JPS5953851B2 - Method for manufacturing transparent containers - Google Patents

Method for manufacturing transparent containers

Info

Publication number
JPS5953851B2
JPS5953851B2 JP52008765A JP876577A JPS5953851B2 JP S5953851 B2 JPS5953851 B2 JP S5953851B2 JP 52008765 A JP52008765 A JP 52008765A JP 876577 A JP876577 A JP 876577A JP S5953851 B2 JPS5953851 B2 JP S5953851B2
Authority
JP
Japan
Prior art keywords
sheet
nucleating agent
thermoforming
polypropylene
transparency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52008765A
Other languages
Japanese (ja)
Other versions
JPS5394371A (en
Inventor
武 神谷
勝哉 矢崎
俊 井上
力雄 黒田
省治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP52008765A priority Critical patent/JPS5953851B2/en
Publication of JPS5394371A publication Critical patent/JPS5394371A/en
Publication of JPS5953851B2 publication Critical patent/JPS5953851B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は透明性が良好で腰の強いかつ熱成形の良好な熱
成形用のポリプロピレンシートからの透明容器の製造方
法に関し、さらに詳しくは通常の成形方法例えば真空成
形、プラグアシスト圧空成形、またはマツチドモールド
成形等により上記のごときすぐれた性状を有するポリプ
ロピレン透明容器の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a transparent container from a polypropylene sheet for thermoforming, which has good transparency, is strong, and has good thermoformability. The present invention relates to a method for manufacturing a transparent polypropylene container having the above-mentioned excellent properties by plug-assisted pressure forming, matte molding, or the like.

従来、上記のごとき熱形成性、透明性および腰の強さの
三つの性状を満足させるべきシートの材質としてはポリ
塩化ビニル樹脂(以下、PVCとする)およびポリスチ
ロール系樹脂(以下、P、S系とする)に殆ど限定され
ていた。
Conventionally, polyvinyl chloride resin (hereinafter referred to as PVC) and polystyrene resin (hereinafter referred to as P, S-type).

このような状′態では、例えばPVCではその毒性問題
、低耐熱性に問題があり、P、S系においてはその低耐
熱性、低耐衝撃性、廃棄処理等の問題があるが、それに
もかかわらず他の汎用樹脂では上記3性状のいずれも充
分満足させられるものではなかつた。 現在この問題に
対し次のような提案がなされている。
In such a situation, for example, PVC has problems with its toxicity and low heat resistance, and P and S systems have problems with their low heat resistance, low impact resistance, and disposal, but these also have problems. However, other general-purpose resins were not able to fully satisfy any of the above three properties. Currently, the following proposals have been made to address this problem.

(1)ポリオレフィン(実質的にポリプロピレンである
)を急冷処理し透明性を改良し融点以下の温度で熱成形
する(特開昭50−158652および50−1603
76)。
(1) Polyolefin (substantially polypropylene) is rapidly cooled to improve its transparency and then thermoformed at a temperature below its melting point (Japanese Patent Application Laid-open Nos. 50-158652 and 50-1603).
76).

しかしながら、この方法の欠点は、熱成形性が悪い(熱
成形時のシートのたるみおよびしわの発生等)、腰が弱
い(成形品)、および急冷処理工程に高度の技術を要す
ることである。5(2)ポリオレフィンシート(実質的
に材質はポリプロピレン)を固相状態でプラグを併用し
真空、圧空成形を行う(特開昭47−11489)。
However, the disadvantages of this method are poor thermoformability (sheet sagging and wrinkles during thermoforming, etc.), weak stiffness (molded product), and high technology required for the quenching process. 5(2) A polyolefin sheet (substantially made of polypropylene) is subjected to vacuum and pressure forming in a solid state using a plug (Japanese Unexamined Patent Publication No. 11489/1989).

この場合の欠点は、透明性を得るには、分子量の低いポ
リプロピレンに限定され得られる成形品の剛性、衝撃性
は低い水準となつている事である。(3)高密度ポリエ
チレン混和物およびポリプロピレンシートを融点より低
い温度でプラグまたはポンチの降下速度を設定してシー
トを5〜15倍・に延伸しながら固相状態で熱成形する
(特開昭51−31761,51−34956)。
The disadvantage of this case is that in order to obtain transparency, polypropylene with a low molecular weight is used, and the resulting molded product has low rigidity and impact resistance. (3) Thermoforming a high-density polyethylene blend and a polypropylene sheet in a solid state while stretching the sheet 5 to 15 times by setting the descending speed of a plug or punch at a temperature lower than the melting point (Japanese Patent Application Laid-Open No. 51-11001) -31761, 51-34956).

この場合の欠点は、工業化が困難であり、しかも細部技
術は未完成であることである。
The disadvantage of this case is that it is difficult to industrialize and the detailed technology is still incomplete.

以上の如く、それぞれ確かに効果を期待する事が出来る
反面、各種の短所を同時に有している事も否めないので
ある。
As mentioned above, while each method can certainly be expected to be effective, it cannot be denied that they also have various disadvantages at the same time.

これ等に対し、本発明者らは既に一軸配向したシートを
熱成形に供する方法を提案した。この方法は前記諸提案
に付随する各種短所を解消し、透明容器の製造法として
効果を期待できるものである事は言うまでもない。即ち
、この方法によれば高度の技術は必要とせず、又使用す
る原料樹脂はその分子量に制限を受けず、且つ特殊な熱
成形機を必要としない。一方、・本発明者らは透明容器
の製造方法に就いて更に研究を進めた所、上記に提案し
た方法において原料樹脂として少量の造核剤を添加した
アイソタクチツクポリプロピレン(以下、IsO−ポリ
プロピレンという)を使用する事により更に飛躍的に所
期効果を高める事が出来、且つ、前記従来の諸提案にみ
られる各種短所を解消し得る事を見出し、本発明に至つ
たものである。
In response to these problems, the present inventors have proposed a method in which a sheet that has already been uniaxially oriented is subjected to thermoforming. Needless to say, this method eliminates various disadvantages associated with the above proposals and is expected to be effective as a method for manufacturing transparent containers. That is, this method does not require sophisticated technology, the molecular weight of the raw material resin used is not limited, and no special thermoforming machine is required. On the other hand, the present inventors conducted further research on the method of manufacturing transparent containers, and found that isotactic polypropylene (hereinafter referred to as IsO-polypropylene) to which a small amount of nucleating agent was added as the raw material resin in the method proposed above. The inventors have discovered that the desired effect can be further dramatically enhanced by using the above-mentioned conventional methods, and that the various disadvantages seen in the conventional proposals can be overcome, leading to the present invention.

