JPS606439A - Manufacture of gas-permeable film - Google Patents

Manufacture of gas-permeable film

Info

Publication number
JPS606439A
JPS606439A JP58113483A JP11348383A JPS606439A JP S606439 A JPS606439 A JP S606439A JP 58113483 A JP58113483 A JP 58113483A JP 11348383 A JP11348383 A JP 11348383A JP S606439 A JPS606439 A JP S606439A
Authority
JP
Japan
Prior art keywords
film
stretching
gas
tubular
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58113483A
Other languages
Japanese (ja)
Other versions
JPH0314056B2 (en
Inventor
Katsumi Okuyama
奥山 克己
Hiroyasu Mizutani
水谷 弘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP58113483A priority Critical patent/JPS606439A/en
Priority to US06/620,828 priority patent/US4585604A/en
Priority to GB08415472A priority patent/GB2143772B/en
Publication of JPS606439A publication Critical patent/JPS606439A/en
Publication of JPH0314056B2 publication Critical patent/JPH0314056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/005Producing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4871Underwear
    • B29L2031/4878Diapers, napkins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms

Abstract

PURPOSE:To balance the mechanical properties of a gas-permeable film by a method in which gas is blown from outside onto the tubular biaxially stretched film composed of a thermoplastic resin and an inorganic filler, and also the gas is continuously blown into the film. CONSTITUTION:A tubular unstretched film composed of 42-87vol% a thermoplastic resin and 58-13vol% an inorganic filler is biaxially stretched along a mandrel of a conical trapezoidal form. The film is then cooled by blowing gas from the outside of the film and also the gas is continuously blown from the inside to the outside of the film in a piercing manner to obtain a gas-permeable film. The thermoplastic resin used includes low- and high-density polyethylenes, etc., and the inorganic filler used in cludes calcium carbonate, calcium oxide, talc, etc.

Description

【発明の詳細な説明】 本発明は、熱可塑性樹脂と無機充填剤との組成物からな
る未延伸フィルムを二軸延伸してなる通気性フィルムの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a breathable film by biaxially stretching an unstretched film made of a composition of a thermoplastic resin and an inorganic filler.

従来より、熱可塑性樹脂と無機充填剤との組成物からな
る未延伸フィルムを二軸延伸して、延伸フィルムの厚み
方向に連通したボイドを発生させて通気性フィルムを製
造する方法は多数提案されている。
Conventionally, many methods have been proposed for producing a breathable film by biaxially stretching an unstretched film made of a composition of a thermoplastic resin and an inorganic filler to generate voids that communicate in the thickness direction of the stretched film. ing.

この場合の二軸延伸方法としては、フラット状で二軸延
伸する方法と、管状を保持した状態で二軸延伸する方法
とがある。
Biaxial stretching methods in this case include a method of biaxial stretching in a flat state and a method of biaxial stretching while maintaining a tubular shape.

フラット状で二軸延伸する方法は、横方向に延伸する際
にクリップでフィルムを把持し延伸スるだめに把持した
部分が製品にならない点、この方法に使用する延卯設備
が非常に高価な点等より、製品コストが高くなる欠点を
有している。更に、通常商業的に使用されている方法は
、未延伸フィルムを縦方向と横方向とに別々の工程で延
伸するため、延伸されたフィルムの機械的特性がアンバ
ランスになる欠点を有している。
The method of biaxial stretching in a flat form has two drawbacks: when stretching the film in the transverse direction, the film is held with clips, and the part that is held during the stretching process does not become a product, and the stretching equipment used in this method is very expensive. However, it has the disadvantage that the product cost is high. Furthermore, the methods commonly used commercially have the disadvantage that the mechanical properties of the stretched film are unbalanced because the unstretched film is stretched in separate steps in the longitudinal and transverse directions. There is.

管状を保持した状態で二軸延伸する方法は、フラット状
の前述の欠点を解決するために提案されたもので、フラ
ット状で二軸延伸する方法に比較し、設備費か少なく、
クリップを使用しないことから未延伸部分が残ることな
く全て延伸されるため製品になる効率が高く、更に、縦
方向と横方向とがほぼ同時に延伸されるために機械的性
質がバランスしているという%aを有している。
The method of biaxial stretching while maintaining the tubular shape was proposed to solve the above-mentioned drawbacks of the flat shape.Compared to the method of biaxial stretching with the flat shape, the equipment cost is lower,
Since no clips are used, all of the material is stretched without leaving any unstretched parts, making it more efficient to produce products.Furthermore, since the machine is stretched almost simultaneously in the vertical and horizontal directions, its mechanical properties are balanced. %a.

