealed with a cover 30 so that a sensor substrate 24 of a QCM (Quartz Crystal Microbalance) sensor 23 is the bottom of the vessel and a flow path 22 with a predetermined gap is secured on the sensor substrate 24.
- a liquid inflow opening 31 is formed in a part of the cover 30 of the flow cell type reaction vessel 21 located upstream of the flow path 22 and a liquid outflow is provided in a part located downstream of the flow path 22. Opening 32 is established.
- a sample container 34 is connected to one liquid inflow opening 31 via a tube 33 and functions as a sample addition site A, and the other liquid outflow opening 32 via a tube 35.
- the syringe pump 36 is connected to function as an absorption site D.
- the label added from the sample addition site A is supplied at the same time as the sample or after the sample is added.
- the QCM sensor 23 has a quartz resonator 25 mounted on the surface of the sensor substrate 24, and a portion of the flow path 22 corresponding to the surface of the quartz resonator 25 is detected. It is designed to function as C.
- a magnet 40 made of, for example, a permanent magnet is installed on the back surface of the sensor substrate 24 at a position where the crystal unit 25 is mounted!
- the magnet 40 is detachable, and when the magnet 40 is installed, the position is adjusted so that the surface portion of the crystal unit 25 is disposed in the magnetic field application region by the magnet 40.
- a carrier 11 (magnetic particle l la + trapper l ib or measurement object analogue 11c) is carried on the surface of the crystal unit 25 by the magnetic field of the magnet 40 (FIG. 1 or FIG. 4). reference).
- the sensor substrate 24 is placed on a constant temperature block 51 made of, for example, aluminum, which is maintained at a constant temperature by, for example, a Peltier element 52! Consideration is given to prevent changes in the resonance frequency.
- the analysis processing device 100 calculates the concentration of the measurement object in the sample based on the frequency measurement circuit that measures the resonance characteristics of the crystal unit 25 and the information on the frequency measurement circuit force. It should be equipped with a concentration calculation circuit.
- the resonance characteristics of the crystal unit 25 are measured using the network analyzer 101, and the measured resonance characteristic data is stored in a personal computer (PC).
- Crystal vibration by taking in 102 and calculating An example is a configuration in which the resonance frequency of the element 25 is obtained and the calculation is performed on the resonance frequency force concentration using a calibration curve.
- the resonance frequency from the resonance characteristics of the crystal unit 25 measure the resonance characteristics (frequency-admittance characteristics) near the resonance frequency of the crystal unit 25 using a network analyzer 101, etc. Find the equivalent circuit constants using mathematical means such as the least-squares method to match the admittance characteristics shown by.
- an equivalent circuit of the crystal unit 25 can be expressed by a parallel connection of a series resonant circuit of an inductance Lx, a capacitance Cx, and a loss resistance Rx and a parallel capacitance Cp such as an electrode capacitance.
- the admittance Y of the crystal unit can be obtained by Equation 1 and Equation 2.
- J is a complex number (1 1) 1/2
- ⁇ is an angular frequency
- fo is a resonance frequency
- ⁇ is a circularity
- the resonance frequency fo of the quartz crystal is calculated by the equivalent circuit constant Lx , Formula from Cx
- the personal computer 102 preferably has a display device 103 for displaying the concentration calculation result!
- the crystal resonator 25 is, for example, an AT-cut crystal resonator having a thickness-shear vibration mode, and is preferably one that oscillates at a fundamental resonance frequency of 5 to 50 MHz. Further, one crystal unit 25 may be used as in the present embodiment, but a plurality of crystal units 25 may be used.
- the structure of the sensor substrate 24 may be selected as appropriate, but an example is shown in FIGS. 12 (a) and 12 (b).
- the sensor substrate 24 is a double-sided printed circuit board made of glass epoxy, for example.
- plate 61 on the top surface, make two land patterns 62 to connect with electrodes 65 and 66 of crystal unit 25 and the vibrating part of crystal unit 25 not to contact printed circuit board 61.
- a U-shaped pattern 63 for a pedestal is arranged.
- the crystal unit 25 is arranged such that the electrode connection part of the crystal unit 25 is placed on the electrode connection land pattern 62, and is electrically connected with, for example, conductive silicone resin.
- the periphery of the crystal unit 25 is, for example, a silicone adhesive 64. It is sealed with.
- the wiring 67 from the electrode connecting land pattern 62 is drawn to the lower surface of the printed circuit board 61 through the through hole and extends to the connection terminal 68 to avoid short circuit due to the sample solution.
- the front electrode 65 and the back electrode 66 are both provided with connection portions 69a so that they can be connected to the electrode connection land pattern 62 of the printed circuit board 61 on the back surface. It is electrically connected by the extraction electrode 69.
- the front electrode 65 is routed by the extraction electrode 69 to the connection portion 69a on the back surface via the left side surface of the crystal unit 25.
- the sensor substrate 24 constitutes a part of the flow cell type reaction vessel 21, but the present invention is not limited to this.
- an adhesive is used. You should do it in a scientific way using chemicals!
- the adhesive used is silicone conductive adhesive, epoxy conductive adhesive, anisotropic conductive film (ACF), anisotropic conductive paste (ACP), etc. for electrical connection, and waterproof and fixing. Silicone adhesives, epoxy adhesives, etc. are used.
- the carrier 11 carried on the crystal unit 25 is detached from the external force of the reaction vessel 21 and the magnetic field generated by the magnet 40 is released. There is no particular restriction as long as you can leave 11.
- a solution containing a carrier (magnetic particle + trapper or similar object to be measured) is added from the sample addition site A of the measuring instrument 20, and a magnet is placed on the surface of the quartz crystal resonator 25.
- the magnetic field generated by 40 is applied, the carrier is supported on the crystal unit 25, and cleaning with the cleaning liquid is performed.
- the sample and the binder (or labeled body) are added to the sample addition site A of the measuring instrument 20, and the measurement object and the binder (or labeled body) in the sample are the flow cell type of the measuring instrument 20.
- the amount of the complex produced by specifically binding to the carrier is detected as the amount of change in the vibration frequency of the crystal unit 25, and the concentration of the measurement object in the sample is measured via the analysis processing device 100.
- the conditions under which the measurement object in the sample reacts with the carrier (for example, a trapper) on the crystal unit 25 or the measurement object in the sample and the label in the reaction solution are not particularly limited as long as it allows specific reaction, but the reaction temperature is usually 0 ° C-100 ° C, preferably 10-60 ° C, more preferably 20-40 ° C. Is done.
- the measurement time is usually 10 seconds to 10 hours, preferably 30 seconds to 5 hours, more preferably 1 minute to 1 hour.
- the measurement using a standard substance with a known concentration for preparing a calibration curve may be repeated individually using the same measuring device 20, but using an apparatus configured by combining a plurality of measuring devices 20.
- the measurement object 10 is measured directly or indirectly.
- the magnetic field action by the magnet 40 is canceled and the cleaning liquid is allowed to flow, so that the carrier 11 is separated from the surface of the quartz oscillator 25 as shown in FIG. 3, for example.
- the reactant on the crystal unit 25 is surely removed.
- the measuring instrument 20 can be reused.
- FIG. 14 shows Embodiment 2 of the measuring apparatus to which the present invention is applied.
- the basic configuration of the measuring device is provided with a measuring instrument 20 and an analysis processing device 100 in substantially the same manner as in the first embodiment, but unlike in the first embodiment, it is applied to POCT (point-of-care testing). Considering the correspondence, it is designed to be a small and simple configuration. Components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted here.
- the entire apparatus is obtained by incorporating the analysis processing device 100 into the measuring instrument 20, and has two element forces, that is, a measurement unit S1 and a measurement result analysis processing unit S2.
- the measurement unit S1 includes a QCM sensor 23 (a sensor substrate 24 on which a crystal unit 25 is mounted), a plastic upper cover 71, a lower cover 72, and various membranes 81 to 83.
- the upper cover 71 is formed by hollowing out the channel 22 part, and is placed on the sensor substrate 24 in a detachable and watertight manner, and a gap formed between the two is defined as the channel 22 It is getting used.
- a portion of the flow channel 22 is secured long, and on one side of the flow channel 22, there is a sample holding membrane 81 that functions as the sample addition site A.
- a label (or binder) holding membrane 82 that functions as a label holding site (or binder holding site) B is sandwiched between the sample holding membrane 81.
- an opening 75 for adding a sample solution with a pipette or the like is provided in the vicinity of the sample addition site A of the upper cover 71.
- the opening 75 also functions as an auxiliary sample container.
- an absorption membrane 83 is sandwiched on the downstream side of the detection site C, so that it functions as the absorption site D.
- the label (binder) holding site B is a site for holding the label (binder) in the flow path 22 of the flow cell type reaction vessel 21 so that the label (binder) can move.
- the material of the label (binder) holding membrane 82 at the label (binder) holding site B may be the same as or different from the material of the sample holding membrane 81 at the sample addition site A. Examples thereof include glass fiber, cellulose, nylon, cross-linked dextran, various chromatographic papers, nitrocellulose and the like, and nitrocellulose is preferable.
- a water-absorbing polymer compound can be used as the absorption membrane 83 of the absorption site D.
- the polymer compound include cellulose, glass fiber, cotton, polyurethane and the like.
- a magnet 40 (for example, a rectangular ferrite magnet) is installed at the position where the crystal resonator 25 is mounted on the lower surface of the sensor substrate 24. The surface will be placed.
- the mounting method of the sensor substrate 24 and the crystal resonator 25, the electrode drawing method, and the like are substantially the same as those in the first embodiment.
- the sensor substrate 24 is assembled by bonding or fitting with the upper cover 71 and the lower cover 72 sandwiched therebetween. Further, since the crystal unit 25 is disposed in a space sealed by the upper and lower covers 71 and 72, it is not easily affected by environmental temperature changes or wind.
- the measurement unit S1 and the measurement result analysis processing unit S2 can be mechanically connected and disconnected by a connector 85.
- the wiring from the crystal unit 25 is also connected to the measurement result analysis processing unit S 2 via the connector 85.
- the measurement result analysis processing unit S2 includes a frequency measurement circuit and a concentration calculation circuit, as in the first embodiment, but the crystal resonator is used as the frequency measurement circuit.
- a configuration is possible in which 25 is connected to a crystal oscillation circuit 111 to oscillate in the vicinity of the resonance frequency, and the oscillation frequency is measured by the frequency counter 112.
- a control device 113 such as a personal computer, a microprocessor, or a logic operation circuit can be used as the concentration operation circuit.
- the measurement of the resonance frequency of the crystal unit 25 is performed at a frequency slightly higher than the resonance frequency when the crystal unit 25 is oscillated using the crystal oscillation circuit 111. Since it oscillates, it can be regarded as a resonance frequency. And the resonance frequency is obtained by measuring the oscillation output by the frequency counter 112, and the control device 113 using a CPU or the like uses the calibration curve data to determine the concentration of the measurement object from the resonance frequency. And the result can be displayed on the display device 114.
- FIG. 16 shows an example of the crystal oscillation circuit 111, which is a Colpitts type crystal oscillation circuit using a CMOS inverter.
- the wiring from the front electrode and the back electrode of the crystal unit 25 is connected to the crystal oscillation circuit 111 through the wiring of the sensor substrate 24.
- the crystal unit 25 is connected to the ground via the input capacitor 221 and the output capacitor 222 to form a ⁇ -type feedback circuit, and this feedback resistor 223 is inserted between the input and output of the amplifier circuit composed of the CMOS inverter 224.
- the signal is fed back and oscillated.
- the C MOS inverter 224 is used as an inverting amplifier by connecting the input and output with a feedback resistor 223 of several ⁇ power M ⁇ .
- the measuring device does not require large devices such as a syringe pump 36 or a network analyzer, and is a small-sized device suitable for POCT or the like.
- a measuring device can be realized.
- the measuring apparatus is a model using a single crystal unit as the QCM sensor 23. There is no particular problem with these models as long as the frequency drift of the crystal unit itself is negligible compared to the amount of frequency change due to complex coupling, where the frequency drift of the crystal unit itself is relatively small.
- the frequency drift means a frequency fluctuation other than a frequency change based on specific binding of the target substance. For example, when the added sample solution comes into contact with the crystal resonator, the resonator itself or the ambient temperature is changed. Change, and the resonance frequency will change, and components other than the target substance contained in the sample solution will bind to the sensor film and cause a frequency change. It is.
- the drift component is added to the measurement value, which may cause an error in the measurement value.
- the crystal resonator that detects the target substance is called the test crystal resonator.
- This reference crystal unit is attached to the test crystal unit at the detection site in the flow path, and the change in the resonance frequency of each test crystal unit is measured. By subtracting, it is possible to remove the influence of the drift component and reduce the measurement error.
- FIG. 17 is a diagram showing the configuration of the third embodiment using a reference crystal resonator.
- the measurement device according to the present embodiment is basically a reference crystal oscillator added to the second embodiment, and further measures the resonance frequency of the added reference crystal resonator and calculates the difference. This is an improvement of the measurement circuit 120 of the result analysis processing unit S2 (analysis processing device 100).
- a reference crystal resonator 252 is installed downstream of the flow of the sample solution with respect to the test crystal resonator 251 provided at the detection site C in the flow path 22.
- the method of mounting the reference crystal unit 252 can be the same as that of the test crystal unit 251!
- the wiring from the reference crystal resonator 252 is connected to the measurement circuit 120 of the measurement instrument analysis processing unit S2 through the connector 85 through the wiring pattern of the sensor substrate 24.
- the magnet 40 for applying a magnetic field is provided separately for the reference crystal resonator 252 and the test crystal resonator 251, but each magnet resonator 251, The magnet shape and installation position may be adjusted so that the magnetic field concentrates on the 252 electrode surfaces.
- the positional relationship between the reference crystal unit and the test crystal unit can be either upstream or downstream in the case of series connection with the sample solution flow.
- test crystal unit 251 and the reference crystal unit 252 are placed as close as possible so that they are equally affected by drift, the drift cancellation Preferred in terms of becoming more complete.
- FIG. 18 is a diagram showing a configuration of the measurement circuit 120.
- test crystal oscillator 251 and the reference crystal oscillator 252 are connected to the individual crystal oscillator circuits 121 and 122 and frequency counters 123 and 124, respectively. It is configured to continuously measure.
- the Colpitts crystal oscillation circuit used in the second embodiment can be used as the crystal oscillation circuits 121 and 122.
- the measured resonance frequencies are calculated by calculating the difference in the control device 125 so that the drift component is subtracted.
- Reference numeral 126 denotes a display device that displays a calculation result by the control device 125.
- the difference is calculated after the oscillation frequencies of the two are obtained by the frequency counters 123 and 124, but the difference frequency is created directly from the outputs of the two crystal oscillation circuits 121 and 122 using a logic circuit.
- a method of measuring the difference frequency with a counter may be used.
- FIG. 19 is a diagram showing another configuration of the measurement circuit 120.
- the reference crystal resonator 252 and the test crystal resonator 251 are switched by the switching circuit 130 and are alternately oscillated by one crystal oscillation circuit 131 to measure the frequency.
- the switching circuit 130 can be an electromagnetic relay or an electronic relay such as an analog switch.
- Switching is performed by a switching signal generated in the control device 133.
- the switching timing can be in the range of several 0.1s of force and several tens of seconds. If the switching time is short, the measurement accuracy of the frequency counter 132 will deteriorate. Conversely, if the switching time is long, the resonance frequency on the non-oscillating side Since the state of change disappears, a force of about 1 second per second is usually appropriate.
- Reference numeral 134 denotes a display device that displays a calculation result by the control device 133.
- force using separate crystal resonators for the test crystal resonator 251 and the reference crystal resonator 252 for example, two channels in which two sets of electrodes are provided on one crystal substrate.
- a quartz crystal can also be used.
- a 2-channel crystal unit is used, and the drift removal capability is superior compared to using two individual crystal units. It is suitable when higher accuracy and detection limit are required.
- an influenza A virus can be detected with a first reference type 2-channel crystal resonator
- an influenza B virus can be detected with a second reference type 2-channel crystal resonator.
- 2-channel crystal unit In addition to the 2-channel crystal unit, it can also be applied to crystal units with 3 or more channels.
- FIG. 20 shows a measuring instrument according to the fourth embodiment.
- Quartz crystal unit 25 control crystal unit 25 is placed in channel 22 (22) of line n
- control crystal unit 25 is a crystal unit on which a sensor film that specifically detects magnetic particles not forming a complex is formed. Can be used as an index to indicate whether the measurement itself has been completed normally, that is, whether measurement is possible.
- n crystal resonators at the detection site are used as test crystal resonators, so that the same measurement object in n samples can be measured simultaneously. And n measurement objects in the same specimen can be simultaneously measured.
- one of the multiple lines is used as the reference crystal unit 25.
- crystals are formed at a plurality of locations (P to P) of the reaction vessel 21.
- the vibrator 25 (25 to 25) and a plurality of carriers (A to 8) are supported by the magnet 40 (40 to 40).
- the respective supporting bodies (A to A) are detached separately from the surface of the crystal unit 25. be able to.
- the supports (A to A) may be different from each other, but two or more types may be the same.
- the binder or the label may be different from each other, and two or more kinds of force may be the same.
- sample addition site A is shared, but this is not limited to this. As shown in FIG. 22, the sample addition site for each channel is shown. A may be provided.
- test crystal resonators 25, 25 ⁇ ' ⁇ 25 are arranged at the detection site of the flow path 22 of the line 1 and the flow path 22 of the line 1, while the line ⁇
- the reference crystal unit 25 By disposing the reference crystal unit 25 in the flow path 22, it is possible to remove the influence of drift components on a plurality of types of measurement objects, for example, and to reduce measurement errors.
- the present invention it is possible to provide a measuring instrument effective for measuring a measurement object contained in a sample to be analyzed such as a living body, food, and soil, a measurement method and a measurement apparatus using the measurement instrument. I'll do it.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
When a piezoelectric oscillator is arranged at a detection portion of a reaction vessel, a piezoelectric oscillator sensor film can be easily generated and the sensor can easily be reproduced, thereby enabling re-use. A measurement instrument (1) includes a reaction vessel (2) capable of supplying a measurement object (10) in a sample. The reaction vessel (2) includes a piezoelectric oscillator (6) arranged at a detection portion (5) capable of detecting a measurement object (10); a magnetic force generation material (7) capable of selectively and reversibly forming a magnetic field in the piezoelectric oscillator (6); and a carrier (11) formed by magnetic particles (11a) and a trapper (11b) capable of specifically binding the measurement object (10) or formed by the magnetic particles (11a) and an object (11c) similar to the measurement object and magnetically carried on the surface of the piezoelectric oscillator (6) when a magnetic field is applied to the piezoelectric oscillator (6). There are also provided a measurement kit using the measurement instrument (1), a measuring method and device for measuring the concentration of a measurement object, and a piezoelectric oscillator reproducing method.
Description
明 細 書 Specification
測定器具及びこれを用いた測定用キット、測定方法、測定装置並びに圧 電振動子の再生方法 Measuring instrument, measuring kit using the same, measuring method, measuring device, and method of regenerating piezoelectric vibrator
技術分野 Technical field
[0001] 本発明は、生体、食品、土壌等の分析対象試料に含有される測定対象物を測定す るための測定器具に係り、特に、反応容器の検出部位に圧電振動子を有し、この圧 電振動子表面部で測定対象物との反応を行わせる態様に有効な測定器具及びこれ を用いた測定用キット、測定方法、測定装置並びに圧電振動子の再生方法に関する 背景技術 [0001] The present invention relates to a measuring instrument for measuring a measurement object contained in a sample to be analyzed such as a living body, food, or soil, and in particular, has a piezoelectric vibrator at a detection site of a reaction vessel, BACKGROUND ART Related to a measuring instrument effective in an aspect in which a reaction with an object to be measured is performed on the surface portion of the piezoelectric vibrator, a measuring kit, a measuring method, a measuring apparatus using the same, and a method for regenerating a piezoelectric vibrator
[0002] 従来、水晶振動子等の圧電振動子を用いる定量分析および定性分析が知られて おり、例えば水晶振動子の電極表面に目的物質等を担持させる方法としては、 SA M(Self Assembled Monolayer)法等が用いられている(例えば、非特許文献 1を参照) また、水晶振動子上へ目的物質を担持した後に、水晶振動子センサーを再利用す る方法が知られている。例えば水晶振動子表面に目的物質を結合した後にセンサー 膜の再生を行う方法としては、例えばピランノ、溶液 (濃硫酸: 30%過酸ィ匕水素 = 3 : 1 )を用いて化学的に目的物質を遊離する方法 (例えば、非特許文献 1を参照)や、水 晶振動子上に吸着した煙粒子 (吸着分子)を熱風源を用いて離脱させることにより水 晶振動子センサーを再利用する方法 (例えば、特許文献 1を参照)や、水晶振動子 センサー中の水晶基板の構造を平坦構造とすることでこの面の洗浄を容易にし、水 晶振動子センサーを再利用する方法 (例えば、特許文献 2を参照)が知られている。 Conventionally, quantitative analysis and qualitative analysis using a piezoelectric vibrator such as a quartz vibrator are known. For example, as a method of loading a target substance on the electrode surface of a quartz vibrator, SA M (Self Assembled Monolayer ) Method or the like is used (for example, see Non-Patent Document 1). Further, a method of reusing a crystal resonator sensor after supporting a target substance on the crystal resonator is known. For example, as a method of regenerating the sensor film after binding the target substance to the surface of the crystal unit, the target substance is chemically treated using, for example, pyranno, solution (concentrated sulfuric acid: 30% hydrogen peroxide = 3: 1). (For example, see Non-Patent Document 1) and a method of reusing a crystal resonator sensor by separating smoke particles (adsorbed molecules) adsorbed on the crystal resonator using a hot air source (For example, see Patent Document 1) and a method of reusing the crystal resonator sensor by making the surface of the crystal substrate in the crystal resonator sensor flat to facilitate cleaning of this surface (for example, patent (Ref. 2) is known.
[0003] し力しながら、 SAM法は、例えば水晶振動子の電極表面に所定の目的物質からな るセンサー膜を生成する工程が非常に煩雑で時間を要するという技術的課題を有し ていた。一方、水晶振動子センサーには、高価な金電極を使用するため、金電極の 再利用が望まれている。従来の水晶振動子センサーの再利用法は、いずれも水晶 振動子の電極表面に生成されたセンサー膜をィ匕学的処理又は熱風源による熱振動
を与えて離脱させる等、離脱処理が煩雑であることから、簡便な水晶振動子センサー の再利用法の出現が望まれている。 [0003] However, the SAM method has a technical problem that, for example, the process of generating a sensor film made of a predetermined target substance on the electrode surface of a crystal resonator is very complicated and time-consuming. . On the other hand, the quartz vibrator sensor uses an expensive gold electrode, so that it is desired to reuse the gold electrode. All of the conventional methods for reusing a quartz crystal sensor are: a sensor film generated on the surface of the crystal oscillator electrode, or thermal treatment by a hot air source. Since the separation process is complicated, for example, by giving a detachment, a simple method for reusing a crystal resonator sensor is desired.
特に、 In particular,
近年、検査方法の迅速化、多様化または環境分野、食品分野の検査の流れから、被 検者の近傍での試料の採取カゝら測定結果の出力を行うポイントォブケアテスティン グ (POCT)が盛んになつてきており、 POCTに対応可能な簡便で高感度な測定器 具及びこれを用いた測定方法並びに測定装置の開発が望まれている。 In recent years, point-of-care testing (POCT) has been carried out to output sample measurement results in the vicinity of a subject in accordance with the rapid and diversified testing methods and the flow of testing in the environmental and food fields. Therefore, the development of a simple and highly sensitive measuring instrument that can handle POCT, a measuring method and a measuring apparatus using the measuring instrument is desired.