以下に本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の方法は、IsO−ポリプロピレンに例えば押出
機混練等の適当な手段を用いて該樹脂重量に対し(以下
、同様とする)0.01wt.%〜2.0wt.%の範
囲で造核剤を分散添加し、該造核剤添加樹脂を溶融成形
によつてその表面粗度が0.7μRMS以下である様な
シートと為し、次いで該シートを例えばロール圧延法等
の適当な手段にて一軸方向に伸長比にて1.02倍以上
、3倍以下の軽度の配向を附与したものを該配向シート
の融点より低いシート温度にて熱成形する事を特徴とす
る方法である。
The method of the present invention involves adding 0.01 wt. to IsO-polypropylene to the weight of the resin (hereinafter the same shall apply) using a suitable means such as extruder kneading. %~2.0wt. A nucleating agent is dispersed and added in a range of 0.1%, the nucleating agent-added resin is melt-molded to form a sheet with a surface roughness of 0.7 μRMS or less, and then the sheet is subjected to, for example, roll rolling. It is characterized by imparting a slight orientation in the uniaxial direction with an elongation ratio of 1.02 times or more and 3 times or less by an appropriate means such as thermoforming at a sheet temperature lower than the melting point of the oriented sheet. This is a method to do so.

本発明で用いられる造核剤を例示すると次のごとくであ
る。
Examples of nucleating agents used in the present invention are as follows.

造核剤 融点(℃) 安息香酸 122.3無
水フタル酸 132グルタ
ール酸 98フエニル酢
酸 780フエニルサリチ
ル酸 113安息香酸フエニル
70サリチル酸フエニル
41.9P−アミノ安息香酸エチル
92ポリエチレンテレフタレート
265ポリアミド(ナイロン−6) 21
5本来1s0−ポリプロピレンに造核剤を少量添加する
事によつて特に射出成形品を始めとしてその透明性を向
上させ、或いは成形時間を短縮させ得る事は公知である
Nucleating agent Melting point (℃) Benzoic acid 122.3 Phthalic anhydride 132 Glutaric acid 98 Phenyl acetic acid 780 Phenyl salicylic acid 113 Phenyl benzoate
70 Phenyl salicylate
41.9P-Ethyl aminobenzoate
92 polyethylene terephthalate
265 polyamide (nylon-6) 21
5 It is generally known that by adding a small amount of a nucleating agent to 1s0-polypropylene, it is possible to improve the transparency of, especially injection molded products, or to shorten the molding time.

又、同じくポリプロピレンに於いて造核剤を添加して透
明性の向上したシートを熱成形する事によつて透明容器
を得る方法を容易に考え得られる所である。しかるに本
発明者等の検討の結果、この方法で得たIsO−ポリプ
ロピレン製熱成形容器は確かに造核剤の添加されないも
のに比し透明であるが、透明容器壁に光学的に歪みが至
る所に存在し、その結果透明光が細かく屈折し、容器の
目視感はいわゆる“じらじら”した感じのもので、すつ
きりした透明感を有したものは得られなかつた。又、熱
成形条件は狭く、例え適正と思われる条件においてもか
なりの頻度で成形後にその器壁に局所的に凹みを有する
容器が生ずるのである。従来のポリプロピレンシートは
熱成形時の加熱でシートの熱膨張及び低溶融張力の為熱
成形金型上でうねり、垂るみを発生する。
Similarly, it is easy to think of a method of obtaining a transparent container by thermoforming a sheet with improved transparency by adding a nucleating agent to polypropylene. However, as a result of studies by the present inventors, although the IsO-polypropylene thermoformed containers obtained by this method are certainly more transparent than those to which no nucleating agent is added, optical distortion occurs in the walls of the transparent containers. As a result, the transparent light is finely refracted, giving the container a so-called "glaring" visual appearance, making it impossible to obtain a container with a clear, transparent appearance. Furthermore, the thermoforming conditions are narrow, and even under conditions that are considered appropriate, containers with localized dents in their walls are quite often produced after molding. Conventional polypropylene sheets warp and sag on the thermoforming mold due to thermal expansion and low melt tension of the sheet during heating during thermoforming.

この現象は造核剤入りシートでも例外でなく、大きくう
ねり且つ垂るむ。この事は熱成形における変形時にシー
トの伸び状態が一様でなく、或いは変形応力の掛り方に
不規則性をもたらし、成形容器壁内に光学的歪みを発生
させる。併せてシートの表面の凹凸等その粗面状態が変
形時に増巾され、表面状態も劣悪なものとなる。斯くの
如き現象が熱成形シートにおける造核剤の透明性上昇へ
の寄与程度を著しく限定しでしまつているものと考えら
れる。この様な状況に比し、本発明の方法による場合、
上記の如き問題点は完全に解消し、且つ表面平滑化、軽
度の一軸配向性及び融点より低温の固相熱成形の各条件
との作用により、著しく透明性の良い、光沢性の優れた
容器が得られるのである。本発明の方法に用い得る造核
剤はその種類としては特に制限はないが、特に有機酸及
びその誘導体、又はポリプロピレン樹脂より融点の高い
高分子重合体が透明性向上のうえで浪い結果が得られる
This phenomenon is no exception even for sheets containing nucleating agents, which cause them to undulate and sag significantly. This results in uneven elongation of the sheet during deformation during thermoforming, or irregularities in the way deformation stress is applied, resulting in optical distortion within the wall of the molded container. In addition, rough surface conditions such as unevenness on the surface of the sheet are increased during deformation, and the surface condition becomes poor. It is considered that such a phenomenon significantly limits the contribution of the nucleating agent to increasing the transparency of the thermoformed sheet. Compared to this situation, when using the method of the present invention,
The above-mentioned problems have been completely resolved, and the container has excellent transparency and gloss due to the effects of surface smoothing, slight uniaxial orientation, and solid-state thermoforming at a temperature lower than the melting point. is obtained. There are no particular restrictions on the type of nucleating agent that can be used in the method of the present invention, but in particular, organic acids and their derivatives, or high molecular weight polymers with a higher melting point than polypropylene resin may be used to improve transparency. can get.