この二軸延伸法には、加圧気体の内圧により延伸する内
圧バブル延伸法と、管状未延伸フィルムの内部に円准台
形のマンドレルを挿入して延伸するマンドレル延伸法と
がある。
This biaxial stretching method includes an internal pressure bubble stretching method in which the film is stretched using the internal pressure of a pressurized gas, and a mandrel stretching method in which a semicircular trapezoidal mandrel is inserted into the interior of a tubular unstretched film for stretching.

内圧バブル延伸法は、低速ロールと高速ロールとの周速
度差により縦方向に延伸しながら、ロール間で内圧によ
り満方向(円周方向)に延伸する方法であり、内圧気体
の漏洩を防ぐために低速ロールおよび高速ロールはニッ
プロール方式となっている0従って、熱可塑性(!■脂
と無機充填剤との組成物からなる管状未延伸フィルムを
この内圧バブル延伸法で二軸延伸しようとすると、管状
未延伸フィルムが低速ニップロールを通過する際にニッ
プロールにより二つ折り状態に押圧されるため、折り曲
げられた両端耳部は塑性変形し無機充填剤が樹脂より剥
n1tする。この局部的に剥離した部分は低い延伸応力
で延伸がIに]始するために、延伸中の管状フィルムの
形状が変化し延伸が不安定になるとともに、この剥離部
分は延伸倍率が局部的に高くなるだめに、延伸後のフィ
ルムにボイドむらが縦筋となって発現し品質の均一な通
気性フィルムが得られない。更に、この内圧バブル延伸
法は、低速ロールと高速ロールとのロール間に加圧気体
を封じ込め横方向(円周方向)に延伸する方法であるた
め、通気性フィルムにおいては、フィルムの内0111
から外1itllに向けて内部の加圧気体が漏洩してし
まい連続安定生産が困難である。
The internal pressure bubble stretching method is a method of stretching in the longitudinal direction due to the peripheral speed difference between low-speed rolls and high-speed rolls, while stretching in the full direction (circumferential direction) using internal pressure between the rolls.In order to prevent leakage of internal pressure gas, The low speed roll and high speed roll are of the nip roll type. Therefore, when attempting to biaxially stretch a tubular unstretched film made of a composition of thermoplastic (! ■ fat and inorganic filler) using this internal pressure bubble stretching method, the tubular When the unstretched film passes through the low-speed nip rolls, it is pressed into a two-fold state by the nip rolls, so the folded edges on both ends are plastically deformed and the inorganic filler is peeled off from the resin.This locally peeled part is Because the stretching starts at a low stretching stress, the shape of the tubular film changes during stretching, making the stretching unstable. Void unevenness appears in the film as vertical streaks, making it impossible to obtain a breathable film with uniform quality.Furthermore, this internal pressure bubble stretching method confines pressurized gas between the low-speed roll and high-speed roll in the transverse direction. Since this is a method of stretching in the circumferential direction, in breathable films, 0111
Internal pressurized gas leaks from the inside to the outside, making continuous stable production difficult.

一方、マンドレル延伸法は、内圧バブル延伸法における
ような延伸不安定性及び縦筋を改良するために提案され
た方法であり、この延伸法においては、円錐台形のマン
ドレルに沿わせながら延伸するだめに、局部的な延伸に
よる延伸の不安定性が改良され、また、加圧気体を封じ
込める必要がないのでニップロールによる折目が発生し
なくなり、従って縦筋による品質不良がなくなる。とこ
ろが、円錐台形のマンドレルに沿わせながら延伸するた
めに、延伸フィルムの厚み方向にかなりの圧縮応力が作
用し、延伸により発現したボイドがつぶされ品質のよい
通気性フィルムが得られないという欠点を有している。
On the other hand, the mandrel stretching method is a method proposed to improve stretching instability and longitudinal streaks as in the internal pressure bubble stretching method. Stretching instability caused by local stretching is improved, and since there is no need to confine pressurized gas, creases due to nip rolls do not occur, and quality defects due to vertical streaks are eliminated. However, since the stretched film is stretched along a truncated conical mandrel, considerable compressive stress acts on the stretched film in the thickness direction, and voids developed by stretching are crushed, making it impossible to obtain a high-quality breathable film. have.

以上のように、熱可塑性樹脂と無機充填剤との組成物か
らなる未延伸フィルムを二軸延伸して通気性フィルムを
製造する従来の方法では、縦方向と横方向との機械的性
質のバランスがとれ、かつ通気性の優れたフィルムを安
定して製造するには到っていないのが現状である。
As mentioned above, in the conventional method of manufacturing a breathable film by biaxially stretching an unstretched film made of a composition of a thermoplastic resin and an inorganic filler, the mechanical properties in the longitudinal and transverse directions cannot be balanced. At present, it has not yet been possible to stably produce a film that is removable and has excellent air permeability.