[0004] 非特許文献 1 :「バイオケミストリー(Biochemistry)」アメリカ化学会, 1998年,第 37卷 , 5666— 5672頁 [0004] Non-Patent Document 1: “Biochemistry” American Chemical Society, 1998, 37th, 5666- 5672
特許文献 1:特開 2000— 275157号公報 Patent Document 1: Japanese Patent Laid-Open No. 2000-275157
特許文献 2:特開 2000— 283905号公報 Patent Document 2: JP 2000-283905 A
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 本発明は、以上の技術的課題を解決するためになされたものであって、反応容器 の検出部位に圧電振動子を配設した態様において、圧電振動子センサー膜を容易 に生成でき、し力も、当該センサーを容易に再生することにより再利用が可能となる 測定器具及びこれを用いた測定用キット、測定方法並びに測定装置を提供すること にある。 [0005] The present invention has been made to solve the above technical problem, and in a mode in which a piezoelectric vibrator is disposed at a detection site of a reaction vessel, a piezoelectric vibrator sensor film can be easily generated. Another object of the present invention is to provide a measuring instrument, a measuring kit, a measuring method, and a measuring apparatus that can be reused by easily regenerating the sensor.
課題を解決するための手段 Means for solving the problem
[0006] すなわち、本発明は以下の(1)〜(29)に関する。 That is, the present invention relates to the following (1) to (29).
(1) 測定対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒子 とが結合してなる担持体、あるいは、測定対象物類似物と磁性粒子とが結合してなる 担持体を用いて試料中の測定対象物を測定するための測定器具であって、試料添 加部位及び圧電振動子を備えた検出部位を有する反応容器と、この圧電振動子に 磁場を作用させるための磁力発生部材とを備え、担持体が、磁力発生部材の磁力に より圧電振動子上に磁気的に担持されるものであることを特徴とする測定器具。 (1) A carrier formed by binding a trapper that specifically binds to a measurement object or a measurement object analog and a magnetic particle, or a carrier formed by combining a measurement object analog and a magnetic particle. A measurement instrument for measuring a measurement object in a sample using a reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and for applying a magnetic field to the piezoelectric vibrator A measuring instrument comprising: a magnetic force generating member, wherein the carrier is magnetically supported on the piezoelectric vibrator by the magnetic force of the magnetic force generating member.
[0007] (2) 前記(1)記載の測定器具において、磁力発生部材は、圧電振動子に作用させ た磁場を解除する手段を兼ね備えていることを特徴とする測定器具。
(3) 前記(1)又は(2)記載の測定器具において、反応容器は、測定対象物若しくは 測定対象物類似物に特異的に結合するバインダー、又は、該バインダー若しくは測 定対象物類似物と不溶性小胞体とが結合してなる標識体が供給可能なバインダー 又は標識体供給部位を有することを特徴とする測定器具。 [0007] (2) The measuring instrument according to (1), wherein the magnetic force generation member also has means for releasing the magnetic field applied to the piezoelectric vibrator. (3) In the measuring instrument according to the above (1) or (2), the reaction container is bonded to the measurement object or the measurement object analog, or the binder or the measurement object analog. A measuring instrument comprising a binder or a labeled body supply site capable of supplying a labeled body formed by binding to an insoluble endoplasmic reticulum.
(4) 前記(1)又は(2)記載の測定器具において、反応容器は、測定対象物及び担 持体が流路に沿って移動可能なフローセル型であり、該フローセル型反応容器の流 路に試料添加部位及び検出部位が設けられていることを特徴とする測定器具。 (4) In the measuring instrument according to (1) or (2), the reaction container is a flow cell type in which the measurement object and the support body can move along the flow path, and the flow path of the flow cell type reaction container A measuring instrument, wherein a sample addition site and a detection site are provided.
[0008] (5) 前記(3)記載の測定器具にお ヽて、反応容器は、測定対象物、担持体及び標 識体が流路に沿って移動可能なフローセル型であり、該フローセル型反応容器の流 路に試料添加部位、検出部位及びバインダー又は標識体供給部位が設けられて ヽ ることを特徴とする測定器具。 [0008] (5) In the measuring instrument according to (3), the reaction container is a flow cell type in which the measurement object, the support, and the label can move along the flow path. A measuring instrument comprising a sample addition site, a detection site, and a binder or label supply site in the flow path of the reaction vessel.
(6) 前記(5)記載の測定器具にお 、て、バインダー又は標識体供給部位はフロー セル型反応容器の流路のうち試料添加部位の下流側に設けられることを特徴とする 測定器具。 (6) The measuring instrument according to (5), wherein the binder or label supply site is provided downstream of the sample addition site in the flow path of the flow cell type reaction vessel.
(7) 前記(5)記載の測定器具にお 、て、試料添加部位は、バインダー又は標識体 供給部位を兼ねることを特徴とする測定器具。 (7) The measuring instrument according to (5), wherein the sample addition site also serves as a binder or label supply site.
(8) 前記 (4)乃至(7)のいずれかに記載の測定器具において、検出部位の下流側 には吸収部位を備えことを特徴とする測定器具。 (8) The measuring instrument according to any one of (4) to (7), wherein an absorption part is provided downstream of the detection part.
[0009] (9) 前記(1)乃至(8)のいずれかに記載の測定器具において、複数種の担持体が 用いられることを特徴とする測定器具。 (9) A measuring instrument according to any one of (1) to (8), wherein a plurality of types of carriers are used.
(10) 前記(1)乃至(9)のいずれかに記載の測定器具において、複数の圧電振動 子が検出部位に具備されていることを特徴とする測定器具。 (10) The measuring instrument according to any one of (1) to (9), wherein a plurality of piezoelectric vibrators are provided at a detection site.
(11) 前記(10)記載の測定器具において、各圧電振動子に対し、磁力発生部材が それぞれ具備されて ヽることを特徴とする測定器具。 (11) The measuring instrument according to (10), wherein a magnetic force generating member is provided for each piezoelectric vibrator.
(12) 前記(1)乃至(11)いずれかに記載の測定器具において、圧電振動子が水 晶振動子であることを特徴とする測定器具。 (12) The measuring instrument according to any one of (1) to (11), wherein the piezoelectric vibrator is a crystal oscillator.
(13) 前記 (4)乃至(12)のいずれかに記載の測定器具において、フローセル型反 応容器は複数の流路を備えることを特徴とする測定器具。
(14) 前記(5)乃至(13)のいずれかに記載の測定器具において、バインダー又は 標識体供給部位に予めノインダー又は標識体が移動可能に保持されることを特徴と する測定器具。 (13) The measuring instrument according to any one of (4) to (12), wherein the flow cell type reaction container includes a plurality of flow paths. (14) The measuring instrument according to any one of (5) to (13), wherein a noinder or a label is movably held in advance at a binder or label supply site.
(15) 前記(1)乃至(14)のいずれかに記載の測定器具において、担持体が圧電振 動子表面に予め磁気的に担持されていることを特徴とする測定器具。 (15) The measuring instrument according to any one of (1) to (14), wherein the carrier is magnetically supported on the surface of the piezoelectric vibrator in advance.
[0010] (16) 前記(1)乃至(13)のいずれかに記載の測定器具と担持体とを含有することを 特徴とする測定用キット。 [0010] (16) A measuring kit comprising the measuring instrument according to any one of (1) to (13) and a carrier.
(17) 前記( 1 )乃至( 13)の 、ずれかに記載の測定器具と担持体とバインダー若しく は標識体とを含有することを特徴とする測定用キット。 (17) A measuring kit comprising the measuring instrument according to any one of (1) to (13), a support, and a binder or a label.
[0011] (18) 試料添加部位及び圧電振動子を備えた検出部位を有する反応容器、及び、 測定対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒子とが 結合してなる担持体を用いて試料中の測定対象物を測定する方法であって、反応容 器中で、試料中の測定対象物と担持体とを反応させ、担持体 測定対象物を含む 複合体を生成させる試料反応工程、担持体の磁性粒子に磁力を作用させ、磁性粒 子を磁気的に圧電振動子上に担持する担持体担持工程、圧電振動子上に担持され た複合体の量を圧電振動子の振動数の変化量として測定する振動数測定工程、お よび、この振動数測定工程で測定した圧電振動子の振動数の変化量と予め作成し た検量線とから試料中の測定対象物の濃度を決定する濃度決定工程を備えたことを 特徴とする測定方法。 [0011] (18) A reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and a trapper that specifically binds to a measurement object or a measurement object analog and magnetic particles are combined. The measurement object in the sample is measured using the support, and the measurement object in the sample and the support are reacted in a reaction container, and the composite including the support is measured. The sample reaction step to be generated, the magnetic force acting on the magnetic particles of the carrier, the carrier carrying step of magnetically carrying the magnetic particles on the piezoelectric vibrator, and the amount of the composite carried on the piezoelectric vibrator is piezoelectric The measurement target in the sample from the frequency measurement process measured as the change in the vibration frequency of the vibrator, and the change in the vibration frequency of the piezoelectric vibrator measured in this frequency measurement process and the calibration curve created in advance. It features a concentration determination process that determines the concentration of the product. Measurement method.
[0012] (19) 前記(18)記載の測定方法であって、さらに、反応容器中で、試料と測定対象 物若しくは測定対象物類似物に特異的に結合するバインダー又は該バインダーと不 溶性小胞体とが結合してなる標識体とを反応させ、担持体 測定対象物 バインダ 一を含む複合体、担持体 測定対象物 標識体を含む複合体を生成させる工程を 含むことを特徴とする測定方法。 (19) The measurement method according to (18), further comprising a binder that specifically binds to the sample and the measurement object or the measurement object analog in the reaction container, or a small amount insoluble in the binder. A measurement method comprising: reacting a labeled body formed by binding with a cell body to generate a complex including a carrier, a measurement object, and a binder; and a carrier, a measurement object, and a complex including the label. .
[0013] (20) 試料添加部位及び圧電振動子を備えた検出部位を有する反応容器、及び、 測定対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒子とが 結合してなる担持体を用いて試料中の測定対象物を測定する方法であって、反応容 器中で、試料中の測定対象物及び測定対象物類似物と不溶性小胞体とが結合して
なる標識体を担持体に反応させ、担持体 標識体を含む複合体を生成させる試料 反応工程、担持体の磁性粒子に磁力を作用させ、磁性粒子を磁気的に圧電振動子 上に担持する担持体担持工程、圧電振動子上に担持された複合体の量を圧電振動 子の振動数の変化量として測定する振動数測定工程、および、この振動数測定工程 で測定した圧電振動子の振動数の変化量と予め作成した検量線とから試料中の測 定対象物の濃度を決定する濃度決定工程を備えたことを特徴とする測定方法。 (20) A reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and a trapper that specifically binds to a measurement object or a measurement object analog and magnetic particles are combined. The measurement object in the sample is measured using the carrier, and the measurement object in the sample and the analog of the measurement object are bound to the insoluble endoplasmic reticulum in the reaction container. The sample reacts with the carrier to form a complex containing the carrier, and the carrier carries the magnetic particles on the piezoelectric vibrator by applying a magnetic force to the magnetic particles of the carrier. A body supporting step, a frequency measuring step for measuring the amount of the composite supported on the piezoelectric vibrator as a change amount of the frequency of the piezoelectric vibrator, and a frequency of the piezoelectric vibrator measured in the frequency measuring step. A measurement method comprising a concentration determination step for determining the concentration of a measurement object in a sample from a change amount of the sample and a calibration curve prepared in advance.
[0014] (21) 試料添加部位及び圧電振動子を備えた検出部位を有する反応容器、測定対 象物類似物と磁性粒子とが結合してなる担持体、及び、測定対象物若しくは測定対 象物類似物に特異的に結合するバインダー又は該バインダーと不溶性小胞体とが 結合してなる標識体を用いて試料中の測定対象物を測定する方法であって、反応容 器中で、試料中の測定対象物及び測定対象物類似物と磁性粒子とが結合してなる 担持体と測定対象物若しくは測定対象物類似物に特異的に結合するバインダー又 は該バインダーと不溶性小胞体とを反応させ、担持体 バインダー又は担持体ー標 識体を含む複合体を生成させる試料反応工程、担持体の磁性粒子に磁力を作用さ せ、磁性粒子を磁気的に圧電振動子上に担持する担持体担持工程、圧電振動子上 に担持された複合体の量を圧電振動子の振動数の変化量として測定する振動数測 定工程、および、この振動数測定工程で測定した圧電振動子の振動数の変化量と 予め作成した検量線とから試料中の測定対象物の濃度を決定する濃度決定工程を 備えたことを特徴とする測定方法。 [0014] (21) A reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, a carrier formed by binding a measurement object analogue and magnetic particles, and a measurement object or measurement object A method for measuring a measurement object in a sample using a binder that specifically binds to an analog or a label formed by binding the binder to an insoluble endoplasmic reticulum. The object to be measured and the object to be measured and the magnetic object are bonded to each other. The carrier and the binder that specifically binds to the object to be measured or the object to be measured or the binder and the insoluble vesicle are reacted. , Support body Sample reaction process for generating a composite containing a binder or a support body-a label body, a support body support that applies magnetic force to the magnetic particles of the support body and magnetically supports the magnetic particles on the piezoelectric vibrator Process, supported on piezoelectric vibrator Frequency measurement step of measuring the amount of the composite as a change amount of the vibration frequency of the piezoelectric vibrator, and the change amount of the vibration frequency of the piezoelectric vibrator measured in this frequency measurement step and a calibration curve prepared in advance And a concentration determination step for determining the concentration of the measurement object in the sample.
[0015] (22) 前記(18)乃至(21)のいずれかに記載の測定方法において、圧電振動子上 に担持された該複合体の洗浄を行う洗浄工程を含むことを特徴とする測定方法。 [0015] (22) The measurement method according to any one of (18) to (21), further including a cleaning step of cleaning the complex supported on the piezoelectric vibrator. .
(23) 前記(18)乃至(22)のいずれかに記載の測定方法において、試料反応工程 の前に、担持体担持工程を行うことを特徴とする測定方法。 (23) The measurement method according to any one of (18) to (22), wherein a support carrying step is performed before the sample reaction step.
(24) 前記(18)乃至(23)のいずれかに記載の測定方法において、反応容器は、 測定対象物及び担持体が流路に沿って移動可能なフローセル型であり、該フローセ ル型反応容器の流路に該試料添加部位及び該検出部位が設けられていることを特 徴とする測定方法。 (24) In the measurement method according to any one of (18) to (23), the reaction vessel is a flow cell type in which the measurement object and the support can move along the flow path, and the flow cell type reaction is performed. A measurement method characterized in that the sample addition site and the detection site are provided in a flow path of a container.
(25) 前記(24)記載の測定方法において、バインダー又は標識体が流路に保持さ
れており、試料添加部位に試料を添加することにより、試料反応工程を開始すること を特徴とする測定方法。 (25) In the measurement method according to (24), the binder or the label is held in the flow path. And a sample reaction step is started by adding the sample to the sample addition site.
[0016] (26) 前記(1)乃至(17)のいずれかに記載の測定器具と、この測定器具の検出部 位の圧電振動子上に担持された複合体の量を圧電振動子の振動数の変化量として 測定する振動数測定手段とを含むことを特徴とする測定装置。 [0016] (26) The amount of the composite carried on the measurement instrument according to any one of (1) to (17) above and the piezoelectric vibrator at the detection unit of the measurement instrument is determined by the vibration of the piezoelectric vibrator. And a frequency measuring means for measuring the change in the number.
(27) 前記(1)乃至(17)のいずれかに記載の測定器具と、この測定器具の検出部 位の圧電振動子上に担持された複合体の量を圧電振動子の振動数の変化量として 測定する振動数測定手段と、この振動数測定手段で測定した圧電振動子の振動数 の変化量と予め作成した検量線とから試料中の測定対象物の濃度を決定する濃度 決定手段とを含むことを特徴とする測定装置。 (27) The amount of the composite carried on the measurement device according to any one of (1) to (17) above and the piezoelectric vibrator at the detection unit of the measurement device is changed in the frequency of the piezoelectric vibrator. A frequency measuring means for measuring as a quantity, and a concentration determining means for determining the concentration of the measurement object in the sample from the amount of change in the vibration frequency of the piezoelectric vibrator measured by the frequency measuring means and a calibration curve prepared in advance. A measuring apparatus comprising:
(28) 測定対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒 子とが結合してなる担持体、あるいは、測定対象物類似物と磁性粒子とが結合してな る担持体と、圧電振動子とを用いる試料中の測定対象物の測定における圧電振動 子の再生方法であって、磁力発生手段により圧電振動子上に担持された担持体と測 定対象物とからなる複合体を測定した後に、磁場解除手段により担持体を解離させ ることを特徴とする圧電振動子の再生方法。 (28) A support formed by binding a trapper that specifically binds to a measurement object or a measurement object analog and a magnetic particle, or a measurement object analog and a magnetic particle. A method for reproducing a piezoelectric vibrator in measurement of a measurement object in a sample using a carrier and a piezoelectric vibrator, comprising: a carrier and a measurement object carried on the piezoelectric vibrator by a magnetic force generating means. A method for regenerating a piezoelectric vibrator, comprising: measuring a composite body, and then dissociating the carrier by a magnetic field release means.
(29) 前記(28)記載の再生方法にお!、て、圧電振動子が水晶振動子であることを 特徴とする再生方法。 (29) The reproducing method according to (28), wherein the piezoelectric vibrator is a quartz crystal vibrator.
発明の効果 The invention's effect
[0017] 本発明に係る測定器具によれば、測定対象物又は測定対象物類似物に特異的に 結合するトラッパ一と磁性粒子とが結合してなる担持体、あるいは、測定対象物類似 物と磁性粒子とが結合してなる担持体を用いて試料中の測定対象物を測定するため の測定器具であって、試料添加部位及び圧電振動子を備えた検出部位を有する反 応容器と、この圧電振動子に磁場を選択的に作用させるための磁力発生部材とを備 え、磁力発生部材の磁力により圧電振動子上に前記担持体を磁気的に担持させる ようにしたので、磁力発生部材による磁場を作用若しくは作用解除することにより、圧 電振動子上にセンサー膜として機能する担持体を簡単に生成できると共に、除去す ることが可能である。このため、検出部位に圧電振動子を具備した測定器具におい
て、圧電振動子センサー膜を容易に生成でき、し力も、当該センサーを容易に再生 することにより測定器具の再利用が可能となる。 [0017] According to the measuring instrument of the present invention, a support formed by binding a trapper that specifically binds to a measurement object or a measurement object analog and a magnetic particle, or a measurement object analog A measuring instrument for measuring an object to be measured in a sample using a carrier bonded to magnetic particles, the reaction container having a sample addition site and a detection site equipped with a piezoelectric vibrator, and this A magnetic force generating member for selectively applying a magnetic field to the piezoelectric vibrator is provided, and the carrier is magnetically supported on the piezoelectric vibrator by the magnetic force of the magnetic force generating member. By acting or canceling the magnetic field, a carrier functioning as a sensor film can be easily generated on the piezoelectric vibrator and can be removed. For this reason, in a measuring instrument equipped with a piezoelectric vibrator at the detection site, Thus, the piezoelectric vibrator sensor film can be easily generated, and the force can be reused by easily regenerating the sensor.
また、本発明に係る測定器具及び担持体、更にはノ インダー若しくは標識体をも含 めて測定用キットとすれば、測定対象物の測定を極めて簡単に行うことができる。 更に、この種の測定器具を用いた測定方法及びその装置によれば、圧電振動子セ ンサー膜の生成、当該センサーの再生が容易な測定器具を用いることで、試料中の 多数項目の測定対象物につき迅速且つ精度良く測定することができる。 In addition, if the measurement kit includes a measuring instrument and a carrier according to the present invention, and further includes a noinder or a label, the measurement object can be measured very easily. Furthermore, according to the measuring method and apparatus using this type of measuring instrument, a measuring instrument that can easily generate a piezoelectric vibrator sensor film and regenerate the sensor can be used to measure a large number of items in a sample. It is possible to measure quickly and accurately for each object.
更にまた、本発明に係る圧電振動子の再生方法によれば、圧電振動子センサーを 容易に再生することができる。 Furthermore, according to the method for reproducing a piezoelectric vibrator according to the present invention, the piezoelectric vibrator sensor can be easily reproduced.
図面の簡単な説明 Brief Description of Drawings
[図 1] (a)は本発明に係る測定器具の基本的構成を示す平面説明図、(b)はその検 出部位を示す説明図である。 [FIG. 1] (a) is an explanatory plan view showing a basic configuration of a measuring instrument according to the present invention, and (b) is an explanatory view showing a detection site thereof.
[図 2] (a)〜 (c)は図 1の測定器具による測定原理を示す説明図である。 [FIG. 2] (a) to (c) are explanatory views showing the measurement principle by the measuring instrument of FIG.
[図 3]図 1の測定器具の反応終了後の状態を示す説明図である。 3 is an explanatory view showing a state after the reaction of the measuring instrument of FIG. 1 is completed.
[図 4] (a) (b)は本発明に係る測定器具の他の態様及びその測定原理を示す説明図 である。 [FIG. 4] (a) and (b) are explanatory views showing another embodiment of the measuring instrument according to the present invention and the measurement principle thereof.
[図 5]図 1の測定器具による別の態様での測定の測定原理を示す説明図である。 FIG. 5 is an explanatory diagram showing a measurement principle of measurement in another aspect by the measurement instrument of FIG. 1.
[図 6] (a)はフローセル型反応容器を含む測定器具に本発明を適用した態様を示す 説明図、(b)は (a)中 M方向から見た矢視図である。 [FIG. 6] (a) is an explanatory view showing an embodiment in which the present invention is applied to a measuring instrument including a flow cell type reaction vessel, and (b) is an arrow view seen from the M direction in (a).
[図 7] (a)はフローセル型反応容器を含む測定器具に本発明を適用したより好ましい 態様を示す説明図、 (b)は (a)中 M方向から見た矢視図である。 [Fig. 7] (a) is an explanatory view showing a more preferred embodiment in which the present invention is applied to a measuring instrument including a flow cell type reaction vessel, and (b) is an arrow view seen from the M direction in (a).
[図 8] (a)は本発明に係る測定器具を用いた測定方法を示す説明図、 (b)はその測 定方法を具現化する測定装置を示す説明図である。 [FIG. 8] (a) is an explanatory view showing a measuring method using the measuring instrument according to the present invention, and (b) is an explanatory view showing a measuring apparatus embodying the measuring method.
[図 9]本発明が適用された測定装置の実施の形態 1を示す説明図である。 FIG. 9 is an explanatory view showing Embodiment 1 of a measuring apparatus to which the present invention is applied.
[図 10]実施の形態 1で用いられる測定器具の平面模式図である。 FIG. 10 is a schematic plan view of a measuring instrument used in Embodiment 1.
[図 11]実施の形態 1で用いられる水晶振動子の等価回路を示す説明図である。 FIG. 11 is an explanatory diagram showing an equivalent circuit of the crystal resonator used in the first embodiment.
[図 12] (a)は実施の形態 1で用いられるセンサー基板を示す平面説明図、 (b)は (a) 中 M方向から見た矢視図である。
[図 13] (a)は実施の形態 1で用いられる水晶振動子を示す平面説明図、 (b)は (a)中 M— M線断面説明図である。 FIG. 12 (a) is an explanatory plan view showing a sensor substrate used in Embodiment 1, and FIG. 12 (b) is an arrow view as viewed from the M direction in (a). FIG. 13 (a) is an explanatory plan view showing the crystal resonator used in the first embodiment, and FIG. 13 (b) is a cross-sectional explanatory view taken along line MM in (a).