例えば有機酸として安息香酸、サリチル酸等夕又有機酸
の誘導体としては有機酸の金属塩、例えばナトリウム塩
、アルミニウム塩の如きものである。高分子重合体とし
てはポリエチレンテレフタレート、ポリアミドの如きも
のである。造核剤の添加方法も特殊な方法を必要としな
いが添加量が少量なる故、樹脂内(′−.おける分散に
は留意すべきである。添加量は造核剤の種類によつて違
うが一般に樹脂に対し0.01〜2.0wt.%の範囲
で充分である。より好ましくは0.04〜1.5wt.
%が良い。0.01wt.%より小では顕著な透明性向
上の効果を期し難く、又2.0wt.%より大ではその
効果の延びは期待できない。
For example, organic acids include benzoic acid and salicylic acid, and derivatives of organic acids include metal salts of organic acids, such as sodium salts and aluminum salts. Examples of high molecular weight polymers include polyethylene terephthalate and polyamide. No special method is required for adding the nucleating agent, but since the amount added is small, care should be taken to disperse it within the resin ('-.).The amount added varies depending on the type of nucleating agent. is generally sufficient in the range of 0.01 to 2.0 wt.% based on the resin, more preferably 0.04 to 1.5 wt.%.
% is good. 0.01wt. %, it is difficult to expect a significant effect of improving transparency; If it is larger than %, the effect cannot be expected to be prolonged.

0.04wt.%より下では樹脂内への均一分散が困難
で、また1.5〜2.0wt.%ではやや飽和気味であ
り、添加量増何に比し、効果の上昇程度は低くなり、経
済的にもメリツトに乏しい。
0.04wt. %, uniform dispersion into the resin is difficult; %, it is a little saturated, and compared to increasing the amount added, the degree of increase in effect is low, and there is little economic merit.

又特に融点の低い造核剤では余り多量に添加すると、押
出し時にサージングを発生しやすい。シート製造装置も
特殊な構造は必要としないが、表面平滑化を図る考慮を
為すべきである。例えば極で一般にはフラツトダイから
押出される溶融シートをポリシンクロールに巻き付け、
引取る方法があるが、この場合シートの表面の平滑性を
0.7μRMS以下に維持する為には、ポリシンクロー
ルは0.8S以下の表面粗度、且つ少なくとも羽布仕上
げ程度のロール表面加工処理はなされるべきである。シ
ートの一軸配向の方法も如何なる公知の方法によつても
差し支えないが伸長比が1.02倍〜3倍の如く小さい
為、その配向方法によつては未配向部分が発生し、均一
な配向の付与を困難にする場合があるので慎重に検討す
べきである。本発明者等の検討の結果この場合の配向方
法として特に適合した方法としては、第1図に示すごと
きロール圧延方法である。該図中、1は高速延伸ロール
、2は低速延伸ロール、3はニツプロール、4は予熱ロ
ール、5は配向処理前シートおよび6は一軸配向シート
である。ロール圧延法による利点は1低伸長比であつて
も均一な配向を附与出来る、2シートの厚さが厚くても
引張り力による延伸配向の如き困難性がない、3シート
の表面の平滑性をより一層高める事が出来る、4配向シ
ート耳端部の厚肉化現象がない、即ちロス率が小さい、
5 配向シートは引張り延伸よりも透明性の向上が著し
い。このように多数の利点を有しているものである。口
ール圧延は基本的には原反シートの厚さより小さい距離
間隙に設定された互いに反対方向に回転する一対のロー
ル間隙を原反シートを通過させる事によつてその厚さを
減少せしめるものである。
In addition, especially when a nucleating agent with a low melting point is added in too large a quantity, surging tends to occur during extrusion. Although sheet manufacturing equipment does not require any special structure, consideration should be given to smoothing the surface. For example, a molten sheet, typically extruded from a flat die, is wrapped around a polysyn roll,
There is a method of pulling the sheet, but in this case, in order to maintain the surface smoothness of the sheet at 0.7μRMS or less, the polysyn roll must have a surface roughness of 0.8S or less and a roll surface treatment at least equivalent to a cloth finish. Treatment should be done. Any known method may be used to uniaxially orient the sheet, but since the elongation ratio is as small as 1.02 to 3 times, unoriented portions may occur depending on the orientation method, making it difficult to achieve uniform orientation. This should be carefully considered, as it may make it difficult to grant. As a result of studies by the present inventors, a roll rolling method as shown in FIG. 1 is particularly suitable as an orientation method in this case. In the figure, 1 is a high-speed stretching roll, 2 is a low-speed stretching roll, 3 is a nip roll, 4 is a preheating roll, 5 is a sheet before orientation treatment, and 6 is a uniaxially oriented sheet. The advantages of the roll rolling method are: 1. Uniform orientation can be imparted even at low elongation ratios, 2. Even if the sheet is thick, there is no difficulty in stretching orienting due to tensile force, and 3. The surface of the sheet is smooth. There is no thickening phenomenon at the edge of the 4-oriented sheet, that is, the loss rate is small.
5. Transparency of oriented sheets is significantly improved compared to tensile stretching. As described above, it has many advantages. Roll rolling basically reduces the thickness of a raw sheet by passing the raw sheet through a gap between a pair of rolls that rotate in opposite directions, the gap being set at a distance smaller than the thickness of the raw sheet. It is.