本発明は、上述の現状に鑑み、従来の製造方法における
問題点を解決することを目的としてなされたもので、以
下詳述すれば、本発明の通気性フィルムの製造方法は、
熱可塑性樹脂42〜87体積%と蕪機充填剤58〜13
体積%との組成物からなる管状未延伸フィルムを円錐台
形のマンドレルに沿わせなから二軸延伸し、引き続き、
管状二軸延伸フィルムの外側から気体を吹付けることに
より該フィルムを冷却すると共に、該フィルムの内側か
ら連続的に気体を吹込むことにより該フィルムの外側に
貫通させることを特徴とする。
In view of the above-mentioned current situation, the present invention was made with the aim of solving the problems in conventional manufacturing methods.
Thermoplastic resin 42-87% by volume and turnip filler 58-13%
A tubular unstretched film consisting of a composition of % by volume is biaxially stretched along a frustoconical mandrel, and then
It is characterized in that the film is cooled by blowing gas from the outside of the tubular biaxially stretched film, and the film is penetrated to the outside of the film by continuously blowing gas from the inside of the film.

ここで、熱可塑性樹脂とは、低密度ポリエチレン、高密
度ポリエチレン、ボリグロピレン等の如き重合体、エチ
レン−プロピレン共重合体、エチレン−ブテン−1共重
合体等の如き共重合体等ポリオレフィン、ポリエステル
、ポリアミド等をいい、これらは、単独で、あるいは混
合状態で用いることができる。これらの中でポリオレフ
ィン、その中でも特に高密度ポリエチレン、エチレン−
α−オレフィン共重合体において有効であり、高密度ポ
リエチレンとしては、密度が0.9401F/ca以上
、好ましくはQ、945 S’/cri以上で、MFR
が1.01F/10分以下、好ましくはo、lr/l。
Here, thermoplastic resins include polymers such as low density polyethylene, high density polyethylene, polyglopylene, etc., polyolefins such as copolymers such as ethylene-propylene copolymer, ethylene-butene-1 copolymer, etc., polyester, It refers to polyamide, etc., and these can be used alone or in a mixed state. Among these, polyolefins, especially high-density polyethylene, ethylene-
It is effective in α-olefin copolymers, and as high-density polyethylene, the density is 0.9401 F/ca or more, preferably Q, 945 S'/cri or more, and MFR
is 1.01F/10 minutes or less, preferably o, lr/l.

分取下の範囲に含まれるものである。また、エチレン−
α−オレフィン共重合体としては、密度が0.910〜
0.940 r/cr!、好ましくは0.916〜0.
935 S’/−で、MFRが0.1〜5f/10分、
好ましくは0.1〜39710分の範囲に含まれるもの
である。
It is included in the scope of preparative separation. Also, ethylene-
As an α-olefin copolymer, the density is 0.910~
0.940 r/cr! , preferably 0.916 to 0.
935 S'/-, MFR 0.1-5f/10min,
Preferably it is within the range of 0.1 to 39710 minutes.

また、無機充填剤は、炭酸カルシウム、酸化カルシウム
、タルク、クレー、シリカ、酸化チタン、アルミナ、硫
酸アルミニウム等であり、単独あるいは混合状態で用い
ることができる。好ましい無機充填剤の形態としては、
板状、棒状、針状以外の球状、粒状、不定形等であり、
その平均粒径は0.1〜5μ、好ましくは0.6〜3μ
である。平均粒径が0.1μ未満になると未延伸フィル
ムの延伸時の伸びがなくなって二軸延伸が困難になり、
5μを越えると二軸延伸フィルムにピンホールが発生し
やすくなって連続安定延伸性が損われるとともに、表面
の凹凸が激しくなる。
Inorganic fillers include calcium carbonate, calcium oxide, talc, clay, silica, titanium oxide, alumina, aluminum sulfate, etc., and can be used alone or in a mixed state. Preferred forms of the inorganic filler include:
They are spherical, granular, irregular shapes, etc. other than plate-like, rod-like, and needle-like.
Its average particle size is 0.1-5μ, preferably 0.6-3μ
It is. When the average particle size is less than 0.1μ, the unstretched film loses its elongation during stretching, making biaxial stretching difficult.
If it exceeds 5μ, pinholes are likely to occur in the biaxially stretched film, impairing continuous and stable stretching properties, and the surface becomes more uneven.

熱可塑性樹脂と無機充填剤との混線方法としては、−動
あるいは二軸押出機、バンバリーミキサ−、ニーグー、
ミキシングロール等による加熱混線が採用できる。加熱
混線の際には、分散剤、熱安定剤、紫外線吸収剤、滑剤
、顔料、帯電防止剤等通常添加する添加剤を同時に混線
できる。特に、分散剤として、炭素数12以上の高級脂
肪酸が好結果を与える。無機充填剤は、加熱混練する前
にこれらの分散剤等で処理されていてもよい。
Methods for mixing thermoplastic resin and inorganic filler include dynamic or twin-screw extruders, Banbury mixers, Negoo mixers,
Heating crosstalk using mixing rolls, etc. can be used. When heating and cross-fertilizing, commonly used additives such as dispersants, heat stabilizers, ultraviolet absorbers, lubricants, pigments, and antistatic agents can be mixed at the same time. In particular, higher fatty acids having 12 or more carbon atoms give good results as a dispersant. The inorganic filler may be treated with these dispersants or the like before being heated and kneaded.