圆 14]本発明が適用された測定装置の実施の形態 2を示す説明図である。 [14] FIG. 14 is an explanatory view showing Embodiment 2 of a measuring apparatus to which the present invention is applied.
[図 15]実施の形態 2で用いられる測定器具の平面模式図である。 FIG. 15 is a schematic plan view of a measuring instrument used in Embodiment 2.
圆 16]実施の形態 2で用いられる水晶発振回路を示す説明図である。 16] An explanatory diagram showing a crystal oscillation circuit used in the second embodiment.
圆 17]本発明が適用された測定装置の実施の形態 3を示す説明図である。 圆 17] An explanatory diagram showing a third embodiment of a measuring apparatus to which the present invention is applied.
圆 18]実施の形態 3で用いられる水晶発振回路を示す説明図である。 18] An explanatory diagram showing a crystal oscillation circuit used in the third embodiment.
圆 19]実施の形態 3で用いられる水晶発振回路の変形形態を示す説明図である。 FIG. 19 is an explanatory view showing a modification of the crystal oscillation circuit used in the third embodiment.
[図 20] (a)は本発明が適用された測定装置の実施の形態 4で用いられる測定器具を 示す平面模式図、(b)は (a)中 M方向から見た矢視図である。 [FIG. 20] (a) is a schematic plan view showing a measuring instrument used in Embodiment 4 of the measuring apparatus to which the present invention is applied, and (b) is an arrow view seen from the M direction in (a). .
[図 21] (a) (b)は実施の形態 4に係る測定器具の動作例を示す説明図である。 FIGS. 21 (a) and 21 (b) are explanatory diagrams showing an operation example of the measuring instrument according to the fourth embodiment.
[図 22] (a)は実施の形態 4に係る測定器具の変形形態を示す平面模式図、(b)は (a [FIG. 22] (a) is a schematic plan view showing a variation of the measuring instrument according to Embodiment 4, and (b) is (a
)中 M方向から見た矢視図である。 ) Medium It is an arrow view seen from the M direction.
符号の説明 Explanation of symbols
1 測定器具 1 Measuring instrument
2 反応容器 (フローセル型反応容器) 2 reaction vessel (flow cell type reaction vessel)
3 流路 3 Flow path
4 試料添加部位 4 Sample addition site
5 検出部位 5 Detection site
6 圧電振動子 6 Piezoelectric vibrator
7 磁力発生部材 7 Magnetic force generating member
8 バインダー Z標識体供給部位 8 Binder Z label supply area
9 吸収部位 9 Absorption site
10 測定対象物 10 Measurement object
11 担持体 11 Carrier
11a 磁性粒子 11a Magnetic particles
l ib 卜ラッノ一 l ib
11c 測定対象物類似物
12 バインダー 11c Analogue to be measured 12 binder
13a 不溶性小胞体 13a Insoluble endoplasmic reticulum
13b バインダー 13b binder
13c 測定対象物類似物 13c Analogue to be measured
13 標識体 13 Marker
15 振動数測定手段 15 Frequency measurement means
16 濃度決定手段 16 Concentration determination means
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0020] <本発明の実施の形態の概要説明 > <Overview of Embodiment of the Present Invention>
すなわち、本発明に係る測定器具の代表的態様は、図 l(a)(b)に示すように、測定 対象物 10(図 2(a)参照)又は測定対象物類似物に特異的に結合するトラッパ一 l ibと 磁性粒子 11aとが結合してなる担持体 11を用いて試料中の測定対象物 10を測定す るための測定器具であって、試料中の測定対象物 10(図 2(a)参照)が供給可能な反 応容器 2を含み、この反応容器 2には、測定対象物 10が検出可能な検出部位 5に設 けられる圧電振動子 6と、この圧電振動子 6に磁場を選択的かつ可逆的に作用させ る磁力発生部材 7と、圧電振動子 6に磁場を作用させたときに圧電振動子 6表面に磁 気的に担持される担持体 11とを具備させることを特徴とする。 That is, the representative embodiment of the measuring instrument according to the present invention specifically binds to the measurement object 10 (see FIG. 2 (a)) or the measurement object analog as shown in FIGS. L (a) and (b). A measuring instrument for measuring the measurement object 10 in the sample using the carrier 11 formed by binding the trapper l ib and the magnetic particles 11a, the measurement object 10 in the sample (Fig. 2) (see (a)) includes a reaction container 2 that can be supplied, and the reaction container 2 includes a piezoelectric vibrator 6 provided at a detection site 5 where the measurement target 10 can be detected, and the piezoelectric vibrator 6. A magnetic force generating member 7 that selectively and reversibly applies a magnetic field, and a carrier 11 that is magnetically supported on the surface of the piezoelectric vibrator 6 when the magnetic field is applied to the piezoelectric vibrator 6 are provided. It is characterized by.
[0021] また、本発明に係る測定器具の他の代表的態様は、図 4(a)(b)に示すように、測定 対象物類似物 11cと磁性粒子 11aとが結合してなる担持体 11を用いて試料中の測 定対象物 10を測定するための測定器具であって、試料中の測定対象物 10が供給 可能な反応容器 2を含み、この反応容器 2には、測定対象物 10が検出可能な検出 部位 5に設けられる圧電振動子 6と、この圧電振動子 6に磁場を選択的かつ可逆的 に作用させる磁力発生部材 7と、圧電振動子 6に磁場を作用させたときに圧電振動 子 6表面に磁気的に担持される担持体 11とを具備させることを特徴とする。 [0021] Further, another representative embodiment of the measuring instrument according to the present invention is, as shown in FIGS. 4 (a) and 4 (b), a carrier formed by combining a measurement object analogue 11c and magnetic particles 11a. 11 is a measuring instrument for measuring the measurement object 10 in the sample, and includes a reaction vessel 2 to which the measurement object 10 in the sample can be supplied. When the piezoelectric vibrator 6 provided in the detection part 5 that can detect 10, the magnetic force generating member 7 that selectively and reversibly applies a magnetic field to the piezoelectric vibrator 6, and the magnetic field applied to the piezoelectric vibrator 6 And a carrier 11 that is magnetically supported on the surface of the piezoelectric vibrator 6.
ここで、前者と後者との差異は、前者の担持体 11が磁性粒子 11aとトラッパ一 l ib であるのに対し、後者の担持体 11が磁性粒子 1 laと測定対象物類似物 1 lcとである 点である。 Here, the difference between the former and the latter is that the former carrier 11 is a magnetic particle 11a and a trapper l ib, whereas the latter carrier 11 is a magnetic particle 1 la and a measurement object analogue 1 lc. It is a point.
また、いずれの態様においても、トラッパ一 l ib又は測定対象物類似物 11cが単独
で直接圧電振動子 6表面に担持されることはなぐこれらは磁性粒子 1 laと結合して なる担持体 11の形で圧電振動子 6表面に担持されるものである。 In any embodiment, the trapper l ib or the measurement object analog 11c is used alone. These are not carried directly on the surface of the piezoelectric vibrator 6 but are carried on the surface of the piezoelectric vibrator 6 in the form of a carrier 11 combined with the magnetic particles 1 la.
更に、磁力発生部材 7としては、圧電振動子 6に作用させる磁場を解除する手段を 兼ね備えるものが好ましい。 Further, it is preferable that the magnetic force generating member 7 also has a means for releasing the magnetic field applied to the piezoelectric vibrator 6.
[0022] このような技術的手段において、反応容器 2の代表的態様としては通常試料が添 カロされる試料添加部位 4を有するものが挙げられる (図 6(a)(b)参照)。 [0022] In such technical means, a typical embodiment of the reaction vessel 2 includes one having a sample addition site 4 where a sample is usually added (see FIGS. 6 (a) and 6 (b)).
また、反応容器 2の代表的態様としては、通常測定対象物 10に特異的に結合する バインダー 12又はバインター 13b若しくは測定対象物類似物 13cが不溶性小胞体 1 3aに結合した標識体 13が供給可能なバインダー Z標識体供給部位 8を有するもの が挙げられる (図 2(b)(c),図 5,図 7(a)(b)参照)。 In addition, as a typical embodiment of the reaction vessel 2, a labeled body 13 in which a binder 12 or a binder 13b or a target object analog 13c that specifically binds to a measurement object 10 is bound to an insoluble endoplasmic reticulum 13a can be supplied. And a binder Z labeled body supply site 8 (see FIG. 2 (b) (c), FIG. 5, FIG. 7 (a) (b)).
更に、本発明の測定器具 1は反応容器 2を含むものであればよぐフローセル型反 応容器は勿論である力 これに限られるものではなぐゥエルプレート型反応容器をも 含む。 Further, the measuring instrument 1 of the present invention includes not only a flow cell type reaction vessel as long as it includes the reaction vessel 2, but also includes a well plate type reaction vessel.
[0023] また、フローセル型反応容器 2においては、図 7(a)(b)に示すように、バインダー Z 標識体供給部位 8はバインダー 12又は標識体 13(図 2(b)(c)参照)を供給可能な部位 であれば適宜選定して差し支えな!/、。 [0023] In the flow cell type reaction vessel 2, as shown in FIGS. 7 (a) and 7 (b), the binder Z labeled body supply site 8 is the binder 12 or the labeled body 13 (see FIGS. 2 (b) and (c)). ) Can be selected as long as it can be supplied! /.
例えばフローセル型反応容器 2の流路 3中に予めバインダー 12又は標識体 13が 移動可能に保持されるようにすれば、流路 3の一部にバインダー 12又は標識体 13を 保持しておき、添加された試料と共に移動させることができる。 For example, if the binder 12 or the labeling body 13 is held in advance in the flow path 3 of the flow cell type reaction vessel 2, the binder 12 or the labeling body 13 is held in a part of the flow path 3, It can be moved with the added sample.
また、バインダー Z標識体供給部位 8のレイアウトとしては、図 7(a)(b)に示すように In addition, the layout of the binder Z label supply part 8 is as shown in Figs. 7 (a) and (b).
、フローセル型反応容器 2の流路 3のうち試料添加部位 4の下流側に設けてもよいしAlternatively, it may be provided downstream of the sample addition site 4 in the flow path 3 of the flow cell type reaction vessel 2.
、あるいは、図 6(a)(b)に示すように、試料添加部位 4を兼ねるようにしてもよい。 Alternatively, as shown in FIGS. 6 (a) and 6 (b), the sample addition site 4 may also be used.
[0024] 更に、測定器具 1の好ましい態様としては、図 6(a)(b)又は図 7(a)(b)に示すように、 フローセル型反応容器 2の流路 3のうち検出部位 5の下流側には吸収部位 9を備える ことが好ましい。 [0024] Further, as a preferred embodiment of the measuring instrument 1, as shown in Fig. 6 (a) (b) or Fig. 7 (a) (b), a detection site 5 in the flow path 3 of the flow cell type reaction vessel 2 is used. It is preferable to provide an absorption site 9 on the downstream side.
また、圧電振動子 6としては代表的には水晶振動子が挙げられる。 A typical example of the piezoelectric vibrator 6 is a quartz crystal vibrator.
更に、磁力発生部材 7としては、磁力を発生する部材を広く含むが、代表的には永 久磁石、電磁石等の磁石が用いられる。
[0025] <要素説明 > Furthermore, the magnetic force generating member 7 includes a wide range of members that generate magnetic force, but a permanent magnet, an electromagnet or the like is typically used. [0025] <Element description>
次に、本実施の形態で用いられる各要素の概念について説明する。 Next, the concept of each element used in the present embodiment will be described.
試料 Sample
本実施の形態において使用できる試料には特に制限はないが、例えば全血、血漿 、血清、髄液、唾液、羊水、尿、汗、脾液、涙等の生体試料が挙げられる。また、これ らの試料あるいは、便、食品、土壌由来のものに水性媒体を添加して希釈したり、濃 縮したり、抽出したものも試料として使用することができる。 The sample that can be used in the present embodiment is not particularly limited, and examples thereof include biological samples such as whole blood, plasma, serum, spinal fluid, saliva, amniotic fluid, urine, sweat, spleen, and tears. In addition, these samples or those derived from stool, food or soil can be used as samples by diluting, concentrating or extracting by adding an aqueous medium.
[0026] 水性媒体 [0026] Aqueous medium
水性媒体としては、前述の試料や標識体を溶解するものであれば特に制限はない 力 例えば脱イオン水、蒸留水、緩衝液等が挙げられる力 緩衝液が好ましい。緩衝 液に用いる緩衝剤は緩衝能を有するものならば特に限定されな 、が、 pHl〜: L 1の 例えば乳酸緩衝剤、クェン酸緩衝剤、酢酸緩衝剤、コハク酸緩衝剤、フタル酸緩衝 剤、リン酸緩衝剤、トリエタノールァミン緩衝剤、ジエタノールァミン緩衝剤、リジン緩 衝剤、バルビツール緩衝剤、トリス(ヒドロキシメチル)ァミノメタン緩衝剤、イミダゾール 緩衝剤、リンゴ酸緩衝剤、シユウ酸緩衝剤、グリシン緩衝剤、ホウ酸緩衝剤、炭酸緩 衝剤、グリシン緩衝剤、グッド緩衝剤等が挙げられる。グッド緩衝剤としては、例えば 2 —モルホリノエタンスルホン酸(MES)、ビス(2—ヒドロキシェチル)イミノトリス(ヒドロ キシメチル)メタン(Bis—Tris)、 N—(2—ァセトアミド)イミノニ酢酸 (ADA)、ピペラ ジン—N, N, 一ビス(2—エタンスルホン酸)(PIPES)、 N—(2—ァセトアミド) 2— アミノエタンスルホン酸 (ACES)、 3 モルホリノ一 2 ヒドロキシプロパンスルホン酸( MOPSO)、 N, N ビス(2—ヒドロキシェチル)—2—アミノエタンスルホン酸(BES) 、 3—モルホリノプロパンスルホン酸(MOPS)、 N—[トリス(ヒドロキシメチル)メチル] 2 ァミノェタンスルホン酸(TES)、2—[4 (2 ヒドロキシェチル) 1ーピペラ ジ -ル]エタンスルホン酸(HEPES)、 3— [N, N ビス(2 ヒドロキシェチル)ァミノ ]— 2—ヒドロキシプロパンスルホン酸(DIPSO)、 N— [トリス(ヒドロキシメチル)メチル ]—2 ヒドロキシ一 3 ァミノプロパンスルホン酸 (TAPSO)、ピペラジン一 N, N, 一 ビス(2 ヒドロキシプロパンスルホン酸)(POPSO)、 3— [4— (2 ヒドロキシェチル) — 1—ピペラジ-ル ]— 2 ヒドロキシプロパンスルホン酸(HEPPSO)、 3— [4— (2
—ヒドロキシェチル)—1—ピぺラジュル]プロパンスルホン酸 [ (H) EPPS]、 N [トリ ス(ヒドロキシメチル)メチル]グリシン(Tricine)、 N, N—ビス(2—ヒドロキシェチル) グリシン(Bicine)、 N トリス(ヒドロキシメチル)メチルー 3—ァミノプロパンスルホン酸 (TAPS)、 N—シクロへキシル 2—アミノエタンスルホン酸(CHES)、 N—シクロへ キシル 3 ァミノ一 2 ヒドロキシプロパンスルホン酸(CAPSO)、 N シクロへキシ ルー 3—ァミノプロパンスルホン酸 (CAPS)等が挙げられる。緩衝液の濃度は測定に 適した濃度であれば特に制限はされないが、 0. 001-2. OmolZLが好ましぐ 0. 0 05〜: L OmolZLがより好ましぐ 0. 01〜0. ImolZLが特に好ましい。 The aqueous medium is not particularly limited as long as it dissolves the above-described sample or label. Force buffers such as deionized water, distilled water, and buffer solutions are preferable. The buffer used in the buffer is not particularly limited as long as it has a buffering capacity. However, pH 1 to: L 1 For example, lactate buffer, citrate buffer, acetate buffer, succinate buffer, phthalate buffer , Phosphate buffer, triethanolamine buffer, diethanolamine buffer, lysine buffer, barbitur buffer, tris (hydroxymethyl) aminomethane buffer, imidazole buffer, malate buffer, oxalate buffer Agents, glycine buffer, borate buffer, carbonate buffer, glycine buffer, Good buffer, and the like. Examples of good buffering agents include 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), N- (2-acetamido) iminoniacetic acid (ADA), Piperazine-N, N, monobis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) 2-aminoethanesulfonic acid (ACES), 3 morpholino-2-hydroxypropanesulfonic acid (MOPSO), N , N Bis (2-hydroxyethyl) -2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [Tris (hydroxymethyl) methyl] 2 aminoethanesulfonic acid (TES) ), 2- [4 (2 Hydroxyethyl) 1-piperadi-l] ethanesulfonic acid (HEPES), 3- [N, N bis (2 hydroxyethyl) amino] — 2-hydroxypropanesulfonic acid (DIPSO) , N— (Hydroxymethyl) methyl] -2 hydroxy-1-3aminopropane sulfonic acid (TAPSO), piperazine 1 N, N, 1 bis (2 hydroxypropane sulfonic acid) (POPSO), 3- [4- (2-hydroxyethyl) — 1—Piperazyl] — 2 Hydroxypropanesulfonic acid (HEPPSO), 3— [4— (2 —Hydroxyethyl) —1-piperaduryl] propanesulfonic acid [(H) EPPS], N [Tris (hydroxymethyl) methyl] glycine (Tricine), N, N-bis (2-hydroxyethyl) glycine (Bicine), N Tris (hydroxymethyl) methyl-3-aminopropanesulfonic acid (TAPS), N-cyclohexyl 2-aminoethanesulfonic acid (CHES), N-cyclohexyl 3-amino-2-hydroxypropanesulfonic acid (CAPSO), N cyclohexyl 3-aminopropanesulfonic acid (CAPS), and the like. The concentration of the buffer solution is not particularly limited as long as it is suitable for the measurement, but 0.001-2. OmolZL is preferred 0.0.05-: L OmolZL is more preferred 0.001-0. ImolZL Is particularly preferred.
また、食品や土壌については、これらを前処理したものも試料として使用することが できる。ここで、食品や土壌の前処理とは、例えば食品や土壌中の成分の適当な溶 媒による抽出、化学的修飾等が挙げられる。溶媒としては例えば、前述の水性媒体、 ァセトリトリル、へキサン、メタノール、エタノール、ジクロロメタン、クロ口ホルム、ァセト ン等の有機溶媒等が挙げられる。 In addition, foods and soils that have been pretreated can be used as samples. Here, the pretreatment of food and soil includes, for example, extraction of ingredients in food and soil with an appropriate solvent, chemical modification, and the like. Examples of the solvent include the above-mentioned aqueous media, organic solvents such as acetolyl, hexane, methanol, ethanol, dichloromethane, chloroform, and acetone.
化学的修飾としては例えば、食品や土壌中の成分の化学試薬による構造変換等が 挙げられる。 Examples of the chemical modification include structural conversion of components in food and soil with chemical reagents.
測定対象物 Measurement object
本実施の形態における測定対象物としては、特定の物質と結合するものであれば 特に制限はなぐ例えば抗原抗体反応を用いて測定される成分、酵素反応を用いて 測定される成分、その他の特異的反応により測定される成分等が挙げられるが、抗 原抗体反応を用いて測定される成分が好まし ヽ。 The measurement object in the present embodiment is not particularly limited as long as it binds to a specific substance, for example, a component measured using an antigen-antibody reaction, a component measured using an enzyme reaction, and other specificities. Ingredients measured by a chemical reaction can be mentioned, but a component measured using an antigen antibody reaction is preferred.
抗原抗体反応により測定される成分としては例えば、 IgG、 IgM、 IgA、 IgE、アポ蛋 白 AI、アポ蛋白 ΑΠ、アポ蛋白 Β、アポ蛋白 Ε、リウマチファクター、 D—ダイマー、酸 化 LDL、糖化 LDL、グリコアルブミン、アディポネクチン、 T3、 Τ4、薬剤(抗テンカン 剤等)、 C 反応性蛋白(CRP)、サイト力イン類、 aーフエトプロテイン (AFP)、癌胎 児性抗原(CEA)ゝ CA19— 9、 CA— 125、 PIVKA- II (Protein induced by vitamin Components measured by antigen-antibody reaction include, for example, IgG, IgM, IgA, IgE, apoprotein AI, apoprotein ΑΠ, apoprotein Β, apoprotein Ε, rheumatoid factor, D-dimer, oxidized LDL, glycated LDL , Glycoalbumin, adiponectin, T3, Τ4, drug (anti-tencan, etc.), C-reactive protein (CRP), cytodynamic ins, a-fetoprotein (AFP), cancer fetal antigen (CEA) ゝ CA19 — 9, CA— 125, PIVKA- II (Protein induced by vitamin
K absence-II)、副甲状腺ホルモン(PTH)、ヒト絨毛性ゴナドトロピン(hCG)、甲状 腺刺激ホルモン (TSH)、インスリン、 C ぺプタイド、エストロゲン、抗 GAD抗体、ぺ プシノーゲン、インフルエンザ A型抗原、インフルエンザ B型抗原、コロナウィルス抗
原、 HBV抗原、抗 HBV抗体、 HCV抗原、抗 HCV抗体、 HTLV— I抗原、抗 HTLV I抗体、 HIV抗体、結核抗体、マイコプラズマ抗体、ヘモグロビン Alc、心房性ナト リウム利尿ペプチド (ANP)、脳性ナトリウム利尿ペプチド(BNP)、トロポニン T、トロポ ニン I、クレアチュンキナーゼ MB (CK— MB)、ミオグロビン、 H— FABP (ヒト心臓 由来脂肪酸結合蛋白)、 DON、 NIV、 T2等のカビ毒類、ビスフエノール Α、ノニルフ ェノール、フタル酸ジブチル、ポリ塩素化ビフエ-ル(PCB)類、ダイォキシン類、 ρ, ρ ,—ジクロロジフエニルトリクロロェタン、トリプチルスズ等の内分泌撹乱物質類、大腸 菌等の菌類、卵、乳、小麦、そば、落花生等の食物アレルギー物質やコナヒヨウダニ ゃトャヒョウダ-等のダニ類等のアレルギー物質、抗アレルギー物質抗体等が挙げら れる。 K absence-II), parathyroid hormone (PTH), human chorionic gonadotropin (hCG), thyroid stimulating hormone (TSH), insulin, C peptide, estrogen, anti-GAD antibody, pepsinogen, influenza A antigen, influenza B-type antigen, anti-coronavirus Original, HBV antigen, anti-HBV antibody, HCV antigen, anti-HCV antibody, HTLV-I antigen, anti-HTLV I antibody, HIV antibody, tuberculosis antibody, mycoplasma antibody, hemoglobin Alc, atrial sodium diuretic peptide (ANP), brain sodium Diuretic peptide (BNP), troponin T, troponin I, creatine kinase MB (CK—MB), myoglobin, H—FABP (human heart-derived fatty acid binding protein), DON, NIV, mold fungi such as T2, bisphenol Α, nonylphenol, dibutyl phthalate, polychlorinated biphenyls (PCBs), dioxins, ρ, ρ, endocrine disruptors such as dichlorodiphenyltrichloroethane, tryptyltin, fungi such as enterococci, eggs Food allergens such as milk, wheat, buckwheat, and peanuts, allergens such as mites such as cypress mite and toyohyouda, and anti-allergic antibodies. .