この方法にも例えば該圧延ロール面を液膜で被覆し、液
圧によつて厚さを減少させる如き液圧ロール圧延法、一
対の該圧延ロールの周速度を互いに異ならしめた非等速
圧延法、その他多数回圧延法等各種利点を有するロール
圧延方法が公知であるが、いずれの方法によつても何等
差し支えないいずれにおいてもその伸長比は1.02倍
〜3倍好ましくは1.2倍〜2.5倍が良好なる結果を
与える。
This method also includes, for example, a hydraulic roll rolling method in which the surface of the roll is coated with a liquid film and the thickness is reduced by liquid pressure, and a non-uniform rolling method in which the circumferential speed of a pair of rolls is made different from each other. Roll rolling methods with various advantages are known, such as the rolling method and other multiple rolling methods, but there is no problem with any method, and in either method, the elongation ratio is 1.02 to 3 times, preferably 1.2. A factor of 2.5 to 2.5 times gives good results.

伸長比1.02倍は効果(透明性、光沢性、シートの張
り)の得られる下限であり、3倍の上限を超えると配向
が強くなりすぎ、熱成形装置等に工夫を要する場合があ
り、また配向装置も高出力のものが要請される。なお、
1.2〜2.5倍は上記上・下限の兼ね合いであり好ま
しい効果を与える。熱成形方法には従来真空成形、圧空
成形又はこれ等におけるプラグ併用、マツチドダイ法等
を主として各種の方法が実施されているが、本発明の方
法においてはその選択に何等これも制限を受けるもので
ノない。但し、大気圧を利用する真空成形法では厚肉容
器の成形には成形圧が不足する事もあり、実施に際して
は使用シートの肉厚との兼ね合いを考慮すべきである。
この観点から、特に本発明の方法に適した熱成形方法と
してはプラグアシスト圧7空成形が良い結果を与える。
いずれの方法を用いたとしても熱成形時のシートの温度
は該シートの融点より低い温度に維持すべきである。最
適の温度条件はその時のシート厚さ、容器仕様(絞り比
、形状等)熱成形方法によつて変化するもので2あるが
、汎用的にみれば130゜〜160℃、特に140゜〜
155℃の範囲が望ましい。予熱時間はこれもシート厚
によつて変化するものであるが例えば0.7〜1mmの
厚さ程度であれば通常30秒を超える事はない。徐々に
長い時間を掛けて所定の温度に迄加熱するのが理想的で
ある事は言う迄もなく、設備費等経済的因子との兼ね合
いとなる。プラグの形状は普偏的に決定出来るものでな
く、容器形状に適合したものを考慮すべきである。
A stretch ratio of 1.02 times is the lower limit for achieving the desired effects (transparency, gloss, sheet tension); exceeding the upper limit of 3 times may cause the orientation to become too strong, requiring modifications to the thermoforming equipment, etc. In addition, a high-output orientation device is required. In addition,
1.2 to 2.5 times is a balance between the above upper and lower limits and provides a preferable effect. Conventionally, various thermoforming methods have been used, mainly vacuum forming, pressure forming, combined use of plugs, matted die method, etc., but in the method of the present invention, there are no restrictions on the selection. There is no. However, with the vacuum forming method that uses atmospheric pressure, the forming pressure may be insufficient for forming thick-walled containers, so consideration should be given to the thickness of the sheet used when carrying out the process.
From this point of view, as a thermoforming method particularly suitable for the method of the present invention, plug assist pressure 7 air molding gives good results.
Whichever method is used, the temperature of the sheet during thermoforming should be maintained below the melting point of the sheet. The optimal temperature conditions vary depending on the sheet thickness, container specifications (drawing ratio, shape, etc.) and thermoforming method2, but generally speaking, it is 130° to 160°C, especially 140° to
A range of 155°C is desirable. Although the preheating time also varies depending on the sheet thickness, for example, if the thickness is about 0.7 to 1 mm, the preheating time usually does not exceed 30 seconds. Needless to say, it is ideal to gradually heat the material to a predetermined temperature over a long period of time, but this is a trade-off with economic factors such as equipment costs. The shape of the plug cannot be determined universally, but one that is compatible with the shape of the container should be considered.

但し、実施に際して使用するプラグの形状が厳密な意味
でその最適形状と必らずしも一致するものでなくても、
本質的に結果を左右するものではない。プラグの表面温
度はプラグ表面材質から比熱の大きいものであれば(例
えば金属等)比較的シート温度に近い水準が良く、例え
ば80゜〜110℃程度、又比熱の相対的に低いもので
あれば(例えば布等)、上記程温度を厳密に制御しなく
とも結果に影響は殆んど及ばない。本発明に用いられる
IsO−ポリプロピレンとしてはその分子量に何等の制
限は受けない。
However, even if the shape of the plug used during implementation does not necessarily match the optimal shape in a strict sense,
It does not essentially affect the outcome. The surface temperature of the plug should be relatively close to the seat temperature if the plug surface material has a high specific heat (for example, metal), for example around 80° to 110°C, or if the specific heat is relatively low. (for example, cloth, etc.), even if the temperature is not controlled as strictly as described above, the result will hardly be affected. There are no restrictions on the molecular weight of the IsO-polypropylene used in the present invention.

又、ホモポリマー、コポリマーの限定も本質的に受けな
いが、特にプロツク・コポリマータイプのものは透明性
に著しく劣り、実用的価値は小ないと思われる。然し、
ポリプロピレンは一般に耐衝撃性、特に低温衝撃特性に
劣るので、その改良の為、ホ,モポリマ一とコポリマー
の混合組成は有効な場合がある。耐衝撃性の改良に関し
ては本発明は特に有効な方法である。
Furthermore, although it is not essentially limited to homopolymers or copolymers, it is believed that block copolymer types in particular have extremely poor transparency and are of little practical value. However,
Since polypropylene is generally inferior in impact resistance, particularly in low-temperature impact properties, a mixed composition of a monopolymer and a copolymer may be effective in improving the impact resistance. The present invention is a particularly effective method for improving impact resistance.