熱可塑性樹脂と無機充填剤との組成比は、熱可塑性樹脂
が42〜87体積9、好ましくは55〜80体債%、無
機充填剤が58〜13体積%、好ましくは45〜20体
積%の範囲である。無機充填剤が13木債%未滴になる
と、熱可塑性樹脂と無機充填剤との界面が剥離してでき
る@接したボイドどうしが連通しなくなり、通気性が得
られなくなる。また、58体積%を越えると、未延伸フ
ィルムのマンドレル上での延伸時の伸びがなくなり、管
状を保持した状態での二軸延伸が困難になる。
The composition ratio of the thermoplastic resin and the inorganic filler is such that the thermoplastic resin is 42 to 87% by volume, preferably 55 to 80% by volume, and the inorganic filler is 58 to 13% by volume, preferably 45 to 20% by volume. range. When the inorganic filler becomes 13% undropped, the interface between the thermoplastic resin and the inorganic filler peels off, and the voids that are in contact with each other no longer communicate with each other, making it impossible to obtain air permeability. Moreover, if it exceeds 58 volume %, the unstretched film loses its elongation when stretched on a mandrel, making it difficult to biaxially stretch the unstretched film while maintaining its tubular shape.

本発明にいう円錐台形のマンドレルに沿わせながら二軸
延伸するマンドレル延伸法とは、管状未延伸フィルムの
中に、一端が管状未延伸フィルムの直径に等しいかある
いは若干小さい直径を有し、他端が延伸しようとする横
方向(円周方向)の延伸倍率にほぼ等しい直径を有する
円錐台形のマンドレルを挿入し、該マンドレルの傾斜し
た6111面に管状未延伸フィルムを沿わせながら、マ
ンドレルの後方に位置する引き取りニップロールによっ
て延伸後冷却された延伸フィルムが引き取られる際に発
生する力により、実質的に円錐台形のマンドレル上で面
圧を受けた状態で横方向(円周方向)と縦方向とに延伸
する方法をいう0このマンドレルの支持方法としては、
管状未延伸フィルムを押し出す環状のダイに連結した支
持棒に、マンドレルの小なる径の端面を固定する方法が
好ましい。
The mandrel stretching method in which biaxial stretching is performed along a truncated conical mandrel as used in the present invention refers to the method of biaxially stretching a tubular unstretched film along a truncated conical mandrel, in which one end has a diameter equal to or slightly smaller than the diameter of the tubular unstretched film, and the other end has a diameter equal to or slightly smaller than the diameter of the tubular unstretched film. A truncated conical mandrel whose end has a diameter approximately equal to the stretching ratio in the lateral direction (circumferential direction) to be stretched is inserted, and while the tubular unstretched film is placed along the slanted 6111 plane of the mandrel, the back of the mandrel is Due to the force generated when the stretched film, which has been cooled after stretching, is taken off by the take-up nip roll located at The method of supporting this mandrel is as follows:
A preferred method is to fix the small diameter end face of the mandrel to a support rod connected to an annular die for extruding the tubular unstretched film.

この延伸における延伸温度は、いわゆる延伸により配向
が起こる温度であって、公知の如く通常は比較的広い範
囲の温度幅を有し、フィルム加工業界に於いては容易に
確定可能である。一般に融点よりわずかに低い温度範囲
にあるが、マンドレル延伸の場合には、マンドレルに接
触させて延伸するので、融点をTm (℃)、延伸温度
をTs (C)とすると、Tm −s o≦T8≦Tm
 −5(C) が適する。
The stretching temperature in this stretching is the temperature at which orientation occurs due to so-called stretching, and as is known, it usually has a relatively wide temperature range and can be easily determined in the film processing industry. Generally, the temperature range is slightly lower than the melting point, but in the case of mandrel stretching, the stretching is carried out in contact with the mandrel, so if the melting point is Tm (°C) and the stretching temperature is Ts (C), then Tm −s o≦ T8≦Tm
-5(C) is suitable.

低密度ポリエチレン、高密度ポリエチレン等の場合には
、Tm −20≦Ts≦Tm−5℃が好ましい。
In the case of low-density polyethylene, high-density polyethylene, etc., Tm -20≦Ts≦Tm-5°C is preferable.