酵素反応を用いて測定される生体成分としては例えば、グルコース、 1, 5 アンヒ ドログルシトール、ヘモグロビン Alc、グリコアルブミン、フコース、尿素、尿酸、アンモ 二了、クレアチュン、総コレステロール、遊離コレステロール、高密度リポタンパク中の コレステロール(HDL— C)、低密度リポタンパク中のコレステロール(LDL— C)、超 低密度リポタンパク中のコレステロール (VLDL— C)、レムナント様リポタンパク中の コレステロール (RLP— C)、トリグリセライド、リン脂質、総蛋白、アルブミン、グロブリ ン、ピリルビン、胆汁酸、シアル酸、乳酸、ピルビン酸、遊離脂肪酸、セル口プラスミン 、ァラニンアミノトランスフェラーゼ (ALT)、ァスパラギン酸アミノトランスフェラーゼ (A ST)、クレアチンホスホキナーゼ (CPK)、ホスホキナーゼ(PK)、アミラーゼ、リパー ゼ、コリンエステラーゼ、 Ίーグルタミルトランスぺプチダーゼ、ロイシンアミノぺプチ ダーゼ、 L 乳酸デヒドロゲナーゼ(LDH)、アルドラーゼ、アルカリフォスファターゼ 、酸フォスファターゼ、 Ν ァセチルダルコサミ-ダーゼ、グアナーゼ、モノアミンォキ シダーゼ等が挙げられる。 Examples of biological components measured using an enzymatic reaction include glucose, 1,5-anhydroglucitol, hemoglobin Alc, glycoalbumin, fucose, urea, uric acid, ammonia, creatine, total cholesterol, free cholesterol, and high-density lipoprotein. Cholesterol in protein (HDL—C), cholesterol in low density lipoprotein (LDL—C), cholesterol in very low density lipoprotein (VLDL—C), cholesterol in remnant-like lipoprotein (RLP—C), Triglyceride, phospholipid, total protein, albumin, globulin, pyrilvin, bile acid, sialic acid, lactic acid, pyruvic acid, free fatty acid, cell mouth plasmin, alanine aminotransferase (ALT), aspartate aminotransferase (A ST), Creatine phosphokinase (CPK) Over peptidase (PK), amylase, lipase, cholinesterase, I Monteagle Tamil trans peptidase, leucine aminopeptidase Daze, L-lactic acid dehydrogenase (LDH), aldolase, alkaline phosphatase, acid phosphatase, New § cetyl Darco Sami - Daze, Guanaze And monoamine oxidase.
その他の特異的結合により測定される成分としては、核酸、レクチン等を用いる方 法があげられ、例えば ras等のガン遺伝子、 p53等のガン抑制遺伝子等をコードする DNAまたは RNA、ペプチド核酸、アブタマ一、糖蛋白質等が挙げられる。 Examples of other components to be measured by specific binding include methods using nucleic acids, lectins and the like. For example, DNA or RNA encoding cancer genes such as ras, cancer suppressor genes such as p53, peptide nucleic acids, and abutama 1, glycoprotein and the like.
測定対象物類似物 Similar object to be measured
測定対象物類似物としては、バインダー又はトラッパ一に対して、試料中の測定対
象物と競合的に反応するものであれば特に制限はなく例えば、測定対象物それ自体 、ノインダーまたはトラッパ一に対するェピトープを含有する物質等が挙げられる。 The analog of the measurement object is the measurement pair in the sample with respect to the binder or trapper. There is no particular limitation as long as it reacts competitively with the figurine, and examples include the measurement object itself, a substance containing an epitope for a noinder or trapper, and the like.
[0029] 反応容器 [0029] Reaction vessel
反応容器 2の代表的態様としてはフローセル型がある。 A typical embodiment of the reaction vessel 2 is a flow cell type.
ここでいうフローセル型反応容器 2とは試料が流れる流路 3を有するものを広く含む ものであり、ィムノクロマトグラフィー、液体クロマトグラフィー、マイクロ化学システム等 に適用されている。ィムノクロマトグラフィーにおいては、試料添加部位に添加された 試料溶液は、毛細現象によりメンブレン中を移動し、検出部位で測定される。液体ク 口マトグラフィ一においては、ポンプにより液体が流れるフローセル中に設置された試 料添加部位に測定対象物を含んだ試料を注入し、検出部位で測定される。マイクロ 化学システムは、ガラスやプラスチック等の基板上に微細加工技術を利用して微小な 流路を加工し、半導体集積回路のように化学装置を集積化した分析ィ匕学センサーで あるが、基板上に設置された試料添加部位に試料を添加すると、流路中を移動し、 流路の末端に設置された検出部位にて測定される。 As used herein, the flow cell type reaction vessel 2 widely includes those having a flow path 3 through which a sample flows, and is applied to immunochromatography, liquid chromatography, microchemical systems, and the like. In immunochromatography, the sample solution added to the sample addition site moves through the membrane by capillary action and is measured at the detection site. In liquid chromatography, a sample containing a measurement object is injected into a sample addition site installed in a flow cell through which liquid flows by a pump, and measurement is performed at a detection site. A micro chemical system is an analytical sensor that integrates chemical devices such as semiconductor integrated circuits by processing minute flow paths on a substrate such as glass or plastic using micro processing technology. When a sample is added to the sample addition site installed above, the sample moves in the channel and is measured at the detection site installed at the end of the channel.
また、フローセル型反応容器 2の材質としては、プラスチック、シリカ、セラミックス、 ガラス、金属、グラフアイト、榭脂、多孔質メンブレン等が挙げられる。 Examples of the material of the flow cell type reaction vessel 2 include plastic, silica, ceramics, glass, metal, graphite, resin, and porous membrane.
尚、反応容器としてはゥエルプレートなどの固定セル型を始め適宜選定して差し支 えない。 As the reaction vessel, a fixed cell type such as a well plate can be selected as appropriate.
[0030] 流路 [0030] Channel
フローセル型反応容器 2に設置される流路 3としては、試料と共に測定対象物、バ インダー、標識体が保持され、吸着せずに流れ、少なくとも試料添加部位 4と検出部 位 5とを形成可能としたものであればよぐ材質としてはプラスチック、シリカ、セラミツ タス、ガラス、金属、グラフアイト、多孔質メンブレン等が好ましい。多孔質メンブレンの 材質としては例えばガラス繊維、セルロース、ナイロン (登録商標)、架橋デキストラン 、各種のクロマトグラフィー用紙、ニトロセルロースなどが挙げられ、ニトロセルロース が好ましい。また、流路径としては、好ましくは lnm〜10cm、より好ましくは lOOnm 〜lcm、特に好ましくは 1 μ m〜 2mmである。 The flow path 3 installed in the flow cell type reaction vessel 2 holds the measurement object, binder, and label together with the sample, flows without adsorption, and can form at least the sample addition site 4 and the detection site 5 As a material that can be used, plastic, silica, ceramics, glass, metal, graphite, porous membrane, etc. are preferable. Examples of the material of the porous membrane include glass fiber, cellulose, nylon (registered trademark), crosslinked dextran, various chromatographic papers, nitrocellulose, and the like, and nitrocellulose is preferable. The channel diameter is preferably lnm to 10 cm, more preferably lOOnm to lcm, and particularly preferably 1 μm to 2 mm.
また、フローセル型反応容器 2の流路 3としては少なくとも一つあればよいが、測定
範囲を拡大するという観点力もすれば、複数ラインの流路 3を備え、各ラインの流路 3 に試料添加部位 4と検出部位 5とを少なくとも設けるようにしてもょ ヽ。 In addition, at least one flow path 3 of the flow cell type reaction vessel 2 may be used. From the viewpoint of expanding the range, it is also possible to provide multiple lines of flow paths 3 and provide at least the sample addition site 4 and the detection site 5 in the flow path 3 of each line.
[0031] 試料添加部位 [0031] Sample addition site
試料添加部位 4は試料をフローセル型反応容器 2に添加するための部位であり、試 料添加部位 4の材質としては例えばガラス繊維、セルロース、ナイロン、架橋デキスト ラン、各種のクロマトグラフィー用紙、ニトロセルロース等が挙げられ、ニトロセルロー スが好ましい。 The sample addition site 4 is a site for adding the sample to the flow cell type reaction vessel 2. Examples of the material of the sample addition site 4 include glass fiber, cellulose, nylon, cross-linked dextran, various chromatographic papers, and nitrocellulose. Nitrocellulose is preferable.
バインダー Z標識体供給部位 Binder Z label supply site
このバインダー Z標識体供給部位 8はバインダー又は標識体を供給する部位であ り、試料添加部位 4をバインダー Z標識体供給部位 8と兼用し、試料添加部位 4と同 一箇所からバインダー Z標識体を供給することもできるし、試料添加部位 4と異なる 箇所力も供給することもできる。この場合、ノインダー Z標識体供給部位 8からバイン ダー Z標識体を添加することもできるが、部材中にバインダー Z標識体を保持するよ うにしてもよい。 The binder Z label supply part 8 is a part for supplying a binder or a label, and the sample addition part 4 is also used as the binder Z label supply part 8, and the binder Z label is supplied from the same part as the sample addition part 4. It is also possible to supply a point force different from the sample addition site 4. In this case, the binder Z label can be added from the noinder Z label supply site 8, but the binder Z label may be held in the member.
ノインダー Z標識体供給部位 8の材質としては試料添加部位 4と同一又は異なつ てよぐ例えばガラス繊維、セルロース、ナイロン、架橋デキストラン、各種のクロマトグ ラフィー用紙、ニトロセルロース等が挙げられる。 Examples of the material of the Norder Z labeled substance supply site 8 include glass fiber, cellulose, nylon, cross-linked dextran, various chromatographic papers, nitrocellulose, and the like, which are the same as or different from those of the sample addition site 4.
[0032] バインダー [0032] Binder
本実施の形態におけるバインダー 12は、流路 3中に移動可能な状態で存在し、磁 性粒子と結合することができ、かつ、測定対象物に特異的に結合するものであれば 特に制限はないが、例えば、抗体と該抗原に特異的に結合する抗体やアブタマ一、 糖類と該糖類に対するレクチン、 DNAと該 DNAに相補的な DNA等が挙げられ、そ れぞれ一方のものが使用できる。 The binder 12 in the present embodiment is present in a state where it can move in the flow path 3, and can be bound to magnetic particles. For example, antibodies and antibodies that specifically bind to the antigen and the antigen, saccharides and lectins for the saccharides, DNA and DNA complementary to the DNA, etc., each of which is used it can.
[0033] 標識体 [0033] Marker
標識体 13とは、測定対象物類似物又はバインダー 13b及び不溶性小胞体 13aと から構成され、圧電振動子 6上に生成した担持体 11を含有する複合体の量に依存し た情報を発信するものであれば特に制限はないが、標識体 13により圧電振動子 6の 振動数変化が増加するものが好ましい。標識体 13における測定対象物認識部位と
担持体 11における測定対象物認識部位とは同じであってもよいが、異なっていること が好ましい。 The labeled body 13 is composed of a measurement object analog or binder 13b and an insoluble vesicle 13a, and transmits information depending on the amount of the complex containing the carrier 11 formed on the piezoelectric vibrator 6. There is no particular limitation as long as it is a material, but a material in which the frequency change of the piezoelectric vibrator 6 is increased by the marker 13 is preferable. The object recognition site on the label 13 The measurement object recognition site in the carrier 11 may be the same, but is preferably different.
[0034] 不溶性小胞体 [0034] Insoluble endoplasmic reticulum
前述の測定対象物類似物又はバインダー 13bと結合する不溶性小胞体 13aとして は、圧電振動子 6上に生成した複合体を振動数の変化量として検出できるものであ れば特に制限はないが、質量が大きぐ圧電振動子 6の振動数の変化を増加できる ものが好ましい。質量の大きい不溶性小胞体としては例えば、金属コロイド、ラテック ス等が挙げられ、金属コロイドとしては例えば金コロイド、銀コロイド等が挙げられる。 また、反応容器としてフローセル型反応容器を使用する場合には、不溶性小胞体と して磁性粒子も用いることができる。不溶性小胞体の粒子径としては、 0.1〜: LOOOO nmが好ましぐ 1〜: LOOOnmがより好ましぐ 5〜500nmが特に好ましい。使用する 不溶性小胞体の濃度としては、 0. 001%〜10%が好ましぐ 0. 01%〜5%がより好 ましぐ 0. 1%〜1%が特に好ましい。また、不溶性小胞体として、不溶性小胞体表 面に牛血清アルブミン等の親水性蛋白質や、ポリエチレングリコール (PEG)やポリビ -ルピロリドン (PVA)等の高分子化合物をコーティングしてあるものも使用できる。 There is no particular limitation on the insoluble vesicle 13a that binds to the measurement object analog or the binder 13b as long as the complex formed on the piezoelectric vibrator 6 can be detected as the amount of change in the frequency. What can increase the change in the frequency of the piezoelectric vibrator 6 having a large mass is preferable. Examples of insoluble vesicles having a large mass include metal colloids and latex, and examples of metal colloids include gold colloids and silver colloids. In addition, when a flow cell type reaction vessel is used as the reaction vessel, magnetic particles can also be used as the insoluble vesicle. The particle size of the insoluble endoplasmic reticulum is preferably 0.1 to: LOOOO nm 1 to: 5 to 500 nm, more preferably LOOOnm. The concentration of the insoluble endoplasmic reticulum used is preferably 0.001% to 10%, more preferably 0.01% to 5%, and particularly preferably 0.1% to 1%. Insoluble endoplasmic reticulum can also be used in which the surface of the insoluble endoplasmic reticulum is coated with a hydrophilic protein such as bovine serum albumin or a polymer compound such as polyethylene glycol (PEG) or polyvinylpyrrolidone (PVA). .
[0035] 不溶性小胞体にバインダー又は測定対象物類似物を結合する方法 [0035] A method of binding a binder or an analyte-like analog to an insoluble endoplasmic reticulum
不溶性小胞体とバインダー又は測定対象物類似物とは、物理的に結合してもよい 力 化学的に結合してもよい。物理的結合としては、例えば物理吸着等の非共有結 合が挙げられる。化学的な結合としては、例えば共有結合が挙げられる。非共有結 合としては、例えば静電的結合、水素結合、疎水結合、配位結合等が挙げられる。 不溶性小胞体とバインダーとを共有結合により結合させて標識体を調製する方法とし ては、例えば 2価性のダルタルアルデヒド等の架橋剤を用いて、架橋剤を介して不溶 性小胞体とバインダーを結合させる方法が挙げられる。 The insoluble endoplasmic reticulum and the binder or the analog to be measured may be physically bonded or may be chemically bonded. Examples of physical bonds include non-covalent bonds such as physical adsorption. Examples of the chemical bond include a covalent bond. Examples of non-covalent bonds include electrostatic bonds, hydrogen bonds, hydrophobic bonds, and coordinate bonds. As a method for preparing a labeled body by covalently bonding an insoluble vesicle and a binder, for example, using a cross-linking agent such as divalent daltaraldehyde, the insoluble vesicle and the binder are passed through the cross-linking agent. The method of combining is mentioned.
[0036] 検出部位 [0036] Detection site
検出部位 5としては、センサーである圧電振動子 6を有するものであれば特に制限 はなぐ圧電振動子 6として水晶振動子が好ましい。 The detection part 5 is preferably a quartz crystal vibrator as the piezoelectric vibrator 6 that is not particularly limited as long as it has the piezoelectric vibrator 6 that is a sensor.
ー圧電振動子 (水晶振動子) -Piezoelectric vibrator (quartz crystal vibrator)
この圧電振動子 6は、圧電効果を有する結晶からなるものであれば特に制限はなく
、結晶としては、例えば水晶、ロッシエル塩、電子石などの結晶、タンタル酸リチウム(The piezoelectric vibrator 6 is not particularly limited as long as it is made of a crystal having a piezoelectric effect. Examples of crystals include crystals such as crystal, Rossiel salt, and electron stone, lithium tantalate (
LiTaO )、ニオブ酸リチウム (LiNbO )などの酸ィ匕物単結晶や、酸ィ匕亜鉛 (ZnO)等LiTaO), lithium niobate (LiNbO), etc., single crystals of acids, zinc oxide (ZnO), etc.
2 3 twenty three
が挙げられ、水晶が好ましい。 Quartz is preferable.
[0037] 担持体 [0037] Carrier
担持体 11は磁性粒子 1 laとトラッパ一 1 lb若しくは測定対象物類似物 1 lcとからな り、磁力によって圧電振動子 6上に担持されるものであれば特に制限はないが、トラッ パー 1 lbと磁性粒子 1 laとからなる担持体 11を用いる場合には、担持体 11を構成す るトラッパ一 l ibの測定対象物認識部位と、バインダー又は標識体の測定対象物認 識部位とは同じであってもよ 、が、異なって!/、ることが好ま 、。 The carrier 11 is composed of magnetic particles 1 la and a trapper 1 lb or a measurement object analogue 1 lc, and is not particularly limited as long as it is supported on the piezoelectric vibrator 6 by a magnetic force, but the trapper 1 When using the support 11 consisting of lb and magnetic particles 1 la, the measurement object recognition site of the trapper l ib constituting the support 11 and the measurement target recognition site of the binder or label I prefer to be the same, but different! /.
[0038] 磁性粒子 [0038] Magnetic particles
本実施の形態における磁性粒子は、フェライトやマグネタイト (磁鉄鉱、 Fe SO ) The magnetic particles in the present embodiment are ferrite or magnetite (magnetite, Fe SO)
3 4を 主成分とし、質量が大きく磁石に効率良く反応するものが好ましい。磁性粒子の粒子 径としては、 1〜: LOOOOOnm力 S好ましく、 10〜: LOOOOnm力 Sより好ましく、 100〜500 Onmが特に好ましい。標識体として流路中に供給される磁性粒子の濃度としては、 0 . 001%〜10%が好ましぐ 0. 01%〜5%がより好ましぐ 0. 1%〜1%が特に好ま しい。また、磁性粒子として、磁性粒子表面に牛血清アルブミン等の親水性蛋白質 や、ポリエチレングリコール(PEG)やポリビュルピロリドン(PVA)等の高分子化合物 をコ一ティングしてあるものも使用できる。 Those having 3 4 as the main component and large mass that reacts efficiently with the magnet are preferred. The particle size of the magnetic particles is preferably 1 to: LOOOOOnm force S, more preferably 10 to: LOOOOnm force S, and particularly preferably 100 to 500 Onm. The concentration of magnetic particles supplied to the flow path as a labeling body is preferably 0.001% to 10%, more preferably 0.01% to 5%, and particularly preferably 0.1% to 1%. That's right. In addition, magnetic particles whose surface is coated with a hydrophilic protein such as bovine serum albumin or a polymer compound such as polyethylene glycol (PEG) or polybulurpyrrolidone (PVA) can be used.
[0039] トラッパ一 [0039] Trapper
トラッパ一は測定対象物に特異的に結合し、磁性粒子とともに水晶振動子 25上に 固定ィ匕されるものであれば特に制限はな 、が、例えば抗原と該抗原に特異的に結合 する抗体やアブタマ一、糖類と該糖類に対するレクチン、 DNAと該 DNAに相補的 な DNA等が挙げられ、それぞれ一方のものが使用できる。 The trapper is not particularly limited as long as the trapper specifically binds to an object to be measured and is fixed on the crystal unit 25 together with magnetic particles. For example, an antigen and an antibody that specifically binds to the antigen And abutama, saccharides and lectins for the saccharides, DNA and DNA complementary to the DNA, etc., one of which can be used.
[0040] 磁性粒子にトラッパ一又は測定対象物類似物を結合する方法 [0040] Method for binding trapper or measurement object analogue to magnetic particle
磁性粒子にトラッパ一又は測定対象物類似物を結合する方法としては、物理的結 合、化学的結合が挙げられる。物理的結合としては、例えば物理吸着等の非共有結 合が挙げられる。化学的な結合としては、例えば共有結合が挙げられる。非共有結 合としては、例えば静電的結合、水素結合、疎水結合、配位結合等が挙げられる。
共有結合により磁性粒子にトラッパ一又は測定対象物類似物を結合する方法として は、例えば 2価性のダルタルアルデヒド等の架橋剤を用いて、架橋剤を介して結合す る方法が挙げられる。 Examples of the method for binding the trapper or the analog to be measured to the magnetic particle include physical bonding and chemical bonding. Examples of physical bonds include non-covalent bonds such as physical adsorption. Examples of the chemical bond include a covalent bond. Examples of non-covalent bonds include electrostatic bonds, hydrogen bonds, hydrophobic bonds, and coordinate bonds. Examples of the method of binding the trapper or the measurement object analogue to the magnetic particles by covalent bonding include a method of binding via a crosslinking agent using a crosslinking agent such as bivalent dartalaldehyde.
[0041] 磁力発生部材 [0041] Magnetic force generating member
磁力発生部材 7としては、圧電振動子 6に作用させる磁場を解除する手段を兼ね備 えることが好ましい。 It is preferable that the magnetic force generating member 7 also has means for releasing the magnetic field applied to the piezoelectric vibrator 6.
ここで、磁力発生部材 7としては、永久磁石、電磁石など特に制限はないが、必要 に応じて、磁力を作用させたり、その作用を解除できるように可逆的に磁場を発生し 得る態様が好ましい。例えば永久磁石であれば磁石を取り外し自在にするほか、圧 電振動子 6表面に対する磁石の位置を可変とすることで磁場作用域を可逆的に変化 させるようにすればよぐ電磁石であれば励磁コイルへの通電をオンオフするようにす ればよい。 Here, the magnetic force generating member 7 is not particularly limited, such as a permanent magnet or an electromagnet. However, it is preferable that the magnetic force generating member 7 can generate a magnetic field reversibly so that the magnetic force can be applied or released as necessary. . For example, in the case of a permanent magnet, in addition to making the magnet removable, the magnetic field application range can be changed reversibly by making the position of the magnet relative to the surface of the piezoelectric vibrator 6 variable. It suffices to turn on / off the power supply to the coil.
そして、この磁力発生部材 7の配置としては、圧電振動子 6に磁場を選択的かつ可 逆的に形成し得る配置であれば特に制限はない。特に、反応容器 2がフローセル型 反応容器である場合には、磁力発生部材 7は流路 3中でも差し支えないが、試料の 流れを損なわな 、と 、う観点力 すれば、フローセル型反応容器 2の流路 3外に設け ることが好ましい。 The arrangement of the magnetic force generation member 7 is not particularly limited as long as the magnetic field can be selectively and reversibly formed on the piezoelectric vibrator 6. In particular, when the reaction vessel 2 is a flow cell type reaction vessel, the magnetic force generating member 7 may be present in the flow path 3, but if the viewpoint is such that the flow of the sample is not impaired, the flow cell type reaction vessel 2 It is preferably provided outside the channel 3.
[0042] 吸収部位 [0042] Absorption site
吸収部位 9は、未反応の試料、標識体を吸収するためにフローセル型反応容器 2 に設けられる部位であり、試料添加部位 4及び検出部位 5の下流側に位置することが 好ましい。 The absorption site 9 is a site provided in the flow cell type reaction vessel 2 for absorbing the unreacted sample and label, and is preferably located downstream of the sample addition site 4 and the detection site 5.
この吸収部位 9は未反応成分 (未反応の試料や標識体)を吸収可能な部位であれ ばよぐ検出部位 5を通過した未反応成分を吸収処理することができ、その分、未反 応成分による検出部位 5への影響を低減することができる。 The absorption site 9 can absorb unreacted components that have passed through the detection site 5 as long as it can absorb unreacted components (unreacted sample or label). The influence of the component on the detection site 5 can be reduced.
この吸収部位 9としては、吸収性高分子化合物を使用することができる。この高分子 化合物としては、例えばセルロース、グラスファイバー、コットン、ポリウレタン等が挙げ られる。また、この吸収部位 9はポンプなどによる強制排出手段を用いることもできる。 As the absorption site 9, an absorptive polymer compound can be used. Examples of the polymer compound include cellulose, glass fiber, cotton, polyurethane and the like. In addition, the absorption part 9 can use a forced discharge means such as a pump.