即ち、本発明の方法は使用するIsO一ポリプロピレン
の分子量の制限を受けない為、j従来透明容器の熱成形
用1s0−ポリプロピレンとして適当とされる分子量よ
り相対的にかなり高分子量の樹脂を使用する事が可能で
あるので得られ.る透明容器は従来のポリプロピレン透
明容器では得られなかつた良好な耐衝撃特性を有するの
であ.る。この為低温耐衝撃特性も大巾に改良される事
は言う迄もない。例えば従来のポリプロピレン透明容器
製造方法ではM.F.Iが少なくとも約5.0より大で
なければ得られない様な透明性が本発明の方法ではM.
F.I.が約0.3でも充分にそれを上回5る透明性を
容易に得る事が可能である。更に加えれば、容器の剛性
、即ち容器の坐屈強度の改良に関しても全く同一の論理
で、本発明の利点が発揮されるのである。
That is, since the method of the present invention is not limited by the molecular weight of the IsO-polypropylene used, a resin having a relatively higher molecular weight than that conventionally considered appropriate as an IsO-polypropylene for thermoforming of transparent containers is used. It can be obtained because it is possible. This transparent container has good impact resistance properties that cannot be obtained with conventional transparent polypropylene containers. Ru. Therefore, it goes without saying that the low-temperature impact resistance properties are also greatly improved. For example, in the conventional polypropylene transparent container manufacturing method, M. F. The method of the present invention provides such transparency that M.I. is at least greater than about 5.0.
F. I. Even if it is about 0.3, it is possible to easily obtain transparency that is sufficiently higher than that. Additionally, the advantages of the present invention can be achieved using the same logic with respect to improving the rigidity of the container, that is, the buckling strength of the container.

次に実施例に就いて述べる。Next, examples will be described.

実施例 1 本発明の方法における使用樹脂の分子量及び造核剤の添
加濃度の影響をみたものである。
Example 1 The influence of the molecular weight of the resin used and the concentration of the nucleating agent added in the method of the present invention was examined.

即ち、市販1s0−ポリプロピレンホモポリマーにおい
て次の3種A−Cのポリマーから表1に示すようにサン
プルをとり、それぞれに表1のごとき造核剤(安息香酸
の市販試薬一級品)を所定量ペンシェルミキサーにてブ
レンドした後、樹脂温230℃にてTダイより押出し、
溶融状態のまま、その表面粗度0.4Sに研磨処理され
、且つその表面温度が90℃に保たれた一対のポリシン
クロールに導き、冷却固化しシートとした、尚シート巾
は400mmである。
That is, samples of commercially available 1s0-polypropylene homopolymers of the following three types A to C are taken as shown in Table 1, and a predetermined amount of a nucleating agent (a commercially available benzoic acid reagent of first grade) as shown in Table 1 is added to each sample. After blending with a pen shell mixer, extrude through a T-die at a resin temperature of 230°C.
While still in the molten state, it was polished to a surface roughness of 0.4S and introduced into a pair of polysyn rolls whose surface temperature was maintained at 90°C, where it was cooled and solidified to form a sheet, with a sheet width of 400 mm. .

該シートの表面粗度はすべて0.25〜0.3μRMS
であつた。このシートを140℃に予熱後、表面温度が
110℃に保たれた各ロール寸法が220mmφ×50
0L表面粗度0.4Sの一対の圧延ロール間を通過させ
その厚さを減ぜしめ、伸長比を1.4倍とした厚さ0.
7mmの一軸配向シートを得た。該シートを遠赤外線加
熱のプラグアシスト圧空成形機を使用し容器を熱成形し
容器の特性を測定した、結果は表1の如くである。尚熱
成形の条件の大要は下記の如ぐである。シート予熱温度
′::150℃シート予熱時間
18秒シート成形時間
6秒圧空圧力 4k
g/Cmlプラグ表面 ネル布被覆
プラグ表面温度 ご60℃プラグ容
積 先端径=45n1In高さ″30!I]m底部
径:一65w1mカツプ容積 開口
径70mm底部径60Wf1深 さ40011n 成形個数 4カツプ本表にて明
らかな如く、本発明の方法は、使用するIsO−ポリプ
ロピレンの分子量によらず透明容器を得る事が可能であ
り、且つカツプ強度特性は大きく分子量に依存する事が
判る。
The surface roughness of all sheets is 0.25 to 0.3μRMS
It was hot. After preheating this sheet to 140℃, each roll with surface temperature maintained at 110℃ has dimensions of 220mmφ x 50mm.
0L passed between a pair of rolling rolls with a surface roughness of 0.4S to reduce its thickness, and the elongation ratio was 1.4 times, resulting in a thickness of 0.0L.
A 7 mm uniaxially oriented sheet was obtained. The sheet was thermoformed into a container using a far-infrared heating plug-assisted pressure forming machine, and the characteristics of the container were measured. The results are shown in Table 1. The general conditions for thermoforming are as follows. Seat preheating temperature
'::150℃ sheet preheating time
18 seconds sheet forming time
6 seconds pneumatic pressure 4k
g/Cml Plug surface Flannel cloth covered plug surface temperature 60℃ Plug volume Tip diameter = 45n1In Height "30!I]m Bottom diameter: -65w1m Cup volume Opening diameter 70mm Bottom diameter 60Wf1 Depth 40011n Number of molded pieces 4 cups Book table As is clear from the above, the method of the present invention makes it possible to obtain transparent containers regardless of the molecular weight of the IsO-polypropylene used, and it can be seen that the cup strength characteristics largely depend on the molecular weight.

又ここでの熱成形時には一軸配向シートは水平に張つて
おり、うねり、垂るみは完全に除去されていた。
Further, during thermoforming here, the uniaxially oriented sheet was stretched horizontally, and waviness and sag were completely removed.

得られたカツプの表面は高度の光択性を有しており、器
壁透過光線の局部的屈折は認められなかつた。実施例
2及び比較例 1 本表より明らかな如く、本発明の方法は配向前のシート
の表面粗度が少なくとも約0.7μRMS以下において
は透明性、光沢性に満足すべき結果を得られる。
The surface of the resulting cup had a high degree of photoselectivity, and no local refraction of the light beam transmitted through the vessel wall was observed. Example
2 and Comparative Example 1 As is clear from this table, the method of the present invention can obtain satisfactory results in terms of transparency and gloss when the surface roughness of the sheet before orientation is at least about 0.7 μRMS or less.