延伸温度への加熱は、マンドレル等を介して内部より加
熱してもよいし、外部より加熱してもよいが、均一加熱
の面より少なくとも内部は加熱することが好ましい。
Heating to the stretching temperature may be done from the inside via a mandrel or the like, or from the outside, but it is preferable to heat at least the inside for uniform heating.

また、延伸倍率は、縦横それぞれ1.5〜4倍が安定延
伸に適する。
Further, a stretching ratio of 1.5 to 4 times in both length and width is suitable for stable stretching.

本発明においては、マンドレルを離れ実質的に延伸を終
了した管状二軸延伸フィルムを、該フィルムの外側から
気体、一般には空気を吹付ける公知の方法で冷却すると
共に、該フィルムの内側から連続的に気体を吹込むこと
により該フィルムの外l1111に気体を貫通させる。
In the present invention, the tubular biaxially stretched film, which has left the mandrel and has substantially finished stretching, is cooled by a known method of blowing gas, generally air, from the outside of the film, and continuously from the inside of the film. By blowing gas into the film, the gas is passed through the outside of the film.

この際の気体の吹込み量は、得られた管状二軸延伸フィ
ルムの物性および形状、延伸速度、冷却気体の温度およ
び吹付は量等により変化するため一義的には決定し得な
いが、20℃で0.1〜15ONl/n?・分、好まし
くは1〜70 Nt/lr?−分の範囲で、管状二軸延
伸フィルムが延伸終了時とは譬同等の口径を保つように
適宜設定される。冷却気体の吹付は量を多くしながら、
この気体の吹込み量を多くすると、通気度が漸次大きな
通気性フィルムが得られる。また、この気体としては空
気が最も一般的である。なお、この気体吹込みのために
は、外部の加圧源に連結し、環状ダイ、および前述のマ
ンドレル支持憚、マンドレルを貫通してマンドレルの大
なる径の端面に開口した導管を設けておく。
The amount of gas blown at this time cannot be determined uniquely because it varies depending on the physical properties and shape of the obtained tubular biaxially stretched film, the stretching speed, the temperature of the cooling gas and the amount of blowing, etc. 0.1 to 15 ONl/n at °C? · min, preferably 1 to 70 Nt/lr? The diameter is set appropriately within the range of - minutes so that the tubular biaxially stretched film maintains the same diameter as at the end of stretching. While spraying a large amount of cooling gas,
When the amount of gas blown into the film is increased, a breathable film with gradually higher air permeability can be obtained. Moreover, air is the most common gas. In order to blow this gas, a conduit is provided which is connected to an external pressure source, penetrates the annular die, the mandrel support member mentioned above, and opens at the large diameter end face of the mandrel. .

本発明における通気性フィルムの製造工程は次の5つの
工程よりなる。即ち、管状未延伸フィルムを環状ダイの
ダイリップ間隙より溶融状態で押し出し、ダイリップ径
と等しいかあるいはこれより大きい径となした後、冷却
固化し連続的に引き取る管状未延伸フィルム製造工程と
、同フィルムを適正延伸温度に加熱する予熱工程と、同
加熱された管状未延伸フィルムを円錐台形のマンドレル
の表面に面圧を受けだ状態で沿わせなから二軸延伸する
延伸工程と、マンドレルを離れ実質的に延伸を終了した
管状状態にあるフィルン、を、管状フィルムの外側より
制御された冷却気体により冷却するとともに、管状状態
にあるフィルムの内側から外1IIQに向けて、制御さ
れた加圧気体を連続的に管状フィルム円周全域に渡り貫
通させて延伸フィルムに通気性を付与する工程と、延伸
されたフィルムを冷却した後製品として巻きとる巻き取
り工程とよりなる。
The manufacturing process of the breathable film in the present invention consists of the following five steps. That is, a tubular unstretched film manufacturing process in which a tubular unstretched film is extruded in a molten state through the die lip gap of an annular die, the diameter is equal to or larger than the die lip diameter, the film is cooled and solidified, and then continuously withdrawn; a preheating step in which the heated tubular unstretched film is stretched to an appropriate stretching temperature, a stretching step in which the heated tubular unstretched film is biaxially stretched along the surface of a truncated conical mandrel while receiving surface pressure, and a The firn, which is in a tubular state after being stretched, is cooled by controlled cooling gas from the outside of the tubular film, and controlled pressurized gas is applied from the inside of the tubular film to the outside. It consists of a step of continuously penetrating the entire circumference of the tubular film to impart air permeability to the stretched film, and a winding step of cooling the stretched film and then winding it up as a product.