[0043] 洗净液
洗浄液としては、圧電振動子 6上で反応できなかった試料成分、標識体を洗い流 せるものであれば特に制限はないが、水性媒体が好ましい。特に前述の水性媒体に 界面活性剤を含有したものがより好ま ヽ。緩衝液に用いる緩衝剤は緩衝能力を有 するものであれば特に制限されな 、。界面活性剤は界面活性効果を有するものであ れば特に制限されないが、例えば、陽イオン性界面活性剤、陰イオン性界面活性剤 、両性界面活性剤、非イオン性界面活性剤等があげられ、非イオン性界面活性剤が 好ましい。非イオン性界面活性剤としては、ポリオキシエチレンソルビタンモノラウレー ト (Tween20)やポリオキシエチレンォクチルフエ-ルエーテル (TritonX-lOO)等が挙 げられる。界面活性剤の濃度としては、特に制限はないが、 0. 001〜20%が好まし ぐ 0. 01〜10%がより好ましぐ 0. 05〜1%が特に好ましい。 [0043] Washing liquid The cleaning liquid is not particularly limited as long as it can wash the sample components and the label that cannot react on the piezoelectric vibrator 6, but an aqueous medium is preferable. In particular, the above-mentioned aqueous medium containing a surfactant is more preferable. The buffer used for the buffer is not particularly limited as long as it has a buffer capacity. The surfactant is not particularly limited as long as it has a surfactant effect, and examples thereof include a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant. Nonionic surfactants are preferred. Nonionic surfactants include polyoxyethylene sorbitan monolaurate (Tween 20) and polyoxyethylene octyl ether (TritonX-lOO). The concentration of the surfactant is not particularly limited, but is preferably 0.001 to 20%, more preferably 0.01 to 10%, and particularly preferably 0.05 to 1%.
[0044] フローセル型反応容器における温度制御 [0044] Temperature control in a flow cell type reaction vessel
フローセル型反応容器 2の反応液の温度を制御する方法としては、該フローセル型 反応容器 2の下面力 全体を加温することで温度が制御できれば特に制限は無いが 、例えばペルチェ素子を用いた温度制御が挙げられる。 The method for controlling the temperature of the reaction liquid in the flow cell type reaction vessel 2 is not particularly limited as long as the temperature can be controlled by heating the entire bottom surface force of the flow cell type reaction vessel 2, but for example, the temperature using a Peltier element Control.
[0045] <測定器具の動作原理 > [0045] <Operation Principle of Measuring Instrument>
このような測定器具 1のうち、担持体 11が磁性粒子 11aとトラッパ一 l ibとである態 様にあっては、図 2(a)に示すように、磁力発生部材 7による磁気的相互作用(磁力、 あるいは磁気的な引力)により担持体 11が圧電振動子 6表面に担持される。このとき 、試料中の測定対象物 10と担持体 11との反応において、測定対象物 10が担持体 1 1 (具体的にはトラッパ一 l ib)に結合し、トラッパ一一測定対象物からなる複合体が 生成される。 In such a measuring instrument 1, when the carrier 11 is composed of the magnetic particles 11 a and the trapper l ib, as shown in FIG. The carrier 11 is carried on the surface of the piezoelectric vibrator 6 by (magnetic force or magnetic attraction). At this time, in the reaction between the measurement object 10 in the sample and the carrier 11, the measurement object 10 is bonded to the carrier 11 (specifically, the trapper l ib), and consists of the trapper measurement object. A complex is generated.
[0046] また、担持体 11 (磁性粒子 l la+トラッパ一 l ib)と標識体 13とで測定対象物 10を 挟むようなサンドイッチ反応の場合には、図 2(b)(c)に示すように、圧電振動子 6上に 担持される担持体 11は測定対象物 10に結合し、それ自体、測定対象物 10及びバイ ンダー 12又は標識体 13が関与するサンドイッチ反応により、サンドイッチ型複合体( 担持体—測定対象物—バインダー又は標識体)を生成する。 [0046] Further, in the case of a sandwich reaction in which the measurement object 10 is sandwiched between the support 11 (magnetic particle l la + trapper l ib) and the label 13, as shown in FIGS. 2 (b) and 2 (c). In addition, the support 11 supported on the piezoelectric vibrator 6 is bonded to the measurement object 10, and as a result, a sandwich-type complex (by the sandwich reaction involving the measurement object 10 and the binder 12 or the label 13) ( The carrier-measuring object-binder or marker is produced.
このとき、バインダー 12又は標識体 13における測定対象物認識部位と、担持体 11 (トラッパ一 l ib)における測定対象物認識部位とは同じであってもよいが、異なって
、ることが好まし!/、。 At this time, the measurement object recognition site in the binder 12 or the label 13 may be the same as the measurement object recognition site in the carrier 11 (trapper l ib), but differently. I prefer to do that!
[0047] 更に、検出部位 5での反応が終了した場合には、反応終了後、圧電振動子 6上に 生じた反応物を除去することが必要である。本例では、例えば図 3に示すように、磁 力発生部材 7による磁場の作用を解除 (磁場をなくす)すればよぐこの場合、磁気的 相互作用(磁力、あるいは磁気的な引力)が無くなり、担持体 11が圧電振動子 6表面 力 離脱するため、圧電振動子 6上の反応物が遊離することになり、圧電振動子 6表 面を簡単にリセットすることが可能である。 Furthermore, when the reaction at the detection site 5 is completed, it is necessary to remove the reaction product generated on the piezoelectric vibrator 6 after the reaction is completed. In this example, for example, as shown in FIG. 3, it is sufficient to cancel the magnetic field action by the magnetic force generation member 7 (to eliminate the magnetic field). In this case, the magnetic interaction (magnetic force or magnetic attractive force) is eliminated. Since the support 11 disengages from the surface force of the piezoelectric vibrator 6, the reactant on the piezoelectric vibrator 6 is released, and the surface of the piezoelectric vibrator 6 can be easily reset.
[0048] また、図 4(a)(b)のように、担持体 11が磁性粒子 1 laと測定対象物類似物 1 lcとであ る態様にあっては、圧電振動子 6上に担持される担持体 11が、バインダー 12又は標 識体 13に対して測定対象物 10と競合的に反応する。この場合、圧電振動子 6上に は測定対象物類似物 バインダー又は標識体力 なる複合体が生成される。 In addition, as shown in FIGS. 4 (a) and 4 (b), in the embodiment in which the support 11 is composed of the magnetic particles 1 la and the measurement object analogue 1 lc, the support 11 is supported on the piezoelectric vibrator 6. The supported body 11 reacts competitively with the measurement object 10 with respect to the binder 12 or the label body 13. In this case, on the piezoelectric vibrator 6, a measurement object-like substance binder or a complex having a label strength is generated.
本態様においては、測定対象物類似物 11cは測定対象物 10と競合的に反応する ものであるから、測定対象物類似物 11cとの間で反応が促進されれば、その分、試料 中の測定対象物 10が少ないことを意味し、その逆の反応傾向であれば、試料中の 測定対象物 10が多いことを意味する。このため、測定対象物類似物 11cとの間の反 応量を精度良く測定することにより、間接的に測定対象物 10の測定感度を上げるこ とが可能である。 In this embodiment, the measurement object analogue 11c reacts competitively with the measurement object 10, so if the reaction is accelerated with the measurement object analogue 11c, the corresponding amount in the sample is increased. This means that the number of measurement objects 10 is small, and the opposite reaction tendency means that there are many measurement objects 10 in the sample. Therefore, it is possible to indirectly increase the measurement sensitivity of the measurement object 10 by accurately measuring the amount of reaction with the measurement object analog 11c.
更に、検出部位 5での反応が終了した場合には、反応終了後、圧電振動子 6上に 生じた反応物を除去するために、図 3と同様に、磁力発生部材 7による磁場作用を解 除するようにすればよい。 Furthermore, when the reaction at the detection site 5 is completed, the magnetic field action by the magnetic force generating member 7 is solved in the same manner as in FIG. 3 in order to remove the reaction product generated on the piezoelectric vibrator 6 after the reaction is completed. It can be removed.
[0049] また、図 5に示すように、圧電振動子 6上に担持される担持体 11(例えば磁性粒子 1 la +トラッパ一 l ib)が、標識体 13(測定対象物類似物 13cを具備)と測定対象物 10 とに対して競合的に反応する場合には、圧電振動子 6上には、担持体 測定対象物 又は測定対象物類似物力 なる複合体が生成される。 Further, as shown in FIG. 5, a carrier 11 (for example, magnetic particles 1 la + trapper ib) carried on the piezoelectric vibrator 6 includes a label 13 (measurement object analogue 13c). ) And the measurement object 10 in a competitive manner, a composite body having a carrier measurement object or a measurement object analog force is generated on the piezoelectric vibrator 6.
[0050] <測定器具を用いた測定方法 > [0050] <Measurement method using measurement instrument>
次に、上述した測定器具 1を用いて測定対象物 10を測定する測定方法について 説明する。 Next, a measurement method for measuring the measurement object 10 using the measurement instrument 1 described above will be described.
先ず、担持体 11が磁性粒子 11aとトラッパ一 l ibとである態様の測定器具 1を用い
て試料中の測定対象物 10を測定する際には、図 2 (a)〜(c)及び図 3、並びに、図 8 (a) (b)に示すように、試料添加部位 4及び圧電振動子 6を備えた検出部位 5を有す る反応容器 2、及び、測定対象物又は測定対象物類似物に特異的に結合するトラッ パー l ibと磁性粒子 11aとが結合してなる担持体 11を用いて試料中の測定対象物 1 0を測定する方法であって、反応容器 2中で、試料中の測定対象物 10と担持体 11と を反応させ、担持体 測定対象物を含む複合体を生成させる試料反応工程、担持 体 11の磁性粒子 11aに磁力を作用させ、磁性粒子 11aを磁気的に圧電振動子 6上 に担持する担持体担持工程、圧電振動子 6上に担持された複合体の量を圧電振動 子 6の振動数の変化量として測定する振動数測定工程、および、この振動数測定ェ 程で測定した圧電振動子 6の振動数の変化量と予め作成した検量線とから試料中の 測定対象物 10の濃度を決定する濃度決定工程を備えたものであればよい。 First, using the measuring instrument 1 in which the carrier 11 is a magnetic particle 11a and a trapper l ib. When measuring the measurement object 10 in the sample, as shown in Figs. 2 (a) to (c) and Fig. 3 and Figs. 8 (a) and (b), the sample addition site 4 and the piezoelectric vibration A reaction vessel 2 having a detection site 5 with a child 6 and a carrier 11 formed by binding a trapper l ib that specifically binds to a measurement object or a measurement object analog and a magnetic particle 11a. Is a method for measuring a measurement object 10 in a sample by using a reaction vessel 2 in which a measurement object 10 and a support 11 in a sample are reacted in a reaction vessel 2 and a complex including the support measurement object A sample reaction step for generating a magnetic material, a magnetic material 11a of the carrier 11 is made to act on a magnetic force, and a magnetic material 11a is magnetically supported on the piezoelectric vibrator 6 and a composite supported on the piezoelectric vibrator 6 The frequency measurement process for measuring the amount of the body as the amount of change in the frequency of the piezoelectric vibrator 6, and the piezoelectric measured in this frequency measurement process And a previously prepared calibration curve and the frequency of variation of Doko 6 as long as it includes a concentration determination step of determining the concentration of the measuring object 10 in the sample.
特に、検出部位 5での複合体の量を正確に把握するには、試料反応工程と振動数 測定工程との間に検出部位 5の洗浄工程を含み、検出部位 5での不要成分を除去 することが好ましい。 In particular, in order to accurately grasp the amount of the complex at the detection site 5, a washing step for the detection site 5 is included between the sample reaction process and the frequency measurement step, and unnecessary components at the detection site 5 are removed. It is preferable.
[0051] また、この種の測定器具を用いた別の測定方法としては、図 5、図 6及び図 8 (a) (b )に示すように、試料添加部位 4及び圧電振動子 6を備えた検出部位 5を有する反応 容器 2、及び、測定対象物又は測定対象物類似物に特異的に結合するトラッパ一 11 bと磁性粒子 11aとが結合してなる担持体 11を用いて試料中の測定対象物 10を測 定する方法であって、反応容器 2中で、試料中の測定対象物 10及び測定対象物類 似物 13cと不溶性小胞体 13aとが結合してなる標識体 13を担持体 11に反応させ、 担持体 標識体を含む複合体を生成させる試料反応工程、担持体 11の磁性粒子 1 laに磁力を作用させ、磁性粒子 11aを磁気的に圧電振動子 6上に担持する担持体 担持工程、圧電振動子 6上に担持された複合体の量を圧電振動子 6の振動数の変 化量として測定する振動数測定工程、および、この振動数測定工程で測定した圧電 振動子 6の振動数の変化量と予め作成した検量線とから試料中の測定対象物 10の 濃度を決定する濃度決定工程を備えるようにすればょ 、。 [0051] As another measurement method using this type of measuring instrument, as shown in FIGS. 5, 6, and 8 (a) and 8 (b), a sample addition site 4 and a piezoelectric vibrator 6 are provided. In the sample, the reaction vessel 2 having the detection site 5 and the support 11 formed by binding the trapper 11b specifically binding to the measurement object or the measurement object analog and the magnetic particle 11a are used. This is a method for measuring the measurement object 10 and carries in the reaction vessel 2 a label 13 formed by binding the measurement object 10 in the sample and the measurement object analog 13c to the insoluble vesicle 13a. The sample reaction step of reacting with the body 11 to generate a complex containing the label body, the magnetic particles 11a of the carrier 11 acting magnetically, and the magnetic particles 11a are magnetically supported on the piezoelectric vibrator 6 Supporting process Measures the amount of composite supported on the piezoelectric vibrator 6 as the amount of change in the frequency of the piezoelectric vibrator 6 A frequency measurement step, and a concentration determination step for determining the concentration of the measurement object 10 in the sample from the amount of change in the frequency of the piezoelectric vibrator 6 measured in the frequency measurement step and a calibration curve prepared in advance. If you do,
[0052] また、担持体 11が磁性粒子 11aと測定対象物類似物 11cとである態様の測定器具 1を用いて試料中の測定対象物 10を測定するには、図 4及び図 8(a)(b)に示すように
、試料添加部位 4及び圧電振動子 6を備えた検出部位 5を有する反応容器 2、測定 対象物類似物 11cと磁性粒子 11aとが結合してなる担持体 11、及び、測定対象物 1 0若しくは測定対象物類似物に特異的に結合するバインダー 12又は該バインダー 1 3bと不溶性小胞体 13aとが結合してなる標識体 13を用いて試料中の測定対象物 10 を測定する方法であって、反応容器 2中で、試料中の測定対象物 10及び測定対象 物類似物 1 lcと磁性粒子 1 laとが結合してなる担持体 11と測定対象物若しくは測定 対象物類似物に特異的に結合するバインダー 12又は該バインダー 13bと不溶性小 胞体 13aとを反応させ、担持体 バインダー又は担持体 標識体を含む複合体を生 成させる試料反応工程、担持体 11の磁性粒子 11aに磁力を作用させ、磁性粒子 11 aを磁気的に圧電振動子 6上に担持する担持体担持工程、圧電振動子 6上に担持さ れた複合体の量を圧電振動子 6の振動数の変化量として測定する振動数測定工程 、および、この振動数測定工程で測定した圧電振動子 6の振動数の変化量と予め作 成した検量線とから試料中の測定対象物 10の濃度を決定する濃度決定工程を備え るようにすればよい。 [0052] Further, in order to measure the measurement object 10 in the sample using the measurement instrument 1 in the form in which the support 11 is the magnetic particle 11a and the measurement object analogue 11c, FIG. 4 and FIG. 8 (a As shown in (b) , A reaction vessel 2 having a detection part 5 provided with a sample addition part 4 and a piezoelectric vibrator 6, a carrier 11 formed by combining a measurement object analogue 11c and a magnetic particle 11a, and a measurement object 10 or A method for measuring a measurement object 10 in a sample using a binder 12 that specifically binds to a measurement object analog or a labeled body 13 formed by binding the binder 13b and an insoluble vesicle 13a, In reaction container 2, specifically binds to the measurement object 10 or the measurement object analogue in the reaction object 10 and the measurement object analog 1 lc and magnetic particles 1 la. Sample reaction step of reacting the binder 12 or the binder 13b with the insoluble vesicle 13a to form a complex containing the carrier binder or carrier label, and applying a magnetic force to the magnetic particles 11a of the carrier 11; Magnetic particle 11a magnetically piezoelectric vibrator A carrier supporting process for supporting the piezoelectric vibrator 6, a frequency measuring process for measuring the amount of the composite supported on the piezoelectric vibrator 6 as a change in the frequency of the piezoelectric vibrator 6, and this frequency measuring process A concentration determining step for determining the concentration of the measurement object 10 in the sample from the amount of change in the frequency of the piezoelectric vibrator 6 measured in step 1 and a calibration curve prepared in advance may be provided.
尚、本態様においても、試料反応工程と振動数測定工程との間に検出部位 5の洗 浄工程を含むことが好ま 、。 In this embodiment as well, it is preferable to include a cleaning step for the detection site 5 between the sample reaction step and the frequency measurement step.
[0053] 更に、この種の測定方法のうち、バインダー Z標識体供給部位 8が試料添加部位 4 を兼ねる態様においては、供給工程は、試料とバインダー 12若しくは標識体 13とが 試料添加部位 4から同時又は前後して順に添加されるものであればよい。 [0053] Furthermore, in this type of measurement method, in a mode in which the binder Z label supply part 8 also serves as the sample addition part 4, the supply step includes the step of supplying the sample and the binder 12 or the label 13 from the sample addition part 4. It may be added at the same time or before and after.
また、この種の測定方法のうち、バインダー Z標識体供給部位 8がフローセル型反 応容器 2の流路 3にバインダー 12又は標識体 13を予め移動可能に保持する態様に おいては、供給工程は、試料が試料添加部位 4から添加され、ノインダー Z標識体 供給部位 8に予め保持されているバインダー 12又は標識体 13が試料と共に移動す るものであればよい。 Further, in this type of measurement method, in a mode in which the binder Z labeled body supply portion 8 holds the binder 12 or the labeled body 13 movably in advance in the flow path 3 of the flow cell type reaction container 2, the supply step Any sample may be used as long as the sample is added from the sample addition site 4 and the binder 12 or the label 13 held in advance in the Noinder Z label supply site 8 moves together with the sample.
[0054] また、この種の測定方法において、複数項目を同時に測定する場合には、検出部 位 5のうち、任意の複数箇所に複数種の異なる担持体 11を磁力発生部材 7による磁 場にて担持させ、複数項目の測定対象物を同時に測定可能とすればよい。 [0054] In this type of measurement method, when a plurality of items are measured simultaneously, a plurality of different types of carriers 11 in any plurality of detection units 5 are used as magnetic fields generated by the magnetic force generation member 7. It is sufficient that a plurality of measurement objects can be measured simultaneously.
更に、検出部位 5を任意に設定する場合には、検出部位 5のうち任意の複数箇所
に対応して複数個の磁力発生部材 7を設け、検出部位 5を任意の箇所に設定するよ うにすればよい。本態様によれば、複数個の磁力発生部材 7による磁場を夫々別個 に作用させ、磁場作用域のみ検出部位 5として機能させることが可能である。 Furthermore, when the detection part 5 is arbitrarily set, any plurality of detection part 5 A plurality of magnetic force generating members 7 may be provided corresponding to the above, and the detection site 5 may be set at an arbitrary location. According to this aspect, it is possible to cause the magnetic fields generated by the plurality of magnetic force generating members 7 to act separately, and to allow only the magnetic field acting region to function as the detection portion 5.
[0055] また、このような測定方法を具現ィ匕する装置発明としては、図 8(b)に示すように、試 料と、測定対象物 10に特異的に結合するバインダー 12又はバインダー 13b若しくは 測定対象物類似物 13cが不溶性小胞体 13aに結合した標識体 13とを検出部位 5に 供給する上述した測定器具 1と、この測定器具 1の検出部位 5の圧電振動子 6上に生 成したトラッパ一—測定対象物、又は、トラッパ一—測定対象物—バインダー若しく はトラッパ一一測定対象物 標識体からなる複合体、或いは、測定対象物類似物 ノ^ンダ一若しくは測定対象物類似物 標識体力 なる複合体の量を圧電振動子 6 の振動数の変化量として測定する振動数測定手段 15と、この振動数測定手段 15で 測定した圧電振動子 6の振動数の変化量と予め作成した検量線とから試料中の測定 対象物 10の濃度を決定する濃度決定手段 16とを備えたものが挙げられる。 [0055] Further, as an apparatus invention for embodying such a measurement method, as shown in FIG. 8 (b), a sample and a binder 12 or a binder 13b that binds specifically to the measurement object 10 or The above-described measuring instrument 1 that supplies the analyte 13c to the detection site 5 with the labeled body 13 bound to the insoluble endoplasmic reticulum 13a and the piezoelectric vibrator 6 at the detection site 5 of the measurement instrument 1 were generated. Trapper--measurement object or trapper--measurement object--binder or trapper--one measurement object Composite consisting of a label or measurement object analogue Non-one or measurement object analogue The frequency measuring means 15 that measures the amount of the complex as the labeled body force as the amount of change in the vibration frequency of the piezoelectric vibrator 6, and the amount of change in the vibration frequency of the piezoelectric vibrator 6 that is measured by the vibration frequency measuring means 15 and created in advance. Measurement in the sample from the measured calibration curve That a density determining means 16 for determining the concentration of an object 10 and the like.
このような測定装置においては、測定器具 1と振動数測定手段 15、濃度決定手段 1 6とは別個に設けられてもよいし、測定器具 1に、振動数測定手段 15及び濃度決定 手段 16を組み込むことで一体的に設けるようにしてもよい。 In such a measuring apparatus, the measuring instrument 1, the frequency measuring means 15, and the concentration determining means 16 may be provided separately, or the measuring instrument 1 is provided with the frequency measuring means 15 and the concentration determining means 16. You may make it provide integrally by incorporating.
[0056] 以下、添付図面に示す実施の形態に基づいて本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail based on embodiments shown in the accompanying drawings.
◎実施の形態 1 ◎ Embodiment 1
図 9は本発明が適用される測定装置の実施の形態 1を示す説明図である。 同図において、測定装置は、試料中の測定対象物を測定するための測定器具 20 と、この測定器具 20からのセンサー出力に基づいて解析処理する解析処理装置 10 0とを備えている。 FIG. 9 is an explanatory view showing Embodiment 1 of the measuring apparatus to which the present invention is applied. In the figure, the measurement apparatus includes a measurement instrument 20 for measuring a measurement object in a sample, and an analysis processing apparatus 100 that performs analysis processing based on a sensor output from the measurement instrument 20.