又、得られたカツプの器壁における透過光の局部的屈折
も認められなかつた。本発明における伸長倍率の影響を
調べたものである。
Furthermore, no local refraction of transmitted light was observed on the vessel wall of the resulting cup. The influence of elongation magnification in the present invention was investigated.

即ち、市販1s0−ポリプロピレンホモポリマー(融点
168℃、密度0.90)においてM.F.I.2.O
のものを使用、造核剤濃度をすべて0.1Wt.%とそ
、伸長比を表2の如く変化させすべて0.7mmの一軸
配向シートとした他は、すべて実施例1と同様にしてカ
ツプを得た。結果は表2の如くである。配向者のシート
の表面粗度はすべて0.25〜0.3μRMSであつた
。本表にて明らかな如く、本発明の方法によると伸長比
が少なくとも1.02倍〜3倍の間においては透明性、
光沢性に満足すべき結果が得られる。
That is, M. F. I. 2. O
All nucleating agent concentrations were 0.1 Wt. Cups were obtained in the same manner as in Example 1, except that the elongation ratio was changed as shown in Table 2 and all 0.7 mm uniaxially oriented sheets were obtained. The results are shown in Table 2. The surface roughness of all orienter sheets was 0.25-0.3 μRMS. As is clear from this table, according to the method of the present invention, when the elongation ratio is at least 1.02 times to 3 times, transparency and
Satisfactory results can be obtained in terms of gloss.

尚該伸長比の範囲において熱成形時のシートは水平に張
つてたるみはなかつた。又得られたカツプの:器壁にお
ける透過光の局部的屈折も認められなかつた。伸長比を
4倍にすると著しく透明性は低下、又表面光沢度も低下
したカツプとなつた。
In addition, within the range of the elongation ratio, the sheet during thermoforming was stretched horizontally and did not sag. Furthermore, no local refraction of transmitted light was observed on the wall of the resulting cup. When the elongation ratio was increased to 4 times, the transparency and surface gloss of the cup decreased significantly.

実施例 3および比較例 2 本発明における配向処理前のシート表面平滑性の影響を
みたものである。
Example 3 and Comparative Example 2 The influence of sheet surface smoothness before orientation treatment in the present invention was examined.

即ち、市販1s0−ポリプロピレン(融点168℃、密
度0.90、M.F.I.2.O)を使用、造核剤濃度
をすべて0.1wt.%とし、シートの擁融成形時にポ
リシンクロールをその表面粗度が各々0.4S、0.8
S、1.5Sのものに適宜変換し、表3の如くシート表
面粗度を変化させた他は実施例1と同様にして力ツプを
得た。結果は表3の如くである。た。
That is, commercially available 1s0-polypropylene (melting point 168°C, density 0.90, M.F.I.2.O) was used, and the nucleating agent concentration was 0.1 wt. %, and the surface roughness of the polysynroll during melt forming of the sheet is 0.4S and 0.8, respectively.
Strength was obtained in the same manner as in Example 1, except that the sheet surface roughness was changed as shown in Table 3. The results are shown in Table 3. Ta.

結果は表4の如くである。配向前のシートの表面粗度は
、すべて0.25〜0.3μRMSであつた。即ち造核
剤の添加量は或る程度以上では効果は飽和する。実施例
5 本発明において造核剤を種々変えてみたものである。
The results are shown in Table 4. The surface roughness of all sheets before orientation was 0.25 to 0.3 μRMS. That is, the effect becomes saturated when the amount of the nucleating agent added exceeds a certain level. Example 5 Various changes were made to the nucleating agent in the present invention.

即ち、表5の如くM.F..の相違した数種のIsO−
ポリプロピレン(いずれも融点168℃)とr造核剤数
種を組み合わせ、造核剤の添加量をすべて0.1wt%
にした他はすべて実施例1と同様にしてカツプを得た。
That is, as shown in Table 5, M. F. .. Several types of IsO− with different
Polypropylene (both have melting points of 168°C) is combined with several types of nucleating agents, and the amount of nucleating agents added is all 0.1 wt%.
A cup was obtained in the same manner as in Example 1 except for the following.

結果は表5の如くである。配向前のシートの表面粗度は
、すべて0.25〜0.3μRMSであつた。実施例
6 本発明の方法におけるシートの配向処理に延伸方法を利
用してみた。
The results are shown in Table 5. The surface roughness of all sheets before orientation was 0.25 to 0.3 μRMS. Example
6 A stretching method was utilized for the sheet orientation treatment in the method of the present invention.

即ち、市販のIsO−ポリプロピレン(融点168℃、
密度0.90M.F.I.2.0)を使用し、配向方法
として第1図の如き近接ロール延伸方法によ一つて一軸
配向処理を行なつて0.7mm厚の配向シートを得た他
は、すべて実施例1と同様にしてカツプを得た。尚延伸
条件は下記の如くである。高速延伸ロール周速度
15m/Min低速延伸ロール周速度
10.4m/Min延伸ロール間隔
1mm延伸ロール表面温度
125℃シート予熱温度 120
℃延伸ロール径(高、低速共) 220mmφ
配向前のシートの表面粗度は、いずれも0.25〜0.
3μRMSであつた。
That is, commercially available IsO-polypropylene (melting point 168°C,
Density 0.90M. F. I. 2.0), and uniaxially oriented using the close roll stretching method as shown in Fig. 1 to obtain an oriented sheet with a thickness of 0.7 mm, but everything was the same as in Example 1. I got a cup. The stretching conditions are as follows. High speed stretching roll peripheral speed
15m/Min low speed stretching roll peripheral speed
10.4m/Min stretching roll spacing
1mm stretching roll surface temperature
125℃ sheet preheating temperature 120
℃ Stretching roll diameter (both high and low speed) 220mmφ
The surface roughness of the sheet before orientation is 0.25 to 0.
It was 3 μRMS.