本発明によって製造される通気性フィルムの物性は、熱
可塑性樹脂の種類、無機充填剤の粒径、種類、充填割合
、二i′!!jI延伸条件である延伸温度、縦横方向の
延伸倍率、冷却気体の吹付は喰、内側からの気体吹込み
lにより自由にコントロール可能である。通気性フィル
ムの厚みが25〜150μの場合、JIS P 811
7で測定した通気度は25〜30000秒/1oocc
、JIS Z0208で測定した透湿度は300〜25
000t/rr?・24時間の範囲の値を有する。
The physical properties of the breathable film produced according to the present invention include the type of thermoplastic resin, the particle size, type, and filling ratio of the inorganic filler. ! jI The stretching conditions, such as the stretching temperature, the stretching ratio in the longitudinal and lateral directions, and the blowing of cooling gas, can be freely controlled by blowing gas from the inside. When the thickness of the breathable film is 25 to 150μ, JIS P 811
Air permeability measured at 7 is 25-30000 seconds/1oocc
, moisture permeability measured according to JIS Z0208 is 300-25
000t/rr? -Has a value in the range of 24 hours.

以下に本発明の実施例を比較例とともに示し具体的に説
明する。尚、本発明は実施例により限定されるものでは
ない。
Examples of the present invention will be shown below together with comparative examples and will be specifically explained. Note that the present invention is not limited to the examples.

実施例1 エチレン−ブテン−1共重合体(密度0.920t /
 cr1%M F R2,OS’ 710分、融点12
4℃)のパウダー65体積%、重質炭酸カルシウム(平
均粒径1.2μ、板状、棒状でない不定形)35体積%
、エチレン−ブテン−1共重合体100重量部に対して
熱安定剤(2,6−ジーt−ブチル−p−クレゾール)
0.1重量部、重質炭酸カルシウム100重量部に対し
て分散剤(オレイン酸)1.0重量部等をスーパーミキ
サーで5分間混合した後、二軸押出機より200℃でス
トランド状に押出した後、ベレット状に切断した。
Example 1 Ethylene-butene-1 copolymer (density 0.920t/
cr1%M F R2, OS' 710 minutes, melting point 12
4℃) powder 65% by volume, heavy calcium carbonate (average particle size 1.2μ, irregular shape, not plate-like or rod-like) 35% by volume
, a heat stabilizer (2,6-di-t-butyl-p-cresol) per 100 parts by weight of ethylene-butene-1 copolymer.
After mixing 0.1 part by weight and 1.0 part by weight of a dispersant (oleic acid) with 100 parts by weight of heavy calcium carbonate in a super mixer for 5 minutes, extrusion into a strand at 200°C from a twin-screw extruder After that, it was cut into pellets.

得られたベレットを、スクリュー径509.L/D25
の押出機に取り付けた環状ダイ(リップ径75c3、リ
ップ間隙111111の4条スパイラルダイ)より21
0℃で押出した後、内部を5℃の水が循環する直径10
08の冷却マンドレルに接触せしめ、ブロー比1.33
で冷却固化して厚み200μの管状未延伸フィルムを4
m/分で引き取った。
The obtained pellet was screwed with a screw diameter of 509 mm. L/D25
21 from the annular die (4-row spiral die with lip diameter 75c3 and lip gap 111111) attached to the extruder.
After extrusion at 0°C, 5°C water circulates inside the diameter 10
08 cooling mandrel, blow ratio 1.33
Cool and solidify the tubular unstretched film with a thickness of 4
It was picked up at m/min.

このフィルムを、冷却マンドレルの下方に連結された直
径98(?の予熱マンドレルで114℃に加熱した後、
予熱マンドレルに直結する端面の直径が988でもう一
方の端面の直径が2500で、その円錐角が90″ の
表面を凹凸0.5μに梨地加工した114℃の円錐台形
のマンドレル表面に沿わせながら横方向(円周方向)に
2.5倍延伸しながら縦方向に3.0倍延伸し、引き続
き、マンドレルを離れた管状状態にある二roll延呻
フィルムの外1111I全周に、マンドレルの下端から
50態の位置にて、直径350Ti5.IJツブ間隙3
叫のエアーリングより、15 C,5m7秒の空気を吹
き付けるとともに、マンドレルの下喘の専管より、管状
フィルムの内部に20℃の空気をz ONl/rr?・
分の割合で連続的に吹込むことにより、内11411よ
り外側に向けて連続的にフィルムの厚み方向に貫通させ
ながら、ニラグロールにより連続的に引き取り、管状二
1111延伸通気性フィルムを得た。
After heating this film to 114°C with a 98mm diameter preheating mandrel connected below the cooling mandrel,
The diameter of the end face directly connected to the preheating mandrel is 988 mm, and the diameter of the other end face is 2500 mm, and the cone angle is 90''. Stretched 2.5 times in the transverse direction (circumferential direction) and 3.0 times in the longitudinal direction, and then stretched the lower end of the mandrel around the entire outer circumference of the two-roll stretched film in the tubular state that had left the mandrel. At the position of 50 from
From the air ring, blow air at 15 C for 5 m and 7 seconds, and from the lower tube of the mandrel, blow air at 20 C into the inside of the tubular film.・
By continuously blowing at a rate of 100 min, the film was continuously penetrated in the thickness direction of the film from the inner 11411 to the outside, and was continuously taken up by the Nira roll to obtain a tubular 21111 stretched breathable film.