[0057] <測定器具の概要 > [0057] <Outline of measuring instrument>
本実施の形態において、測定器具 20は、図 9及び図 10に示すように、試料中の測 定対象物が流路 22に沿って移動可能なフローセル型反応容器 21を有している。こ のフローセル型反応容器 21は QCM(Quartz Crystal Microbalanceの略)センサー 23 のセンサー基板 24を容器底部とし、このセンサー基板 24上に所定隙間の流路 22が 確保されるようにカバー 30で密封したものである。
そして、フローセル型反応容器 21のカバー 30のうち流路 22の上流側に位置する 部位には液体流入用開口 31が開設されると共に、流路 22の下流側に位置する部位 には液体流出用開口 32が開設されている。 In the present embodiment, the measuring instrument 20 has a flow cell type reaction vessel 21 in which a measurement object in a sample can move along a flow path 22 as shown in FIG. 9 and FIG. The flow cell type reaction vessel 21 is sealed with a cover 30 so that a sensor substrate 24 of a QCM (Quartz Crystal Microbalance) sensor 23 is the bottom of the vessel and a flow path 22 with a predetermined gap is secured on the sensor substrate 24. Is. In addition, a liquid inflow opening 31 is formed in a part of the cover 30 of the flow cell type reaction vessel 21 located upstream of the flow path 22 and a liquid outflow is provided in a part located downstream of the flow path 22. Opening 32 is established.
本実施の形態では、一方の液体流入用開口 31にはチューブ 33を介して試料容器 34が接続されて試料添加部位 Aとして機能し、他方の液体流出用開口 32にはチュ ーブ 35を介してシリンジポンプ 36が接続されて吸収部位 Dとして機能するようになつ ている。尚、本実施の形態では、試料添加部位 Aカゝら標識体が試料と同時若しくは 試料添加後に供給されるようになって ヽる。 In the present embodiment, a sample container 34 is connected to one liquid inflow opening 31 via a tube 33 and functions as a sample addition site A, and the other liquid outflow opening 32 via a tube 35. The syringe pump 36 is connected to function as an absorption site D. In the present embodiment, the label added from the sample addition site A is supplied at the same time as the sample or after the sample is added.
[0058] 更に、本実施の形態では、 QCMセンサー 23はセンサー基板 24表面に水晶振動 子 25を実装したものであり、流路 22のうちこの水晶振動子 25の表面に対応した部位 を検出部位 Cとして機能するようにしたものである。 Furthermore, in the present embodiment, the QCM sensor 23 has a quartz resonator 25 mounted on the surface of the sensor substrate 24, and a portion of the flow path 22 corresponding to the surface of the quartz resonator 25 is detected. It is designed to function as C.
そして、センサー基板 24の裏面のうち水晶振動子 25が実装された位置に例えば 永久磁石からなる磁石 40が設置されて!、る。この磁石 40は取り外し自在になってお り、磁石 40を設置したときには、磁石 40による磁場作用域に水晶振動子 25の表面 部が配置されるように位置調整されて 、る。 Then, a magnet 40 made of, for example, a permanent magnet is installed on the back surface of the sensor substrate 24 at a position where the crystal unit 25 is mounted! The magnet 40 is detachable, and when the magnet 40 is installed, the position is adjusted so that the surface portion of the crystal unit 25 is disposed in the magnetic field application region by the magnet 40.
そして、この水晶振動子 25の表面には担持体 11 (磁性粒子 l la+トラッパ一 l ib 又は測定対象物類似物 11c)が前記磁石 40による磁場にて担持されている(図 1又 は図 4参照)。 A carrier 11 (magnetic particle l la + trapper l ib or measurement object analogue 11c) is carried on the surface of the crystal unit 25 by the magnetic field of the magnet 40 (FIG. 1 or FIG. 4). reference).
更にまた、本実施の形態では、センサー基板 24は、例えばペルチェ素子 52で一 定温度に保たれた例えばアルミニウム製の恒温ブロック 51上に設置されて!、て、温 度変化による水晶振動子 25の共振周波数変化を防止するように配慮されている。 Furthermore, in the present embodiment, the sensor substrate 24 is placed on a constant temperature block 51 made of, for example, aluminum, which is maintained at a constant temperature by, for example, a Peltier element 52! Consideration is given to prevent changes in the resonance frequency.
[0059] <解析処理装置の概要 > [0059] <Overview of analysis processing device>
本実施の形態において、解析処理装置 100は、水晶振動子 25の共振特性を測定 する振動数測定回路と、この振動数測定回路力 の情報に基づいて試料中の測定 対象物の濃度を演算する濃度演算回路とを備えて 、ればよ 、。 In the present embodiment, the analysis processing device 100 calculates the concentration of the measurement object in the sample based on the frequency measurement circuit that measures the resonance characteristics of the crystal unit 25 and the information on the frequency measurement circuit force. It should be equipped with a concentration calculation circuit.
本実施の形態では、振動数測定回路及び濃度演算回路としては、例えばネットヮ ークアナライザー 101を用いて水晶振動子 25の共振特性を測定し、測定した共振特 性のデータをパーソナルコンピューター(PC) 102に取り込んで演算により水晶振動
子 25の共振周波数を求め、さらに検量線を用いて共振周波数力 濃度への計算を 行う構成が挙げられる。 In the present embodiment, as the frequency measurement circuit and the concentration calculation circuit, for example, the resonance characteristics of the crystal unit 25 are measured using the network analyzer 101, and the measured resonance characteristic data is stored in a personal computer (PC). Crystal vibration by taking in 102 and calculating An example is a configuration in which the resonance frequency of the element 25 is obtained and the calculation is performed on the resonance frequency force concentration using a calibration curve.
水晶振動子 25の共振特性から共振周波数を求めるには、ネットワークアナライザー 101等で水晶振動子 25の共振周波数付近の共振特性 (周波数—アドミッタンス特性 )を測定し、後述する水晶振動子 25の等価回路が示すアドミッタンス特性と一致する ように等価回路の定数を最小二乗法等の数学的手段を用いて求めればょ 、。 To obtain the resonance frequency from the resonance characteristics of the crystal unit 25, measure the resonance characteristics (frequency-admittance characteristics) near the resonance frequency of the crystal unit 25 using a network analyzer 101, etc. Find the equivalent circuit constants using mathematical means such as the least-squares method to match the admittance characteristics shown by.
水晶振動子 25の等価回路は、図 11に示すように、インダクタンス Lxと容量 Cxと損 失抵抗 Rxの直列共振回路と、電極容量等による並列容量 Cpとの並列接続で表せる 。この時、水晶振動子のアドミッタンス Yは、式 1および式 2で求めることが出来る。 As shown in FIG. 11, an equivalent circuit of the crystal unit 25 can be expressed by a parallel connection of a series resonant circuit of an inductance Lx, a capacitance Cx, and a loss resistance Rx and a parallel capacitance Cp such as an electrode capacitance. At this time, the admittance Y of the crystal unit can be obtained by Equation 1 and Equation 2.
Y=J- ω -Cp+ 1/ ϋ- ω -Lx+ l/ (j- ω -Cx) +Rx) (式 1) Y = J- ω -Cp + 1 / ϋ- ω -Lx + l / (j- ω -Cx) + Rx) (Equation 1)
ω = 2· π -fo (式 2) ω = 2 · π -fo (Equation 2)
ここで、 Jは複素数(一 1) 1/2、 ωは角周波数、 foは共振周波数、 πは円周率を表す 水晶振動子の共振周波数 foは、このようにして求めた等価回路定数 Lx、 Cxから式Here, J is a complex number (1 1) 1/2 , ω is an angular frequency, fo is a resonance frequency, π is a circularity, and the resonance frequency fo of the quartz crystal is calculated by the equivalent circuit constant Lx , Formula from Cx
3を用いて計算することができる。 Can be calculated using 3.
fo = lZ (2. 7u . (Lx'Cx) 1/2) (式 3) fo = lZ (2.7u. (Lx'Cx) 1/2 ) (Equation 3)
尚、パーソナルコンピューター 102には濃度演算結果を表示する表示装置 103が 組み込まれて 、ることが好まし!/、。 It should be noted that the personal computer 102 preferably has a display device 103 for displaying the concentration calculation result!
[0060] < QCMセンサーの詳細 > [0060] <Details of QCM sensor>
水晶振動子 Crystal oscillator
本実施の形態において、水晶振動子 25は例えば厚み滑り振動モードを有する AT カット水晶振動子で、特に基本共振周波数が 5〜50MHzで発振するものが好ましい 。また、水晶振動子 25としては本実施の形態のように 1つでも差し支えないが、複数 用いるようにしても差し支えな 、。 In the present embodiment, the crystal resonator 25 is, for example, an AT-cut crystal resonator having a thickness-shear vibration mode, and is preferably one that oscillates at a fundamental resonance frequency of 5 to 50 MHz. Further, one crystal unit 25 may be used as in the present embodiment, but a plurality of crystal units 25 may be used.
[0061] センサー基板 [0061] Sensor substrate
センサー基板 24の構造としては適宜選定して差し支えないが、図 12(a)(b)に一例 を示す。 The structure of the sensor substrate 24 may be selected as appropriate, but an example is shown in FIGS. 12 (a) and 12 (b).
同図において、センサー基板 24は例えばガラスエポキシ製の両面配線プリント基
板 61を用い、上面には、水晶振動子 25の電極 65, 66と接続をするための 2つのラ ンドパターン 62と、水晶振動子 25の振動部分がプリント基板 61と接触しないようにす るための台座用のコの字型パターン 63とが配置されている。水晶振動子 25は、電極 接続用ランドパターン 62の上に水晶振動子 25の電極接続部が乗るように配置され、 例えば導電性シリコーン榭脂で電気的な接続がなされている。さら〖こ、水晶振動子 2 5及びセンサー基板 24間に試料溶液が染み込んで表電極 65と裏電極 65とがショー トするのを防止するため、水晶振動子 25の周囲は例えばシリコーン接着剤 64で封止 されている。電極接続用ランドパターン 62からの配線 67は、試料溶液によるショート を避ける為、スルーホールを通じてプリント基板 61の下面に引き出され、接続端子 6 8まで延びている。 In the figure, the sensor substrate 24 is a double-sided printed circuit board made of glass epoxy, for example. Using plate 61, on the top surface, make two land patterns 62 to connect with electrodes 65 and 66 of crystal unit 25 and the vibrating part of crystal unit 25 not to contact printed circuit board 61. A U-shaped pattern 63 for a pedestal is arranged. The crystal unit 25 is arranged such that the electrode connection part of the crystal unit 25 is placed on the electrode connection land pattern 62, and is electrically connected with, for example, conductive silicone resin. In order to prevent the sample solution from seeping between the crystal unit 25 and the sensor substrate 24 and shorting the front electrode 65 and the back electrode 65, the periphery of the crystal unit 25 is, for example, a silicone adhesive 64. It is sealed with. The wiring 67 from the electrode connecting land pattern 62 is drawn to the lower surface of the printed circuit board 61 through the through hole and extends to the connection terminal 68 to avoid short circuit due to the sample solution.
更に、表電極 65と裏電極 66とは、図 13(a)(b)に示すように、共に裏面でプリント基 板 61の電極接続用ランドパターン 62に接続できるように接続部 69aが設けられてお り、引き出し電極 69で電気的に接続されている。表電極 65は水晶振動子 25の一左 側面を経由して裏面の接続部 69aへと引き出し電極 69で引き回されている。 Further, as shown in FIGS. 13 (a) and 13 (b), the front electrode 65 and the back electrode 66 are both provided with connection portions 69a so that they can be connected to the electrode connection land pattern 62 of the printed circuit board 61 on the back surface. It is electrically connected by the extraction electrode 69. The front electrode 65 is routed by the extraction electrode 69 to the connection portion 69a on the back surface via the left side surface of the crystal unit 25.
[0062] フローセル型反応容器表面への水晶振動子の固定法 [0062] Method of fixing a quartz crystal to the surface of a flow cell type reaction vessel
本実施の形態では、センサー基板 24がフローセル型反応容器 21の一部を構成し ているが、これに限られるものではなぐフローセル型反応容器 21表面にセンサー基 板 24を固定するには、接着剤を用いたィ匕学的な方法などで行うようにすればよ!、。 使用する接着剤としては、電気的接続にはシリコーン導電性接着剤、エポキシ導電 性接着剤、異方性導電フィルム (ACF)、異方性導電ペースト (ACP)等が、また防水 と固定にはシリコーン接着剤、エポキシ接着剤等が使用される。 In the present embodiment, the sensor substrate 24 constitutes a part of the flow cell type reaction vessel 21, but the present invention is not limited to this. In order to fix the sensor substrate 24 to the surface of the flow cell type reaction vessel 21, an adhesive is used. You should do it in a scientific way using chemicals! The adhesive used is silicone conductive adhesive, epoxy conductive adhesive, anisotropic conductive film (ACF), anisotropic conductive paste (ACP), etc. for electrical connection, and waterproof and fixing. Silicone adhesives, epoxy adhesives, etc. are used.
[0063] <水晶振動子上への担持体の担持離脱方法 > [0063] <Method of carrying / removing carrier on quartz crystal>
水晶振動子上への担持体の担持方法 Method for supporting a carrier on a crystal unit
水晶振動子 25上への担持体 11の担持方法としては、図 9に示すように、反応容器 21の外部力 磁石 40による磁場をかけることで担持できれば特に制限は無い。 水晶振動子上からの担持体の離脱方法 As shown in FIG. 9, there are no particular limitations on the method of supporting the carrier 11 on the crystal unit 25 as long as it can be supported by applying a magnetic field by an external force magnet 40 in the reaction vessel 21. How to detach the carrier from the crystal unit
水晶振動子 25上に担持された担持体 11の離脱方法としては、図 9に示すように、 反応容器 21の外部力も磁石 40による磁場を解除して、水晶振動子 25上力も担持体
11を離脱できれば特に制限は無い。 As shown in FIG. 9, the carrier 11 carried on the crystal unit 25 is detached from the external force of the reaction vessel 21 and the magnetic field generated by the magnet 40 is released. There is no particular restriction as long as you can leave 11.
[0064] <測定装置による測定方法 > <Measurement method using measurement device>
図 9及び図 10に示すように、測定器具 20の試料添加部位 Aから担持体 (磁性粒子 +トラッパ一又は測定対象物類似物)が含まれる溶液を添加すると共に、水晶振動 子 25表面に磁石 40による磁場を作用させ、水晶振動子 25上に担持体を担持させ、 洗浄液による洗浄を行う。 As shown in FIG. 9 and FIG. 10, a solution containing a carrier (magnetic particle + trapper or similar object to be measured) is added from the sample addition site A of the measuring instrument 20, and a magnet is placed on the surface of the quartz crystal resonator 25. The magnetic field generated by 40 is applied, the carrier is supported on the crystal unit 25, and cleaning with the cleaning liquid is performed.
しカゝる後、測定器具 20の試料添加部位 Aに試料とバインダー(又は標識体)とを添 加し、試料中の測定対象物及びバインダー(又は標識体)が測定器具 20のフローセ ル型反応容器 21の流路 22を移動し、試料及びバインダー (又は標識体)とを検出部 位 Cである水晶振動子 25上の担持体に供給し、必要があれば前述の洗浄液で洗浄 し、担持体と特異的に結合させて生じた複合体の量を水晶振動子 25の振動数の変 化量として検出し、解析処理装置 100を介して測定対象物の試料中の濃度を測定 する。 After that, the sample and the binder (or labeled body) are added to the sample addition site A of the measuring instrument 20, and the measurement object and the binder (or labeled body) in the sample are the flow cell type of the measuring instrument 20. Move through the flow path 22 of the reaction vessel 21, supply the sample and binder (or label) to the carrier on the crystal unit 25 that is the detection unit C, and if necessary, wash with the above-described cleaning solution. The amount of the complex produced by specifically binding to the carrier is detected as the amount of change in the vibration frequency of the crystal unit 25, and the concentration of the measurement object in the sample is measured via the analysis processing device 100.
[0065] このような測定過程において、試料中の測定対象物と水晶振動子 25上の担持体( 例えばトラッパ一)又は試料中の測定対象物と反応液中の標識体とが反応する条件 としては、特異的反応を行うことが出来る条件であれば特に制限はないが、反応温度 としては、通常 0°C〜100°C、好ましくは 10〜60°C、より好ましくは 20〜40°Cで行わ れる。また、測定時間としては、通常 10秒〜 10時間、好ましくは 30秒〜 5時間、より 好ましくは 1分〜 1時間で行われる。 [0065] In such a measurement process, the conditions under which the measurement object in the sample reacts with the carrier (for example, a trapper) on the crystal unit 25 or the measurement object in the sample and the label in the reaction solution. Is not particularly limited as long as it allows specific reaction, but the reaction temperature is usually 0 ° C-100 ° C, preferably 10-60 ° C, more preferably 20-40 ° C. Is done. The measurement time is usually 10 seconds to 10 hours, preferably 30 seconds to 5 hours, more preferably 1 minute to 1 hour.
更に、検量線作製のための既知濃度の標準物質を用いた測定は、同一の測定器 具 20を用いて個別に繰り返し行ってもよいが、測定器具 20を複数組み合わせて構 成した装置を用いて、試料中の測定対象物の測定と既知濃度の標準物質の測定と を同時に行うことが好ましい。 Furthermore, the measurement using a standard substance with a known concentration for preparing a calibration curve may be repeated individually using the same measuring device 20, but using an apparatus configured by combining a plurality of measuring devices 20. Thus, it is preferable to simultaneously perform measurement of the measurement object in the sample and measurement of a standard substance having a known concentration.
[0066] このような測定過程では、水晶振動子 25表面での反応の態様としては、図 2,図 4 及び図 5に示す状態が得られる。これらの反応により、測定対象物 10が直接的又は 間接的に測定される。 In such a measurement process, the states shown in FIG. 2, FIG. 4 and FIG. By these reactions, the measurement object 10 is measured directly or indirectly.
そして、反応が終了した後には、磁石 40による磁場作用を解除すると共に、洗浄液 を流すことにより、例えば図 3に示すように、担持体 11が水晶振動子 25表面力 離
脱することになり、これに伴って、水晶振動子 25上の反応物が確実に除去される。 このため、本実施の形態にあっては、水晶振動子 25表面がリセットされることになる ため、この測定器具 20を再利用することが可能である。 Then, after the reaction is completed, the magnetic field action by the magnet 40 is canceled and the cleaning liquid is allowed to flow, so that the carrier 11 is separated from the surface of the quartz oscillator 25 as shown in FIG. 3, for example. As a result, the reactant on the crystal unit 25 is surely removed. For this reason, in the present embodiment, since the surface of the crystal unit 25 is reset, the measuring instrument 20 can be reused.
[0067] ◎実施の形態 2 [0067] Embodiment 2
図 14は本発明が適用された測定装置の実施の形態 2を示す。 FIG. 14 shows Embodiment 2 of the measuring apparatus to which the present invention is applied.
同図において、測定装置の基本的構成は実施の形態 1と略同様に測定器具 20と 解析処理装置 100とを備えているが、実施の形態 1と異なり、 POCT (ポイントォブ ケアテスティング)への対応を考慮して、小型で簡便な構成となるよう設計されている 。尚、実施の形態 1と同様な構成要素については実施の形態 1と同様な符号を付し てここではその詳細な説明を省略する。 In this figure, the basic configuration of the measuring device is provided with a measuring instrument 20 and an analysis processing device 100 in substantially the same manner as in the first embodiment, but unlike in the first embodiment, it is applied to POCT (point-of-care testing). Considering the correspondence, it is designed to be a small and simple configuration. Components similar to those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof is omitted here.
本実施の形態において、装置全体は、測定器具 20に解析処理装置 100を組み込 んだものであり、測定部 S1と、測定結果解析処理部 S2の二つの要素力 構成されて いる。測定部 S1は、 QCMセンサー 23 (水晶振動子 25を実装したセンサー基板 24) 、プラスチック製の上部カバー 71及び下部カバー 72、各種メンブレン 81〜83を備え ている。 In the present embodiment, the entire apparatus is obtained by incorporating the analysis processing device 100 into the measuring instrument 20, and has two element forces, that is, a measurement unit S1 and a measurement result analysis processing unit S2. The measurement unit S1 includes a QCM sensor 23 (a sensor substrate 24 on which a crystal unit 25 is mounted), a plastic upper cover 71, a lower cover 72, and various membranes 81 to 83.
[0068] 上部カバー 71は流路 22部分がくり抜かれたものであって、センサー基板 24の上に 着脱自在に且つ水密な状態にて載置され、両者の間に出来る隙間を流路 22として 用いるようになつている。そして、本例では、図 14及び図 15に示すように、流路 22部 分が長く確保されており、流路 22の一方の側には、試料添加部位 Aとして機能する 試料保持メンブレン 81と、この試料保持メンブレン 81に隣接して標識体保持部位 ( 又はバインダー保持部位) Bとして機能する標識体 (又はバインダー)保持メンブレン 82が挟み込まれている。更に、上部カバー 71の試料添加部位 A付近には、ピペット 等で試料溶液を添加するための開口部 75が設けられており、本例では、この開口部 75は補助的な試料容器としても機能する。また、流路 22のもう一方の側には、検出 部位 Cの下流側に吸収用メンブレン 83が挟み込まれており、吸収部位 Dとして機能 するようになっている。 [0068] The upper cover 71 is formed by hollowing out the channel 22 part, and is placed on the sensor substrate 24 in a detachable and watertight manner, and a gap formed between the two is defined as the channel 22 It is getting used. In this example, as shown in FIG. 14 and FIG. 15, a portion of the flow channel 22 is secured long, and on one side of the flow channel 22, there is a sample holding membrane 81 that functions as the sample addition site A. A label (or binder) holding membrane 82 that functions as a label holding site (or binder holding site) B is sandwiched between the sample holding membrane 81. Furthermore, an opening 75 for adding a sample solution with a pipette or the like is provided in the vicinity of the sample addition site A of the upper cover 71. In this example, the opening 75 also functions as an auxiliary sample container. To do. Further, on the other side of the flow path 22, an absorption membrane 83 is sandwiched on the downstream side of the detection site C, so that it functions as the absorption site D.
[0069] ここで、標識体 (バインダー)保持部位 Bは、標識体 (バインダー)を移動可能なよう にフローセル型反応容器 21の流路 22に保持するための部位である。
本実施の形態にぉ 、て、標識体 (バインダー)保持部位 Bの標識体 (バインダー)保 持メンブレン 82の材質としては、試料添加部位 Aの試料保持メンブレン 81の材質と 同一または異なってよぐ例えばガラス繊維、セルロース、ナイロン、架橋デキストラン 、各種のクロマトグラフィー用紙、ニトロセルロース等が挙げられ、ニトロセルロースが 好ましい。 Here, the label (binder) holding site B is a site for holding the label (binder) in the flow path 22 of the flow cell type reaction vessel 21 so that the label (binder) can move. In the present embodiment, the material of the label (binder) holding membrane 82 at the label (binder) holding site B may be the same as or different from the material of the sample holding membrane 81 at the sample addition site A. Examples thereof include glass fiber, cellulose, nylon, cross-linked dextran, various chromatographic papers, nitrocellulose and the like, and nitrocellulose is preferable.
また、吸収部位 Dの吸収用メンブレン 83としては、吸水性高分子化合物を使用する ことができる。高分子化合物としては例えば、セルロース、グラスファイバー、コットン、 ポリウレタン等が挙げられる。 Further, as the absorption membrane 83 of the absorption site D, a water-absorbing polymer compound can be used. Examples of the polymer compound include cellulose, glass fiber, cotton, polyurethane and the like.
[0070] 更に、センサー基板 24の下面の水晶振動子 25が実装された位置には磁石 40(例 えば長方形フェライト磁石)が設置されており、この磁石 40による磁場作用域に水晶 振動子 25の表面が配置されるようになって 、る。 [0070] Further, a magnet 40 (for example, a rectangular ferrite magnet) is installed at the position where the crystal resonator 25 is mounted on the lower surface of the sensor substrate 24. The surface will be placed.