結果は表6の如くである。実施例6における熱成形時の
シートの垂るみは全然認められなかつた。又カツプ器壁
の透過光線の局所的屈折も認められなかつた。比較例
4 実施例1に使用したと同一の樹脂を用い、造核剤を一切
添加しなかつた他はすべて実施例1と同一にしてカツプ
を得た。
The results are shown in Table 6. No sagging of the sheet was observed during thermoforming in Example 6. Also, no local refraction of the transmitted light by the cup wall was observed. Comparative example
4 Cups were obtained in the same manner as in Example 1, except that the same resin as used in Example 1 was used and no nucleating agent was added.

結果は表7の如くである。なお、配向前のシートの表面
粗度は、すべて0.25〜0.3μRMSであつた。本
表及び実施例1との比較で明らかな如く、本発明の方法
は飛躍的に透明性を改善するものである事が判る。
The results are shown in Table 7. Note that the surface roughness of all sheets before orientation was 0.25 to 0.3 μRMS. As is clear from the table and the comparison with Example 1, it can be seen that the method of the present invention dramatically improves transparency.

比較例 5 実施例1に使用したと同一の樹脂を用い、造核剤は一切
添加せず、且つ一軸配向処理を行なわなかつた他はすべ
て実施例1と同一にしてカツプを得た。
Comparative Example 5 A cup was obtained in the same manner as in Example 1, except that the same resin used in Example 1 was used, no nucleating agent was added, and no uniaxial orientation treatment was performed.

結果は表8の如くである。なお、シート厚は0.7[N
Inであり、またシートの表面粗度はすべて0.25〜
0.3μRMSであつた。比較例 6 実施例1に使用した同一の樹脂を用い、造核剤(安息香
酸)の添加量のすずて0.1Wt%とし、且つ一軸配向
処理を行なわなかつた他は、すべて実施例1と同一にし
てカツプを得た。
The results are shown in Table 8. Note that the sheet thickness is 0.7 [N
In, and the surface roughness of all sheets is 0.25~
It was 0.3 μRMS. Comparative Example 6 The same resin used in Example 1 was used, the amount of nucleating agent (benzoic acid) added was 0.1 wt%, and the uniaxial orientation treatment was not performed. I made the same and got a cup.

結果は表9の如くである。シートの表面粗度はすべて0
.25〜0.3μRMSであつた。比較例5及び比較例
6から明らかな如く造核剤を添加するのみでも透明性は
大巾に改善される事が判る。
The results are shown in Table 9. All sheet surface roughness is 0
.. It was 25-0.3 μRMS. As is clear from Comparative Examples 5 and 6, it can be seen that the transparency can be greatly improved by simply adding a nucleating agent.

以下に記す如き熱成形時のうねり又は垂るみ、或いはそ
の表面粗さ等に阻害され、透明性の改善効果の程度を当
比較例が一つの限度として示している。これ等に比較し
、実施例にて明らかな如く文発明の方法はシート処理と
造核剤の相乗効果で飛躍的にその透明性を上昇し得る事
が明らかである。本比較例においては熱成形直前におけ
るシートはうねり、或いは垂るみが発生していた。
This comparative example shows a limit to the extent of the transparency improvement effect, which is hindered by waviness or sagging during thermoforming, or its surface roughness, as described below. Compared to these, as is clear from the examples, it is clear that the method of the Buninvention can dramatically increase the transparency due to the synergistic effect of the sheet treatment and the nucleating agent. In this comparative example, the sheet immediately before thermoforming had waviness or sag.

これ等の状況をまとめた結果は表10の如くである。尚
、同様の現象は比較例5でも認められた。比較例 7 市販1s0−ポリプロピレンを用い、造核剤(安息香酸
)添加量をすべて0.1Wt.%とし、熱成形時のシー
ト予熱温度を175℃とした他はすべて実施例1と同一
にしてカツプを得た。
Table 10 summarizes the results of these situations. Incidentally, a similar phenomenon was also observed in Comparative Example 5. Comparative Example 7 Commercially available 1s0-polypropylene was used, and the amount of nucleating agent (benzoic acid) added was 0.1 Wt. %, and a cup was obtained in the same manner as in Example 1 except that the sheet preheating temperature during thermoforming was 175°C.

結果は表11の如くである。配向前のシートの表面粗度
は、いずれも0.25〜0.3μRMSであつた。
The results are shown in Table 11. The surface roughness of each sheet before orientation was 0.25 to 0.3 μRMS.

以上の各実施例、比較例にて用いた試験法はす2べて以
下に記す方法にて行なつた。
All the test methods used in the above Examples and Comparative Examples were as described below.

1 くもり度 ASTMD−1003に準拠、 2側壁厚さ カツプ側壁中央部を周方向に等間隔10点.の測定値の
平均値。
1 Cloudiness level Based on ASTM D-1003, 2 Side wall thickness 10 points equally spaced in the circumferential direction at the center of the cup side wall. The average value of the measured values.

3坐屈強度 カツプ7の上に板を置きテンシロン試験 機を用いて50mm/Minの速度で圧縮、側壁の坐屈
時の荷重を圧縮型ロードセル8にて測定、各々10ケの
カツプの測定値の平均を求めた(第2図参照)。
3 Place a plate on top of the buckling strength cup 7 and compress it at a speed of 50 mm/min using a tensilon tester. The load during buckling of the side wall is measured with a compression type load cell 8. Measured values for each of 10 cups. The average was calculated (see Figure 2).

4低温耐衝撃性 10℃及び−30℃の液中、(IPA)に力ツプ7を1
0分間浸漬した後、重量9(152g)を容器底に落下
させその破壊程度をみた。
4 Low temperature impact resistance In liquid at 10℃ and -30℃, (IPA)
After immersing for 0 minutes, a weight of 9 (152 g) was dropped to the bottom of the container and the degree of destruction was observed.

各々10ケのテストでの破壊した個数を表示した (第3図参照)。The number of pieces destroyed in each 10-piece test is displayed. (See Figure 3).

5器壁表面光沢度 JISZ874lに準拠。5 wall surface glossiness Compliant with JISZ874l.

45゜鏡面光沢度。45° specular gloss.

6 シート表面粗度 表面粗度計(小坂研究所社製、SE−4 型)測定器。6 Sheet surface roughness Surface roughness meter (manufactured by Kosaka Institute, SE-4 type) measuring instrument.

7 シール表面粗度 JISB6Ol−55の準拠。7 Seal surface roughness Compliant with JISB6Ol-55.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施において樹脂シートを配向する
に好ましく用いられる圧延ロール装置、第2図は、坐屈
強度を測定するための装置の概念図、低温耐衝撃性の試
験装置の概念図である。
Fig. 1 shows a rolling roll apparatus preferably used to orient the resin sheet in the practice of the present invention, Fig. 2 shows a conceptual diagram of an apparatus for measuring buckling strength, and a conceptual diagram of a test apparatus for low-temperature impact resistance. It is a diagram.

Claims (1)

【特許請求の範囲】 1 アイソタクチックポリプロピレン樹脂のシートから
熱成形法により透明容器を製造するに際して、樹脂重量
に対し0.01〜2.0wt.%の造核剤を含有するア
イソタクチックポリプロピレン樹脂からなる表面粗度が
0.7μRMS以下のシートをその融点より低い温度で
一方向に1.02〜3倍に伸長して得られる一軸配向シ
ートをその融点より低い温度で熱成形することを特徴と
する、透明容器の製造方法。 2 シートの伸長がロール圧延により行なわれる、特許
請求の範囲第1項の透明容器の製造方法。 3 造核剤が有機脂肪酸またはその誘導体である、特許
請求の範囲第1項または第2項の透明容器の製造方法。 4 核造剤が該アイソタクチックポリプロピレン樹脂の
融点より高い融点を有する高分子重合体である、特許請
求の範囲第1項または第2項の透明容器の製造方法。
[Claims] 1. When manufacturing a transparent container from a sheet of isotactic polypropylene resin by thermoforming, 0.01 to 2.0 wt. A uniaxially oriented sheet obtained by stretching a sheet made of an isotactic polypropylene resin containing a nucleating agent of % and a surface roughness of 0.7 μRMS or less in one direction by 1.02 to 3 times at a temperature lower than its melting point. A method for producing a transparent container, characterized by thermoforming at a temperature lower than its melting point. 2. The method for manufacturing a transparent container according to claim 1, wherein the sheet is stretched by roll rolling. 3. The method for producing a transparent container according to claim 1 or 2, wherein the nucleating agent is an organic fatty acid or a derivative thereof. 4. The method for producing a transparent container according to claim 1 or 2, wherein the nucleating agent is a polymer having a melting point higher than that of the isotactic polypropylene resin.
JP52008765A 1977-01-31 1977-01-31 Method for manufacturing transparent containers Expired JPS5953851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52008765A JPS5953851B2 (en) 1977-01-31 1977-01-31 Method for manufacturing transparent containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52008765A JPS5953851B2 (en) 1977-01-31 1977-01-31 Method for manufacturing transparent containers

Publications (2)

Publication Number Publication Date
JPS5394371A JPS5394371A (en) 1978-08-18
JPS5953851B2 true JPS5953851B2 (en) 1984-12-27

Family

ID=11701998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52008765A Expired JPS5953851B2 (en) 1977-01-31 1977-01-31 Method for manufacturing transparent containers

Country Status (1)

Country Link
JP (1) JPS5953851B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563230A (en) * 1978-11-07 1980-05-13 Mitsubishi Monsanto Chem Co Polypropylene sheet having improved moldability
JPS60236721A (en) * 1984-05-09 1985-11-25 Kyoei Sangyo Kk Manufacture of plastic thermoformed product
CN108779306A (en) * 2017-07-10 2018-11-09 东莞市森特塑胶制品有限公司 A kind of plastic film layer and the plastic foil using the plastic film layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158652A (en) * 1974-06-14 1975-12-22
JPS5386759A (en) * 1977-01-11 1978-07-31 Sumitomo Bakelite Co Process for production of transparent polypropylene sheet for thermoforming

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50158652A (en) * 1974-06-14 1975-12-22
JPS5386759A (en) * 1977-01-11 1978-07-31 Sumitomo Bakelite Co Process for production of transparent polypropylene sheet for thermoforming

Also Published As

Publication number Publication date
JPS5394371A (en) 1978-08-18

Similar Documents

Publication Publication Date Title
JPS61121925A (en) Manufacture of air permeable film
EP1476294B1 (en) Polypropylene biaxially oriented film
US4294935A (en) Method of producing ethylene-vinyl alcohol copolymer film
EP0176177B1 (en) Thermoplastic sheet preparation method
US4256687A (en) Process for producing molded articles
US4230656A (en) Transparent sheets and containers formed from polycarbonate-polyester blends and formation thereof
JPS5953851B2 (en) Method for manufacturing transparent containers
US4123473A (en) Transparent sheets and containers formed from polycarbonate-polyester blends and formation thereof
JPH0386729A (en) Polyester film for forming application
JPS61130018A (en) Polypropylene sheet and manufacture thereof
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JPH0257009B2 (en)
US4175147A (en) Method to reduce deposits of terephthalic acid on cooling rolls during sheet extrusion of amorphous polyethylene terephthalate
JPS606439A (en) Manufacture of gas-permeable film
JPS6026697B2 (en) Method for producing ethylene-vinyl alcohol copolymer film
JPH0547384B2 (en)
JP2692310B2 (en) Biaxially oriented polyester film for molding
US2847709A (en) Process of producing unoriented formed articles from high polymers
JPS61152418A (en) Manufacture of thermoplastic resin sheet
JPS5912179Y2 (en) clear polypropylene container
JPH0314060B2 (en)
JPH0245974B2 (en) NIJIKUENSHINSARETAHORIIIPUSHIRONNKAPUROAMIDOFUIRUMUNOSEIZOHOHO
JPH07100960A (en) Metallic roll, production of resin sheet, and production device therefor
US3697494A (en) Non-crazing, biaxially oriented styrene-methyl methacrylate copolymer sheets
JPS6013815B2 (en) Thermoforming method