左 得られた通気性フィルムの外観および物性本表1に示す
。ib、透湿度はJIS z0208、通気度はJIS
 P8117、引裂強度はJISブ Z1702にそれぞれ基でいて測定した。
The appearance and physical properties of the obtained breathable film are shown in Table 1. ib, moisture permeability is JIS z0208, air permeability is JIS
P8117 and tear strength were measured based on JIS Z1702.

実施例2 実施例1に於いて、管状二軸延伸フィルムの冷却空気の
吹付けを10m/秒とし、内部の空気の吹込みを4ON
t/−・分とした以外、実施例1と同様な方法により通
気性フィルムを得たO得られだ通気性フィルムの結果を
表1に合せて記す0実施例3 実施例1に於いて、管状未延伸フィルムの予熱温度と延
伸温度を112℃に設定し、管状二軸延時フィルムの冷
却空気の吹付けを20m/秒とし、内部の空気の吹込み
を4ONt/rr?・分とした以外、実施例1と同様の
方法により通気性フィルムを得た。得られた通気性フィ
ルムの結果を表1に合せて記す。
Example 2 In Example 1, the cooling air blowing of the tubular biaxially stretched film was 10 m/sec, and the internal air blowing was 4ON.
A breathable film was obtained in the same manner as in Example 1 except that the temperature was set at t/-min.The results of the obtained breathable film are shown in Table 1.Example 3 The preheating temperature and stretching temperature of the tubular unstretched film are set at 112°C, the cooling air blowing rate of the tubular biaxially stretched film is 20 m/sec, and the internal air blowing rate is 4ONt/rr? A breathable film was obtained in the same manner as in Example 1 except that the amount of air permeable film was 100%. The results of the obtained breathable film are also shown in Table 1.

比較例1 実施例1に於いて、マンドレルの下端の導管より管状フ
ィルムの内部に導く空気を取り止めた以外、実施例1と
同様の方法により延伸した。得られた二軸延伸フィルム
の結果を表1に合せて記す。
Comparative Example 1 Stretching was carried out in the same manner as in Example 1, except that the air introduced into the tubular film from the conduit at the lower end of the mandrel was stopped. The results of the obtained biaxially stretched film are also shown in Table 1.

実施例4 実施例1において、エチレン−ブテン−1共重合体の代
わりに高密度ポリエチレン(密度0.956t/cI/
1、MF RO−05f / 10分、融点135℃)
のパウダーを用い、270℃でペレット化シ、250℃
で150μの管状未延伸フィルムとして押出し、予熱温
度及び延伸温度を119℃にし、縦方向の延卯倍率を2
.5倍とし、管状二@h延伸フィルムの冷却空気の吹付
けを20 m7秒とし、空気の吹込みを60 Nt/r
rl・分とした以外、実施例1と同様な方法により通気
性フィルムを得た。得られた通気性フィルムの結果を表
1に合せて記す。
Example 4 In Example 1, high density polyethylene (density 0.956t/cI/
1, MF RO-05f / 10 minutes, melting point 135℃)
Pelletized at 270℃ using powder of
The film was extruded as a 150μ tubular unstretched film, the preheating temperature and stretching temperature were 119°C, and the stretching ratio in the longitudinal direction was 2.
.. 5 times, the cooling air blowing of the tubular two@h stretched film was 20 m7 seconds, and the air blowing was 60 Nt/r.
A breathable film was obtained in the same manner as in Example 1 except that the temperature was set to rl·min. The results of the obtained breathable film are also shown in Table 1.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims] 熱可塑性樹脂42〜87体積%と無機充填剤58〜13
体積%との組成物からなる管状未延伸フィルムを円錐台
形のマンドレルに沿わせなから二軸延伸し、引き続き、
管状二軸延伸フィルムの外側から気体を吹付けることに
より該フィルムを冷却すると共に、該フィルムの内側か
ら連続的に気体を吹込むことにより該フィルムの外側に
貫通させることを特徴とする通気性フィルムの製造方法
Thermoplastic resin 42-87% by volume and inorganic filler 58-13%
A tubular unstretched film consisting of a composition of % by volume is biaxially stretched along a frustoconical mandrel, and then
A breathable film characterized in that the film is cooled by blowing gas from the outside of the tubular biaxially stretched film, and the film is penetrated to the outside of the film by continuously blowing gas from the inside of the film. Manufacturing method 0
JP58113483A 1983-06-23 1983-06-23 Manufacture of gas-permeable film Granted JPS606439A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58113483A JPS606439A (en) 1983-06-23 1983-06-23 Manufacture of gas-permeable film
US06/620,828 US4585604A (en) 1983-06-23 1984-06-15 Process for preparing an air-permeable film
GB08415472A GB2143772B (en) 1983-06-23 1984-06-18 Preparing air-permeable thermoplastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113483A JPS606439A (en) 1983-06-23 1983-06-23 Manufacture of gas-permeable film

Publications (2)

Publication Number Publication Date
JPS606439A true JPS606439A (en) 1985-01-14
JPH0314056B2 JPH0314056B2 (en) 1991-02-25

Family

ID=14613427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113483A Granted JPS606439A (en) 1983-06-23 1983-06-23 Manufacture of gas-permeable film

Country Status (1)

Country Link
JP (1) JPS606439A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295216A (en) * 1985-10-23 1987-05-01 Tokuyama Soda Co Ltd Manufacture of porous sheet and device therefor
FR2593792A1 (en) * 1986-02-03 1987-08-07 Sotralentz Sa Nle Ste Dispenser of stacked, thin and flexible elements, fitted with a device for extracting these, and cartridge box intended to equip such a dispenser
JPS62201941A (en) * 1986-03-03 1987-09-05 Nissan Chem Ind Ltd Production of gas-permeable film or sheet
JPS644338A (en) * 1987-06-26 1989-01-09 Tokuyama Soda Kk Manufacture of porous sheet
CN102205655A (en) * 2011-04-19 2011-10-05 吴国逵 Continuous production process of polyethylene (PE) breathable film
CN113910588A (en) * 2021-10-29 2022-01-11 泉州市环球新材料科技有限公司 Production process of double-color breathable film with anti-counterfeiting effect

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6295216A (en) * 1985-10-23 1987-05-01 Tokuyama Soda Co Ltd Manufacture of porous sheet and device therefor
JPH0360867B2 (en) * 1985-10-23 1991-09-18 Tokuyama Soda Kk
FR2593792A1 (en) * 1986-02-03 1987-08-07 Sotralentz Sa Nle Ste Dispenser of stacked, thin and flexible elements, fitted with a device for extracting these, and cartridge box intended to equip such a dispenser
JPS62201941A (en) * 1986-03-03 1987-09-05 Nissan Chem Ind Ltd Production of gas-permeable film or sheet
JPS644338A (en) * 1987-06-26 1989-01-09 Tokuyama Soda Kk Manufacture of porous sheet
JPH0545618B2 (en) * 1987-06-26 1993-07-09 Tokuyama Soda Kk
CN102205655A (en) * 2011-04-19 2011-10-05 吴国逵 Continuous production process of polyethylene (PE) breathable film
CN113910588A (en) * 2021-10-29 2022-01-11 泉州市环球新材料科技有限公司 Production process of double-color breathable film with anti-counterfeiting effect
CN113910588B (en) * 2021-10-29 2023-08-15 泉州市环球新材料科技有限公司 Production process of double-color breathable film with anti-counterfeiting effect

Also Published As

Publication number Publication date
JPH0314056B2 (en) 1991-02-25

Similar Documents

Publication Publication Date Title
US4585604A (en) Process for preparing an air-permeable film
JPS61121925A (en) Manufacture of air permeable film
US4777073A (en) Breathable films prepared from melt embossed polyolefin/filler precursor films
US4987025A (en) Inflation film of ultrahigh molecular weight polyethylene
TWI619599B (en) A method of producing a film sheet with a high blend of inorganic material powders, and a film sheet for printing
US5439628A (en) Method for manufacturing polypropylene film and sheet
US4463153A (en) Heat shrinkable film and process for preparing the same
US4011128A (en) Apparatus for forming a cross-oriented film
JPS60229733A (en) Inflating method
JP5642957B2 (en) Resin foam sheet
MXPA01013143A (en) Method for forming an article comprising closed-cell microfoam from thermoplastic.
JPS606439A (en) Manufacture of gas-permeable film
US5082616A (en) Film blowing process
NO832438L (en) CONSTRUCTION OF PLASTIC MATERIALS WITH CROSSING INTERIOR RIBBES
JPS6026009B2 (en) Method for producing cylindrical biaxially stretched sheet or film of thermoplastic resin containing inorganic filler
JPS606441A (en) Manufacture of gas-permeable film
JPH0314057B2 (en)
JPH0314059B2 (en)
GB2323326A (en) Stretched polyolefin film
CN112848247A (en) Blowing method of breathable film
JPS6226298B2 (en)
JPS606443A (en) Manufacture of gas-permeable film with treated surface
JPS5852822B2 (en) Method for producing biaxially oriented polyvinyl alcohol film
JPS6141732B2 (en)
JPH0651348B2 (en) Method for producing tube-shaped biaxially stretched film