更にまた、センサー基板 24及び水晶振動子 25の実装方法や、電極引き出し方法 等は実施の形態 1と略同様の方法が用いられている。センサー基板 24は、上部カバ 一 71と下部カバー 72とに挟まれた状態で、接着あるいははめ込み式で組み立てら れている。また、水晶振動子 25は、上下カバー 71, 72により密閉された空間に配置 されるため、環境の温度変化や風などに対する影響を受け難い。 Furthermore, the mounting method of the sensor substrate 24 and the crystal resonator 25, the electrode drawing method, and the like are substantially the same as those in the first embodiment. The sensor substrate 24 is assembled by bonding or fitting with the upper cover 71 and the lower cover 72 sandwiched therebetween. Further, since the crystal unit 25 is disposed in a space sealed by the upper and lower covers 71 and 72, it is not easily affected by environmental temperature changes or wind.
[0071] また、測定部 S1と測定結果解析処理部 S2とは、コネクター 85により機械的に接続 、取り外しが可能となっている。同時に、水晶振動子 25からの配線もコネクター 85を 介して測定結果解析処理部 S 2へ接続されて ヽる。 [0071] Further, the measurement unit S1 and the measurement result analysis processing unit S2 can be mechanically connected and disconnected by a connector 85. At the same time, the wiring from the crystal unit 25 is also connected to the measurement result analysis processing unit S 2 via the connector 85.
本実施の形態において、測定結果解析処理部 S2(100)は、実施の形態 1と同様に 、振動数測定回路及び濃度演算回路とを備えているが、振動数測定回路として、水 晶振動子 25を水晶発振回路 111に接続して共振周波数近傍で発振させ、その発振 周波数を周波数カウンター 112で測定する構成が挙げられる。この構成の場合、濃 度演算回路としてはパーソナルコンピューターやマイクロプロセッサーや論理演算回 路などの制御装置 113を用いることができる。 In the present embodiment, the measurement result analysis processing unit S2 (100) includes a frequency measurement circuit and a concentration calculation circuit, as in the first embodiment, but the crystal resonator is used as the frequency measurement circuit. A configuration is possible in which 25 is connected to a crystal oscillation circuit 111 to oscillate in the vicinity of the resonance frequency, and the oscillation frequency is measured by the frequency counter 112. In this configuration, a control device 113 such as a personal computer, a microprocessor, or a logic operation circuit can be used as the concentration operation circuit.
つまり、本実施の形態では、水晶振動子 25の共振周波数の測定は、実施の形態 1 と異なり、水晶発振回路 111を用いて水晶振動子 25を発振させると、共振周波数より わずかに高い周波数で発振するので、これを共振周波数と見なすことができる。そし
て、周波数カウンター 112で前記発振出力を測定することで共振周波数を取得し、 C PU等を利用した制御装置 113にお 、て、検量線データを用 、て共振周波数から測 定対象物の濃度に変換し、結果を表示装置 114に表示することが出来る。 In other words, in the present embodiment, unlike the first embodiment, the measurement of the resonance frequency of the crystal unit 25 is performed at a frequency slightly higher than the resonance frequency when the crystal unit 25 is oscillated using the crystal oscillation circuit 111. Since it oscillates, it can be regarded as a resonance frequency. And Then, the resonance frequency is obtained by measuring the oscillation output by the frequency counter 112, and the control device 113 using a CPU or the like uses the calibration curve data to determine the concentration of the measurement object from the resonance frequency. And the result can be displayed on the display device 114.
[0072] 図 16は水晶発振回路 111の一例を示すもので、 CMOSインバーターを用いたコ ルピッツ型水晶発振回路である。本例では、水晶振動子 25の表電極及び裏電極か らの配線はセンサー基板 24の配線を介して水晶発振回路 111に接続されて!ヽる。 水晶振動子 25は入力コンデンサー 221と出力コンデンサー 222を介してグランドに 接続して π型帰還回路を形成し、 CMOSインバーター 224よりなる増幅回路の入力 と出力間にこの帰還抵抗 223を挿入することで信号を帰還させて発振させて 、る。 C MOSインバーター 224は入出力間を数 Κ Ω力 数 M Ωの帰還抵抗 223で接続する ことで反転増幅器として用いて 、る。 FIG. 16 shows an example of the crystal oscillation circuit 111, which is a Colpitts type crystal oscillation circuit using a CMOS inverter. In this example, the wiring from the front electrode and the back electrode of the crystal unit 25 is connected to the crystal oscillation circuit 111 through the wiring of the sensor substrate 24. The crystal unit 25 is connected to the ground via the input capacitor 221 and the output capacitor 222 to form a π-type feedback circuit, and this feedback resistor 223 is inserted between the input and output of the amplifier circuit composed of the CMOS inverter 224. The signal is fed back and oscillated. The C MOS inverter 224 is used as an inverting amplifier by connecting the input and output with a feedback resistor 223 of several ΩΩ power MΩ.
[0073] 本実施の形態に係る測定装置にお 、ては、実施の形態 1に比べて、シリンジポンプ 36やネットワークアナライザ一等の大型の装置類が不要となり、 POCT等に適した小 型の測定装置を実現することが可能である。 [0073] Compared to the first embodiment, the measuring device according to the present embodiment does not require large devices such as a syringe pump 36 or a network analyzer, and is a small-sized device suitable for POCT or the like. A measuring device can be realized.
[0074] ◎実施の形態 3 [0074] ◎ Embodiment 3
実施の形態 1, 2に係る測定装置は QCMセンサー 23として単一の水晶振動子を 用いたモデルである。これらのモデルは、水晶振動子自体の周波数ドリフトが比較的 少なぐ複合体結合による周波数変化量に比較して無視できる程度であれば特に問 題はない。 The measuring apparatus according to the first and second embodiments is a model using a single crystal unit as the QCM sensor 23. There is no particular problem with these models as long as the frequency drift of the crystal unit itself is negligible compared to the amount of frequency change due to complex coupling, where the frequency drift of the crystal unit itself is relatively small.
ここで周波数ドリフトとは、目的物質の特異的な結合に基づく周波数変化以外の周 波数変動を意味し、例えば添加した試料溶液が水晶振動子に接触することで振動 子自体、あるいは周囲の温度が変化し、それにともなって共振周波数が変化したり、 試料溶液中に含まれる目的物質以外の成分がセンサー膜に結合して周波数変化を 起こす場合などのような、意図しな!、周波数変動の事である。 Here, the frequency drift means a frequency fluctuation other than a frequency change based on specific binding of the target substance. For example, when the added sample solution comes into contact with the crystal resonator, the resonator itself or the ambient temperature is changed. Change, and the resonance frequency will change, and components other than the target substance contained in the sample solution will bind to the sensor film and cause a frequency change. It is.
実施の形態 1, 2において、もし、このような周波数ドリフトが存在すると、ドリフト成分 が測定値に加算されるため、測定値に誤差を生じてしまう懸念がある。 In the first and second embodiments, if such a frequency drift exists, the drift component is added to the measurement value, which may cause an error in the measurement value.
このようなドリフト現象による測定誤差を減らすためには、リファレンス水晶振動子を 用いる方法が考えられる。
リファレンス水晶振動子という名称に対し、目的物質を検出する水晶振動子をテスト 水晶振動子と呼ぶことにする。 In order to reduce the measurement error due to such a drift phenomenon, a method using a reference crystal resonator can be considered. In contrast to the name reference crystal resonator, the crystal resonator that detects the target substance is called the test crystal resonator.
流路中の検出部位に、このリファレンス水晶振動子をテスト水晶振動子に併設し、 それぞれの共振周波数の変化を測定して、テスト水晶振動子の周波数変化から、リ ファレンス水晶振動子の周波数変化を差し引くことでドリフト成分の影響を取り除き、 測定誤差を少なくすることが可能である。 This reference crystal unit is attached to the test crystal unit at the detection site in the flow path, and the change in the resonance frequency of each test crystal unit is measured. By subtracting, it is possible to remove the influence of the drift component and reduce the measurement error.
[0075] 次に、図を用いてリファレンス水晶振動子を用いたモデルについて説明する。 Next, a model using a reference crystal resonator will be described with reference to the drawings.
図 17はリファレンス水晶振動子を用いた実施の形態 3の構成を示す図である。 本実施の形態に係る測定装置は、基本的には実施の形態 2にリファレンス水晶振 動子を追加したもので、さらに追加したリファレンス水晶振動子の共振周波数を計測 し、差を求めるように測定結果解析処理部 S2(解析処理装置 100)の測定回路 120に 改良を加えたものである。 FIG. 17 is a diagram showing the configuration of the third embodiment using a reference crystal resonator. The measurement device according to the present embodiment is basically a reference crystal oscillator added to the second embodiment, and further measures the resonance frequency of the added reference crystal resonator and calculates the difference. This is an improvement of the measurement circuit 120 of the result analysis processing unit S2 (analysis processing device 100).
従って、本実施の形態の説明においては、実施の形態 2と異なる部分を中心に説 明を行う。 Therefore, in the description of the present embodiment, the description will focus on the parts different from the second embodiment.
本実施の形態においては、流路 22中の検出部位 Cに設けたテスト水晶振動子 251 に対し、試料溶液の流れの下流にリファレンス水晶振動子 252が設置されて 、る。 リファレンス水晶振動子 252の実装方法は、テスト水晶振動子 251と同様の方法を 用!/、ることができる。 In the present embodiment, a reference crystal resonator 252 is installed downstream of the flow of the sample solution with respect to the test crystal resonator 251 provided at the detection site C in the flow path 22. The method of mounting the reference crystal unit 252 can be the same as that of the test crystal unit 251!
リファレンス水晶振動子 252からの配線は、センサー基板 24の配線パターンに通じ 、コネクター 85を介して測定器具解析処理部 S2の測定回路 120に接続されている。 The wiring from the reference crystal resonator 252 is connected to the measurement circuit 120 of the measurement instrument analysis processing unit S2 through the connector 85 through the wiring pattern of the sensor substrate 24.
[0076] また、磁場を付与する磁石 40は、リファレンス水晶振動子 252とテスト水晶振動子 2 51とに対し個別に設けているが、 1個の磁石を用いて、それぞれの水晶振動子 251 , 252の電極表面に磁界が集中するように磁石の形状や設置位置などを調整して用 いてもよい。 [0076] Further, the magnet 40 for applying a magnetic field is provided separately for the reference crystal resonator 252 and the test crystal resonator 251, but each magnet resonator 251, The magnet shape and installation position may be adjusted so that the magnetic field concentrates on the 252 electrode surfaces.
リファレンス水晶振動子とテスト水晶振動子の位置関係は、試料溶液の流れに対し て直列でも並列でもよぐ直列の場合には上流下流のどちらでもよい。 The positional relationship between the reference crystal unit and the test crystal unit can be either upstream or downstream in the case of series connection with the sample solution flow.
但し、テスト水晶振動子 251とリファレンス水晶振動子 252とをなるベく近くに配置 することで、両者が同じようにドリフトの影響を受けるようにした方がドリフトのキャンセ
ルがより完全になる点で好ま 、。 However, if the test crystal unit 251 and the reference crystal unit 252 are placed as close as possible so that they are equally affected by drift, the drift cancellation Preferred in terms of becoming more complete.
[0077] 図 18は測定回路 120の構成を示す図である。 FIG. 18 is a diagram showing a configuration of the measurement circuit 120.
テスト水晶振動子 251とリファレンス水晶振動子 252とに対応してそれぞれ個別の 水晶発振回路 121, 122と周波数カウンター 123, 124とに接続されており、両水晶 振動子 251, 252の共振周波数を同時連続的に測定する構成となっている。 Corresponding to the test crystal oscillator 251 and the reference crystal oscillator 252 are connected to the individual crystal oscillator circuits 121 and 122 and frequency counters 123 and 124, respectively. It is configured to continuously measure.
水晶発振回路 121, 122には実施の形態 2で用いたコルピッツ型水晶発振回路を 用いることができる。測定した両者の共振周波数は、制御装置 125内で差を演算す ることでドリフト成分の差し引きが行われるよう構成されている。尚、符号 126は制御 装置 125による演算結果を表示する表示装置である。 As the crystal oscillation circuits 121 and 122, the Colpitts crystal oscillation circuit used in the second embodiment can be used. The measured resonance frequencies are calculated by calculating the difference in the control device 125 so that the drift component is subtracted. Reference numeral 126 denotes a display device that displays a calculation result by the control device 125.
本構成では、両者の発振周波数を周波数カウンター 123, 124で求めた後に、差 を演算しているが、論理回路を用いて 2つの水晶発振回路 121, 122の出力から直 接、差周波数を作りだし、差周波数をカウンターで計測する方法を用いてもよい。 In this configuration, the difference is calculated after the oscillation frequencies of the two are obtained by the frequency counters 123 and 124, but the difference frequency is created directly from the outputs of the two crystal oscillation circuits 121 and 122 using a logic circuit. Alternatively, a method of measuring the difference frequency with a counter may be used.
[0078] 図 19は、測定回路 120の別の構成を示す図である。 FIG. 19 is a diagram showing another configuration of the measurement circuit 120.
この例は、リファレンス水晶振動子 252とテスト水晶振動子 251とを切替回路 130で 切替ながら 1つの水晶発振回路 131で交互に発振させて周波数を測定するものであ る。 In this example, the reference crystal resonator 252 and the test crystal resonator 251 are switched by the switching circuit 130 and are alternately oscillated by one crystal oscillation circuit 131 to measure the frequency.
切替回路 130には、電磁リレーや、アナログスィッチ等の電子的なリレーを用いるこ とがでさる。 The switching circuit 130 can be an electromagnetic relay or an electronic relay such as an analog switch.
切替は、制御装置 133内で発生させた切替信号により行う。 Switching is performed by a switching signal generated in the control device 133.
切替のタイミングは、数 0. 1秒力 数 10秒の範囲が可能だ力 切替時間が短いと 周波数カウンター 132の計測精度が悪くなり、逆に切替時間が長いと発振させてい ない側の共振周波数変化の様子がわ力 なくなるので通常 1秒力 数秒程度が適し ている。尚、符号 134は制御装置 133による演算結果を表示する表示装置である。 The switching timing can be in the range of several 0.1s of force and several tens of seconds. If the switching time is short, the measurement accuracy of the frequency counter 132 will deteriorate. Conversely, if the switching time is long, the resonance frequency on the non-oscillating side Since the state of change disappears, a force of about 1 second per second is usually appropriate. Reference numeral 134 denotes a display device that displays a calculation result by the control device 133.
[0079] 本実施の形態での測定手順については、実施の形態 2と全く同様である。 [0079] The measurement procedure in the present embodiment is exactly the same as in Embodiment 2.
本実施の形態によれば、非特異吸着や温度変化などの他にも予期せぬ原因に基 づくドリフトをキャンセルした測定が可能であるため、測定精度の向上が期待できる。 According to the present embodiment, in addition to non-specific adsorption and temperature change, measurement that cancels drift based on an unexpected cause is possible, so that improvement in measurement accuracy can be expected.
[0080] 実施の形態 3では、テスト水晶振動子 251とリファレンス水晶振動子 252とに別個の 水晶振動子を用いた力 例えば一つの水晶基板上に 2組の電極を設けた 2チャンネ
ル水晶振動子を用いることも出来る。 In the third embodiment, force using separate crystal resonators for the test crystal resonator 251 and the reference crystal resonator 252, for example, two channels in which two sets of electrodes are provided on one crystal substrate. A quartz crystal can also be used.
このように、 2つの個別の水晶振動子を用いる代わりに 2チャンネル水晶振動子を 用いた場合の例で、 2つの個別水晶振動子を用いる場合に比較してドリフト除去能力 に優れて 、るため、さらに高 、精度と検出限界が必要な場合に適して 、る。 In this example, instead of using two separate crystal units, a 2-channel crystal unit is used, and the drift removal capability is superior compared to using two individual crystal units. It is suitable when higher accuracy and detection limit are required.
1種類の測定対象物を 2検体分添加したり、 2種類の異なる測定対象物を 1検体ず つ添加して、同時に測定することが可能である。 It is possible to add two samples of one type of measurement object or add two different types of measurement objects one by one and measure simultaneously.
更に、ライン数を 2以上に増やすことも容易に可能であり、多検体および多測定対 象物の同時測定が可能となる。 Furthermore, it is possible to easily increase the number of lines to 2 or more, and simultaneous measurement of multiple samples and multiple measurement objects becomes possible.
更にまた、リファレンス型 2チャンネル水晶振動子を 2つ用いて、複数の目的物質を 検出する構成も可能である。例えば第 1のリファレンス型 2チャンネル水晶振動子で A 型インフルエンザウイルスを検出し、第 2のリファレンス型 2チャンネル水晶振動子で B 型インフルエンザウイルスを検出することができる。 In addition, it is possible to detect two or more target substances by using two reference type 2-channel crystal resonators. For example, an influenza A virus can be detected with a first reference type 2-channel crystal resonator, and an influenza B virus can be detected with a second reference type 2-channel crystal resonator.
尚、 2チャンネル水晶振動子の他に 3チャンネル以上の水晶振動子についても適 用可能である。 In addition to the 2-channel crystal unit, it can also be applied to crystal units with 3 or more channels.
◎実施の形態 4 ◎ Embodiment 4
図 20は実施の形態 4に係る測定器具を示すものである。 FIG. 20 shows a measuring instrument according to the fourth embodiment.
同図において、本例は nライン型測定器具 (例えば n= 3)の例で、複数ラインの各 流路 22 (22〜22 )に対し試料添加部位 Aを共通化すると共に、ライン 1の流路 22 (22)の検出部位にはテスト水晶振動子 25、ライン 2の流路 22 (22)にはリファレン In this figure, this example is an example of an n-line type measuring instrument (for example, n = 3), and the sample addition site A is made common to each flow path 22 (22-22) of a plurality of lines, and the flow of the line 1 A test crystal unit 25 is located at the detection site of the path 22 (22), and a reference channel is located at the path 22 (22) of the line 2.
1 2 1 2
ス水晶振動子 25、ライン nの流路 22 (22)にはコントロール水晶振動子 25を配置 Quartz crystal unit 25, control crystal unit 25 is placed in channel 22 (22) of line n
2 n n することで、精度と検出限界を高め、さらに測定中に磁性粒子が正常に流路中を流 れた力どうかを検出し、測定自体の可否の判断を行うことが可能である。 By increasing the accuracy and detection limit, it is possible to determine whether or not the measurement itself is possible by detecting whether the magnetic particles have normally flowed through the flow path during measurement.
ここで、コントロール水晶振動子 25とは、複合体を形成していない磁性粒子を特異 的に検出するセンサー膜が形成された水晶振動子であり、磁性粒子が流路中を流 れた力どうかを検出し、測定自体が正常に完了したかどうか、つまり測定の可否を示 す指標として用いることもできる。 Here, the control crystal unit 25 is a crystal unit on which a sensor film that specifically detects magnetic particles not forming a complex is formed. Can be used as an index to indicate whether the measurement itself has been completed normally, that is, whether measurement is possible.
また、本図に示された測定器具を用いれば、検出部位における n個の水晶振動子 を全てテスト水晶振動子とすることにより、 nの検体中の同一測定対象物の同時測定
や同一検体における nの測定対象物の同時測定が可能になる。 In addition, if the measuring instrument shown in this figure is used, all n crystal resonators at the detection site are used as test crystal resonators, so that the same measurement object in n samples can be measured simultaneously. And n measurement objects in the same specimen can be simultaneously measured.
更に、複数ラインのうちの一つのラインをリファレンス水晶振動子 25として使用して In addition, one of the multiple lines is used as the reference crystal unit 25.
2 2
、異なる 2種類の測定対象物もしくは 1種類の測定対象物を 2検体分同時に測定する ことも可能である。 It is also possible to measure two different types of measurement objects or one type of measurement object for two samples at the same time.
また、ライン数を 3以上に増やすことも容易に可能であり、多検体および多測定対 象物の同時計測が可能となる。また、複数ラインのうちの 1つをリファレンスラインとし て用いることで、実施の形態 3で説明したような方法で、ドリフト現象による誤差をキヤ ンセルし、精度と検出限界を向上することが可能である。 It is also possible to easily increase the number of lines to 3 or more, and simultaneous measurement of multiple samples and multiple measurement objects becomes possible. Also, by using one of the multiple lines as a reference line, it is possible to cancel the error due to the drift phenomenon and improve the accuracy and detection limit by the method described in Embodiment 3. is there.
[0082] また、本実施の形態において、何種類かの測定対象物を同時に測定する場合には 、図 20 (a)に示すように、反応容器 21の複数の箇所 (P〜P )に水晶振動子 25 (25 〜25 )、複数の担持体 (A〜八)が磁石40 (40〜40 )によって担持されている。 このとき、図 20 (b)に示すように、反応容器 21の外部から磁石 40による磁場を解放 することにより、水晶振動子 25表面から夫々の担持体 (A〜A )を別個独立に離脱 させることができる。担持体 (A〜A )はそれぞれ異なっていてもよいが、 2種類以上 が同じものであってもよ 、。バインダー又は標識体もそれぞれが異なって 、てもよ ヽ 力 2種類以上が同じものであってもよい。 Further, in the present embodiment, when several types of measurement objects are measured at the same time, as shown in FIG. 20 (a), crystals are formed at a plurality of locations (P to P) of the reaction vessel 21. The vibrator 25 (25 to 25) and a plurality of carriers (A to 8) are supported by the magnet 40 (40 to 40). At this time, as shown in FIG. 20 (b), by releasing the magnetic field generated by the magnet 40 from the outside of the reaction vessel 21, the respective supporting bodies (A to A) are detached separately from the surface of the crystal unit 25. be able to. The supports (A to A) may be different from each other, but two or more types may be the same. The binder or the label may be different from each other, and two or more kinds of force may be the same.
[0083] 尚、本実施の形態では、試料添加部位 Aを共通化した態様が示されて 、るが、これ に限られるものではなぐ図 22に示すように、各流路毎に試料添加部位 Aを設けるよ うにしてもよい。 In this embodiment, a mode in which the sample addition site A is shared is shown, but this is not limited to this. As shown in FIG. 22, the sample addition site for each channel is shown. A may be provided.
この場合、例えば nライン型測定器具で、ライン 1の流路 22力も n— 1ラインの流路 22 の検出部位にはテスト水晶振動子 25 , 25 · '·25 を配置する一方、ライン η の流路 22にはリファレンス水晶振動子 25を配置することで、例えば複数種類の測 定対象物についてドリフト成分の影響を取り除き、測定誤差を少なくすることを可能に することができる。 In this case, for example, with an n-line type measuring instrument, the test crystal resonators 25, 25 · '· 25 are arranged at the detection site of the flow path 22 of the line 1 and the flow path 22 of the line 1, while the line η By disposing the reference crystal unit 25 in the flow path 22, it is possible to remove the influence of drift components on a plurality of types of measurement objects, for example, and to reduce measurement errors.
産業上の利用可能性 Industrial applicability
[0084] 本発明により、生体、食品、土壌等の分析対象試料に含有される測定対象物を測 定するために有効な測定器具及びこれを用いた測定方法並びに測定装置を提供す ることがでさる。
[0084] According to the present invention, it is possible to provide a measuring instrument effective for measuring a measurement object contained in a sample to be analyzed such as a living body, food, and soil, a measurement method and a measurement apparatus using the measurement instrument. I'll do it.
Claims
[1] 測定対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒子とが 結合してなる担持体、あるいは、測定対象物類似物と磁性粒子とが結合してなる担 持体を用いて試料中の測定対象物を測定するための測定器具であって、 [1] A carrier formed by binding a trapper that specifically binds to a measurement object or a measurement object analog and a magnetic particle, or a support formed by bonding a measurement object analog and a magnetic particle A measuring instrument for measuring a measurement object in a sample using a body,
試料添加部位及び圧電振動子を備えた検出部位を有する反応容器と、 この圧電振動子に磁場を作用させるための磁力発生部材とを備え、 A reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and a magnetic force generating member for applying a magnetic field to the piezoelectric vibrator,
担持体は、磁力発生部材の磁力により圧電振動子上に磁気的に担持されるもので あることを特徴とする測定器具。 The measuring instrument, wherein the carrier is magnetically supported on the piezoelectric vibrator by the magnetic force of the magnetic force generating member.
[2] 請求項 1記載の測定器具において、 [2] In the measuring instrument according to claim 1,
磁力発生部材は、圧電振動子に作用させた磁場を解除する手段を兼ね備えている ことを特徴とする測定器具。 The magnetic force generating member also has means for releasing the magnetic field applied to the piezoelectric vibrator.
[3] 請求項 1又は 2記載の測定器具において、 [3] In the measuring instrument according to claim 1 or 2,
反応容器は、測定対象物若しくは測定対象物類似物に特異的に結合するバインダ 一、又は、該バインダー若しくは測定対象物類似物と不溶性小胞体とが結合してなる 標識体が供給可能なバインダー又は標識体供給部位を有することを特徴とする測定 器 。 The reaction vessel is a binder that specifically binds to the measurement object or the measurement object analog, or a binder that can supply a label formed by binding the binder or the measurement object analog to an insoluble vesicle or A measuring instrument having a label supply part.
[4] 請求項 1又は 2記載の測定器具において、 [4] In the measuring instrument according to claim 1 or 2,
反応容器は、測定対象物及び担持体が流路に沿って移動可能なフローセル型で あり、該フローセル型反応容器の流路に試料添加部位及び検出部位が設けられて V、ることを特徴とする測定器具。 The reaction container is a flow cell type in which a measurement object and a carrier can move along a flow path, and a sample addition site and a detection site are provided in the flow path of the flow cell type reaction vessel. Measuring instrument to do.
[5] 請求項 3記載の測定器具において、 [5] The measuring instrument according to claim 3,
反応容器は、測定対象物、担持体及び標識体が流路に沿って移動可能なフロー セル型であり、該フローセル型反応容器の流路に試料添加部位、検出部位及びバイ ンダ一又は標識体供給部位が設けられていることを特徴とする測定器具。 The reaction container is a flow cell type in which a measurement object, a carrier, and a labeling body can move along a flow path, and a sample addition site, a detection site, a binder, or a labeling body are placed in the flow cell of the flow cell type reaction container. A measuring instrument, characterized in that a supply site is provided.
[6] 請求項 5記載の測定器具において、 [6] The measuring instrument according to claim 5,
ノインダー又は標識体供給部位はフローセル型反応容器の流路のうち試料添カロ 部位の下流側に設けられるものであることを特徴とする測定器具。 A measuring instrument characterized in that the noinder or labeled body supply site is provided downstream of the flow channel of the flow cell type reaction vessel in the flow channel of the sample.
[7] 請求項 5記載の測定器具において、
試料添加部位は、バインダー又は標識体供給部位を兼ねることを特徴とする測定 器 。 [7] The measuring instrument according to claim 5, The sample addition site also serves as a binder or label supply site.
[8] 請求項 4乃至 7の 、ずれかに記載の測定器具にお 、て、 [8] In the measuring instrument according to any one of claims 4 to 7,
検出部位の下流側には吸収部位を備えることを特徴とする測定器具。 A measuring instrument comprising an absorption site downstream of a detection site.
[9] 請求項 1乃至 8の 、ずれかに記載の測定器具にお 、て、 [9] In the measuring instrument according to any one of claims 1 to 8,
複数種の担持体が用いられることを特徴とする測定器具。 A measuring instrument using a plurality of types of carriers.
[10] 請求項 1乃至 9の 、ずれかに記載の測定器具にお 、て、 [10] In the measuring instrument according to any one of claims 1 to 9,
複数の圧電振動子が検出部位に具備されていることを特徴とする測定器具。 A measuring instrument comprising a plurality of piezoelectric vibrators at a detection site.
[11] 請求項 10記載の測定器具において、 [11] The measuring instrument according to claim 10,
各圧電振動子に対し、磁力発生部材がそれぞれ具備されていることを特徴とする 測定器具。 A measuring instrument comprising a magnetic force generating member for each piezoelectric vibrator.
[12] 請求項 1乃至 11のいずれかに記載の測定器具において、 [12] The measuring instrument according to any one of claims 1 to 11,
圧電振動子が水晶振動子であることを特徴とする測定器具。 A measuring instrument, wherein the piezoelectric vibrator is a quartz crystal vibrator.
[13] 請求項 4乃至 12の 、ずれかに記載の測定器具にお 、て、 [13] In the measuring instrument according to any one of claims 4 to 12,
フローセル型反応容器は複数の流路を備えることを特徴とする測定器具。 A flow cell type reaction vessel is provided with a plurality of flow paths.
[14] 請求項 5乃至 13の 、ずれかに記載の測定器具にお 、て、 [14] In the measuring instrument according to any one of claims 5 to 13,
バインダー又は標識体供給部位に予めバインダー又は標識体が移動可能に保持さ れることを特徴とする測定器具。 A measuring instrument, wherein a binder or a marker is movably held in advance at a binder or marker supply site.
[15] 請求項 1乃至 14のいずれかに記載の測定器具において、 [15] The measuring instrument according to any one of claims 1 to 14,
担持体が圧電振動子表面に予め磁気的に担持されていることを特徴とする測定器 具。 A measuring instrument characterized in that the carrier is magnetically carried on the surface of the piezoelectric vibrator in advance.
[16] 請求項 1乃至 13のいずれかに記載の測定器具と担持体とを含有することを特徴と する測定用キット。 [16] A measuring kit comprising the measuring instrument according to any one of claims 1 to 13 and a carrier.
[17] 請求項 1乃至 13のいずれかに記載の測定器具と担持体とバインダー若しくは標識体 とを含有することを特徴とする測定用キット。 [17] A measurement kit comprising the measurement instrument according to any one of claims 1 to 13, a carrier, and a binder or a label.
[18] 試料添加部位及び圧電振動子を備えた検出部位を有する反応容器、及び、測定 対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒子とが結合し てなる担持体を用いて試料中の測定対象物を測定する方法であって、
反応容器中で、試料中の測定対象物と担持体とを反応させ、担持体 測定対象物 を含む複合体を生成させる試料反応工程、 [18] A reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and a carrier formed by binding a trapper that specifically binds to a measurement object or a measurement object analog and magnetic particles A method for measuring a measurement object in a sample using A sample reaction step in which a measurement object in a sample and a carrier are reacted in a reaction container to generate a complex including the carrier measurement object;
担持体の磁性粒子に磁力を作用させ、磁性粒子を磁気的に圧電振動子上に担持 する担持体担持工程、 A carrier carrying step in which a magnetic force is applied to the magnetic particles of the carrier to magnetically carry the magnetic particles on the piezoelectric vibrator;
圧電振動子上に担持された複合体の量を圧電振動子の振動数の変化量として測 定する振動数測定工程、および、 A frequency measurement process for measuring the amount of the composite supported on the piezoelectric vibrator as a change in the frequency of the piezoelectric vibrator; and
この振動数測定工程で測定した圧電振動子の振動数の変化量と予め作成した検 量線とから試料中の測定対象物の濃度を決定する濃度決定工程を備えたことを特徴 とする測定方法。 A measurement method comprising a concentration determination step for determining the concentration of the measurement object in the sample from the amount of change in the vibration frequency of the piezoelectric vibrator measured in the frequency measurement step and a calibration curve prepared in advance. .
[19] 請求項 18記載の方法であって、 [19] The method of claim 18, comprising
さらに、反応容器中で、試料と測定対象物若しくは測定対象物類似物に特異的に 結合するバインダー又は該バインダーと不溶性小胞体とが結合してなる標識体とを 反応させ、担持体 測定対象物 バインダーを含む複合体、担持体 測定対象物 標識体を含む複合体を生成させる工程を含むことを特徴とする測定方法。 Further, in the reaction vessel, the sample and the binder that specifically binds to the measurement object or the measurement object analog or the labeled body formed by binding the binder to the insoluble vesicle is reacted, and the carrier measurement object. A composite comprising a binder, a carrier, and an object to be measured. A measurement method comprising a step of producing a composite comprising a label.
[20] 試料添加部位及び圧電振動子を備えた検出部位を有する反応容器、及び、測定 対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒子とが結合し てなる担持体を用いて試料中の測定対象物を測定する方法であって、 [20] A reaction vessel having a sample addition site and a detection site equipped with a piezoelectric vibrator, and a carrier in which a trapper that specifically binds to a measurement object or a measurement object analogue and magnetic particles are combined. A method for measuring a measurement object in a sample using
反応容器中で、試料中の測定対象物及び測定対象物類似物と不溶性小胞体とが 結合してなる標識体を担持体に反応させ、担持体 標識体を含む複合体を生成さ せる試料反応工程、 A sample reaction in which a labeled body formed by binding a measurement object in a sample and a measurement object analog and an insoluble endoplasmic reticulum in a reaction container reacts with the support body to form a complex containing the support body label body. Process,
担持体の磁性粒子に磁力を作用させ、磁性粒子を磁気的に圧電振動子上に担持 する担持体担持工程、 A carrier carrying step in which a magnetic force is applied to the magnetic particles of the carrier to magnetically carry the magnetic particles on the piezoelectric vibrator;
圧電振動子上に担持された複合体の量を圧電振動子の振動数の変化量として測 定する振動数測定工程、および、 A frequency measurement process for measuring the amount of the composite supported on the piezoelectric vibrator as a change in the frequency of the piezoelectric vibrator; and
この振動数測定工程で測定した圧電振動子の振動数の変化量と予め作成した検 量線とから試料中の測定対象物の濃度を決定する濃度決定工程を備えたことを特徴 とする測定方法。 A measurement method comprising a concentration determination step for determining the concentration of the measurement object in the sample from the amount of change in the vibration frequency of the piezoelectric vibrator measured in the frequency measurement step and a calibration curve prepared in advance. .
[21] 試料添加部位及び圧電振動子を備えた検出部位を有する反応容器、測定対象物
類似物と磁性粒子とが結合してなる担持体、及び、測定対象物若しくは測定対象物 類似物に特異的に結合するバインダー又は該バインダーと不溶性小胞体とが結合し てなる標識体を用いて試料中の測定対象物を測定する方法であって、 [21] a reaction vessel having a detection site with a sample addition site and a piezoelectric vibrator, and a measurement object Using a carrier formed by binding an analog and magnetic particles, and a measurement object or a measurement object or a binder that specifically binds to the analog or a label formed by binding the binder and an insoluble vesicle A method for measuring an object to be measured in a sample,
反応容器中で、試料中の測定対象物及び測定対象物類似物と磁性粒子とが結合 してなる担持体と測定対象物若しくは測定対象物類似物に特異的に結合するバイン ダー又は該バインダーと不溶性小胞体とを反応させ、担持体 バインダー又は担持 体 標識体を含む複合体を生成させる試料反応工程、 In a reaction container, a support formed by binding a measurement object and a measurement object analog in the sample to magnetic particles, and a binder or the binder specifically binding to the measurement object or the measurement object analog A sample reaction step for reacting with an insoluble endoplasmic reticulum to produce a complex containing a carrier binder or a carrier label;
担持体の磁性粒子に磁力を作用させ、磁性粒子を磁気的に圧電振動子上に担持 する担持体担持工程、 A carrier carrying step in which a magnetic force is applied to the magnetic particles of the carrier to magnetically carry the magnetic particles on the piezoelectric vibrator;
圧電振動子上に担持された複合体の量を圧電振動子の振動数の変化量として測 定する振動数測定工程、および、 A frequency measurement process for measuring the amount of the composite supported on the piezoelectric vibrator as a change in the frequency of the piezoelectric vibrator; and
この振動数測定工程で測定した圧電振動子の振動数の変化量と予め作成した検 量線とから試料中の測定対象物の濃度を決定する濃度決定工程を備えたことを特徴 とする測定方法。 A measurement method comprising a concentration determination step for determining the concentration of the measurement object in the sample from the amount of change in the vibration frequency of the piezoelectric vibrator measured in the frequency measurement step and a calibration curve prepared in advance. .
[22] 請求項 18乃至 21のいずれかに記載の測定方法において、 [22] In the measurement method according to any one of claims 18 to 21,
圧電振動子上に担持された該複合体の洗浄を行う洗浄工程を含むことを特徴とす る測定方法。 A measuring method comprising a cleaning step of cleaning the composite supported on a piezoelectric vibrator.
[23] 請求項 18乃至 22のいずれかに記載の測定方法において、 [23] The measurement method according to any one of claims 18 to 22,
試料反応工程の前に、担持体担持工程を行うことを特徴とする測定方法。 A measuring method comprising performing a carrier supporting step before the sample reaction step.
[24] 請求項 18乃至 23のいずれかに記載の測定方法において、 [24] In the measurement method according to any one of claims 18 to 23,
反応容器は、測定対象物及び担持体が流路に沿って移動可能なフローセル型で あり、該フローセル型反応容器の流路に該試料添加部位及び該検出部位が設けら れて!ヽることを特徴とする測定方法。 The reaction container is a flow cell type in which the measurement object and the carrier can move along the flow path, and the sample addition site and the detection site are provided in the flow path of the flow cell type reaction container! Measuring method characterized by
[25] 請求項 24記載の測定方法において、 [25] The measurement method according to claim 24,
ノインダー又は標識体が流路に保持されており、試料添加部位に試料を添加する ことにより、試料反応工程を開始することを特徴とする測定方法。 A measuring method characterized in that a sampler is started by adding a sample to a sample addition site, wherein a noinder or a labeled body is held in a flow path.
[26] 請求項 1乃至 17のいずれかに記載の測定器具と、 [26] The measuring instrument according to any one of claims 1 to 17,
この測定器具の検出部位の圧電振動子上に担持された複合体の量を圧電振動子
の振動数の変化量として測定する振動数測定手段とを含むことを特徴とする測定装 置。 The amount of the composite carried on the piezoelectric vibrator at the detection site of this measuring instrument And a frequency measuring means for measuring the amount of change in the frequency.
[27] 請求項 1乃至 17のいずれかに記載の測定器具と、 [27] The measuring instrument according to any one of claims 1 to 17,
この測定器具の検出部位の圧電振動子上に担持された複合体の量を圧電振動子 の振動数の変化量として測定する振動数測定手段と、 A frequency measuring means for measuring the amount of the composite carried on the piezoelectric vibrator at the detection site of the measuring instrument as a change in the frequency of the piezoelectric vibrator;
この振動数測定手段で測定した圧電振動子の振動数の変化量と予め作成した検 量線とから試料中の測定対象物の濃度を決定する濃度決定手段とを含むことを特徴 とする測定装置。 A measuring apparatus comprising: a concentration determining means for determining the concentration of the measurement object in the sample from the amount of change in the vibration frequency of the piezoelectric vibrator measured by the frequency measuring means and a calibration curve prepared in advance. .
[28] 測定対象物又は測定対象物類似物に特異的に結合するトラッパ一と磁性粒子とが 結合してなる担持体、あるいは、測定対象物類似物と磁性粒子とが結合してなる担 持体と、圧電振動子とを用いる試料中の測定対象物の測定における圧電振動子の 再生方法であって、磁力発生手段により圧電振動子上に担持された担持体と測定対 象物とからなる複合体を測定した後に、磁場解除手段により担持体を解離させること を特徴とする圧電振動子の再生方法。 [28] A carrier formed by binding a trapper that specifically binds to a measurement object or a measurement object analog and a magnetic particle, or a support formed by bonding a measurement object analog and a magnetic particle. A method for regenerating a piezoelectric vibrator in measurement of a measurement object in a sample using a body and a piezoelectric vibrator, comprising: a carrier carried on the piezoelectric vibrator by a magnetic force generating means; and a measurement object A method for regenerating a piezoelectric vibrator, comprising: measuring a composite and then dissociating the carrier by a magnetic field release means.
[29] 請求項 28記載の再生方法において、 [29] The playback method according to claim 28,
圧電振動子が水晶振動子であることを特徴とする再生方法。
A reproducing method, wherein the piezoelectric vibrator is a crystal vibrator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005228921 | 2005-08-05 | ||
JP2005-228921 | 2005-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007018187A1 true WO2007018187A1 (en) | 2007-02-15 |
Family
ID=37727370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/315614 WO2007018187A1 (en) | 2005-08-05 | 2006-08-07 | Measurement instrument, measurement kit using the same, measurement method, measurement device, and piezoelectric oscillator reproducing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007018187A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011121859A1 (en) * | 2010-03-29 | 2011-10-06 | 独立行政法人科学技術振興機構 | Detection element |
DE102017006676A1 (en) * | 2017-07-14 | 2019-01-17 | Vdeh-Betriebsforschungsinstitut Gmbh | Apparatus and method for determining a concentration of particles in a fluid |
US11391730B2 (en) * | 2019-12-31 | 2022-07-19 | Robert Bosch Gmbh | Sensor refresh systems |
CN116879105A (en) * | 2023-09-08 | 2023-10-13 | 云南绅博源生物科技有限公司 | Water retention detection method and device for preparing cigarette filter material |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5954943A (en) * | 1982-09-22 | 1984-03-29 | Daido Steel Co Ltd | Method for measuring amount of magnetic particle in fluid |
JPS6435269A (en) * | 1987-06-18 | 1989-02-06 | Gene Trak Systems | Signal amplification for measurement using piezo-electric oscillator |
JPH04320967A (en) * | 1991-02-27 | 1992-11-11 | Nec Corp | Immunity sensor |
JPH0688779A (en) * | 1992-09-07 | 1994-03-29 | Terumo Corp | Gene sensor |
JPH07225233A (en) * | 1994-02-15 | 1995-08-22 | Kyowa Medex Co Ltd | Immunoassay using crystal vibrator |
JP2000283905A (en) * | 1999-03-30 | 2000-10-13 | Noboru Koyama | Multichannel qcm sensor device |
JP2003307481A (en) * | 2002-04-17 | 2003-10-31 | Canon Inc | Multichannel biosensor |
WO2005031316A1 (en) * | 2003-09-29 | 2005-04-07 | National Institute Of Advanced Industrial Science And Technology | Automatic analyzing method and analyzer |
JP2005274164A (en) * | 2004-03-23 | 2005-10-06 | Citizen Watch Co Ltd | Biosensor device |
-
2006
- 2006-08-07 WO PCT/JP2006/315614 patent/WO2007018187A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5954943A (en) * | 1982-09-22 | 1984-03-29 | Daido Steel Co Ltd | Method for measuring amount of magnetic particle in fluid |
JPS6435269A (en) * | 1987-06-18 | 1989-02-06 | Gene Trak Systems | Signal amplification for measurement using piezo-electric oscillator |
JPH04320967A (en) * | 1991-02-27 | 1992-11-11 | Nec Corp | Immunity sensor |
JPH0688779A (en) * | 1992-09-07 | 1994-03-29 | Terumo Corp | Gene sensor |
JPH07225233A (en) * | 1994-02-15 | 1995-08-22 | Kyowa Medex Co Ltd | Immunoassay using crystal vibrator |
JP2000283905A (en) * | 1999-03-30 | 2000-10-13 | Noboru Koyama | Multichannel qcm sensor device |
JP2003307481A (en) * | 2002-04-17 | 2003-10-31 | Canon Inc | Multichannel biosensor |
WO2005031316A1 (en) * | 2003-09-29 | 2005-04-07 | National Institute Of Advanced Industrial Science And Technology | Automatic analyzing method and analyzer |
JP2005274164A (en) * | 2004-03-23 | 2005-10-06 | Citizen Watch Co Ltd | Biosensor device |
Non-Patent Citations (1)
Title |
---|
LI J. ET AL.: "[Piezoelectric immunosensor based on magnetic nanoparticles with simple immobilization procedures]", ANALYTICA CHIMICA ACTA, vol. 81, no. 2, 3 April 2003 (2003-04-03), pages 191 - 198, XP003003846 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011121859A1 (en) * | 2010-03-29 | 2011-10-06 | 独立行政法人科学技術振興機構 | Detection element |
JP4981998B2 (en) * | 2010-03-29 | 2012-07-25 | 独立行政法人科学技術振興機構 | Detection element |
US8438912B2 (en) | 2010-03-29 | 2013-05-14 | Japan Science And Technology Agency | Detection device |
DE102017006676A1 (en) * | 2017-07-14 | 2019-01-17 | Vdeh-Betriebsforschungsinstitut Gmbh | Apparatus and method for determining a concentration of particles in a fluid |
WO2019012034A1 (en) | 2017-07-14 | 2019-01-17 | Vdeh-Betriebsforschungsinstitut Gmbh | Apparatus and method for determining a concentration of particles in a fluid |
DE102017006676B4 (en) | 2017-07-14 | 2024-08-01 | Vdeh-Betriebsforschungsinstitut Gmbh | Device and method for determining a concentration of particles in a fluid |
US11391730B2 (en) * | 2019-12-31 | 2022-07-19 | Robert Bosch Gmbh | Sensor refresh systems |
CN116879105A (en) * | 2023-09-08 | 2023-10-13 | 云南绅博源生物科技有限公司 | Water retention detection method and device for preparing cigarette filter material |
CN116879105B (en) * | 2023-09-08 | 2023-11-14 | 云南绅博源生物科技有限公司 | Water retention detection method and device for preparing cigarette filter material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4587903B2 (en) | Measuring instrument, measuring kit using the same, measuring method and measuring apparatus | |
US7389673B2 (en) | Sensor for detecting analyte in liquid and device for detecting analyte in liquid using the same | |
US7749445B2 (en) | Method and apparatus for analyzing bioprocess fluids | |
JP5922153B2 (en) | Microfluidic assay device | |
EP1864119A2 (en) | Cartridge for a fluid sample analyser | |
JP2008502911A (en) | Analytical instrument with an array of sensors and calibration elements | |
JP2008082988A (en) | Detection method using multistage amplification | |
JPH11183479A (en) | Solution measuring sensor and solution component measuring method | |
JP2022009205A (en) | Systems and methods for processing test substance signals in GMR-based biomarker detection | |
Michalzik et al. | Miniaturized QCM-based flow system for immunosensor application in liquid | |
US10466194B2 (en) | Piezoelectric biochips having fluidic channels | |
Waiwijit et al. | Real-time multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance | |
WO2007018187A1 (en) | Measurement instrument, measurement kit using the same, measurement method, measurement device, and piezoelectric oscillator reproducing method | |
CN106546727B (en) | A kind of preparation method of Graphene glass chip | |
JP2005274164A (en) | Biosensor device | |
EP1662257A1 (en) | Tool for measuring object to be measured, measuring device, and measuring method | |
US8250908B2 (en) | Wave sensor apparatus including gas removing unit and method of detecting target material in liquid sample | |
WO2016035197A1 (en) | Cartridge for electrochemical immunity sensor and measurement device using same | |
JP4127192B2 (en) | Receptor fixing method on crystal oscillator electrode surface and manufacturing method of receptor fixed crystal oscillator | |
EP2284539B1 (en) | Method and apparatus for analyzing bioprocess fluids | |
JP2007085973A (en) | Qcm analyzer | |
da Silva Granja et al. | Characterisation of particle-surface interactions via anharmonic acoustic transduction | |
JP2690849B2 (en) | Manufacturing method of quartz oscillator type biosensor and quartz oscillator type biosensor | |
Kato et al. | 1Pa-28 Development of a High-Frequency Electrodeless Quartz Crystal Microbalance Chip with a Bare Quartz Resonator Encapsulated in a Silicon MicroChannel and Its Application to a Biosensor | |
JP5040019B2 (en) | Microreactor and microreactor system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06782456 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |