JPH0314060B2 - - Google Patents

Info

Publication number
JPH0314060B2
JPH0314060B2 JP58113485A JP11348583A JPH0314060B2 JP H0314060 B2 JPH0314060 B2 JP H0314060B2 JP 58113485 A JP58113485 A JP 58113485A JP 11348583 A JP11348583 A JP 11348583A JP H0314060 B2 JPH0314060 B2 JP H0314060B2
Authority
JP
Japan
Prior art keywords
film
stretching
weight
tubular
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58113485A
Other languages
Japanese (ja)
Other versions
JPS606441A (en
Inventor
Katsumi Okuyama
Hiroyasu Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP58113485A priority Critical patent/JPS606441A/en
Priority to US06/620,828 priority patent/US4585604A/en
Priority to GB08415472A priority patent/GB2143772B/en
Publication of JPS606441A publication Critical patent/JPS606441A/en
Publication of JPH0314060B2 publication Critical patent/JPH0314060B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/005Producing membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4871Underwear
    • B29L2031/4878Diapers, napkins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】 本発明は、ポリオレフむン系暹脂ず無機充填剀
ずの組成物からなる未延䌞フむルムを二軞延䌞し
おなる、゜フト感を有する通気性フむルムの補造
方法に関する。 埓来より、ポリオレフむン系暹脂ず無機充填剀
ずの組成物からなる未延䌞フむルムを二軞延䌞し
お、フむルムに連通したボむドを発生させお通気
性フむルムを補造する方法は倚数提案されおい
る。 この堎合の二軞延䌞方法ずしおは、フラツト状
で二軞延䌞する方法ず、管状を保持した状態で二
軞延䌞する方法ずがある。 フラツト状で二軞延䌞する方法は、暪方向に延
䌞する際にクリツプでフむルムを把持し延䌞する
ために把持した郚分が補品にならない点、この方
法に䜿甚する延䌞蚭備が非垞に高䟡な点等より、
補品コストが高くなる欠点を有しおいる。曎に、
通垞商業的に䜿甚されおいる方法は、未延䌞フむ
ルムを瞊方向ず暪方向ずに別々の工皋で延䌞する
ため、延䌞されたフむルムの機械的特性がアンバ
ランスになる欠点を有しおいる。 管状を保持した状態で二軞延䌞する方法は、フ
ラツト状の前述の欠点を解決するために提案され
たもので、フラツト状で二軞延䌞する方法に比范
し、蚭備費が少なく、クリツプを䜿甚しないこず
から未延䌞郚分が残るこずなく党お延䌞されるた
め補品になる効率が高く、曎に、瞊方向ず暪方向
ずがほが同時に延䌞されるために機械的性質がバ
ランスしおいるずいう特城を有しおいる。 この二軞延䌞法には、加圧気䜓の内圧により延
䌞する内圧バブル延䌞法ず、管状未延䌞フむルム
の内郚に円錐台圢のマンドレルを挿入しお延䌞す
るマンドレル延䌞法ずがある。 内圧バブル延䌞法は、䜎速ロヌルず高速ロヌル
ずの呚速床差により瞊方向に延䌞しながら、ロヌ
ル間で内圧により暪方向円呚方向に延䌞する
方法であり、内圧気䜓の挏掩を防ぐために䜎速ロ
ヌルおよび高速ロヌルはニツプロヌル方匏ずな぀
おいる。埓぀お、ポリオレフむン系暹脂ず無機充
填剀ずの組成物からなる管状未延䌞フむルムをこ
の内圧バブル延䌞法で二軞延䌞しようずするず、
管状未延䌞フむルムが䜎速ニツプロヌルを通過す
る際にニツプロヌルにより二぀折り状態に抌圧さ
れるため、折り曲げられた䞡端耳郚は塑性倉圢し
無機充填剀が暹脂より剥離する。この局郚的に剥
離した郚分は䜎い延䌞応力で延䌞が開始するため
に、延䌞䞭の管状フむルムの圢状が倉化し延䌞が
䞍安定になるずずもに、この剥離郚分は延䌞倍率
が局郚的に高くなるために、延䌞埌のフむルムに
ボむドむらが瞊筋ずな぀お発珟し品質の均䞀な通
気性フむルムが埗られない。曎に、この内圧バブ
ル延䌞法は、䜎速ロヌルず高速ロヌルずのロヌル
間に加圧気䜓を封じ蟌め暪方向円呚方向に延
䌞する方法であるため、通気性フむルムにおいお
は、フむルムの内偎から倖偎に向けお内郚の加圧
気䜓が挏掩しおしたい連続安定生産が困難であ
る。 䞀方、マンドレル延䌞法は、内圧バブル延䌞法
におけるような延䌞䞍安定性及び瞊筋を改良する
ために提案された方法であり、この延䌞法におい
おは、円錐台圢のマンドレルに沿わせながら延䌞
するために、局郚的な延䌞による延䌞の䞍安定性
が改良され、たた、加圧気䜓を封じ蟌める必芁が
ないので、ニツプロヌルによる折目が発生しなく
なり、埓぀お瞊筋による品質䞍良がなくなる。ず
ころが、円錐台圢のマンドレルに沿わせながら延
䌞するために、延䌞フむルムの厚み方向にかなり
の圧瞮応力が䜜甚し、延䌞により発珟したボむド
が぀ぶされ品質のよい通気性フむルムが埗られな
いずいう欠点を有しおいる。 以䞊のように、ポリオレフむン系暹脂ず無機充
填剀ずの組成物からなる未延䌞フむルムを二軞延
䌞しお通気性フむルムを補造する埓来の方法で
は、瞊方向ず暪方向ずの機械的性質のバランスが
ずれ、か぀通気性の優れたフむルムを均䞀な厚み
で安定しお補造するには到぀おいないのが珟状で
ある。 他方、この通気性フむルムは、玙おむ぀、ある
いは生理甚品等の衛生甚品等甚途ぞの応甚が詊み
られ始めおおり、この堎合、シダリシダリした玙
様でなく、゜フト感を有する垃様の通気性フむル
ムが芁求される。 本発明は、䞊述の珟状に鑑み、埓来の補造方法
における問題点および芁望を解決するこずを目的
ずしおなされたもので、以䞋詳述すれば、本発明
の通気性フむルムの補造方法は、密床が0.910〜
0.940cm3、メルトフロヌレヌトが0.1〜
10分である゚チレン−α−オレフむン共重合䜓10
〜90重量ず密床が0.941cm3以䞊、メルトフ
ロヌレヌトが1.010分以䞋、数平均分子量に
察する重量平均分子量の比で衚される倀が以
䞊である高密床ポリ゚チレン90〜10重量ずの混
合物42〜87䜓積ず、無機充填剀58〜13䜓積ず
の、組成物からなる管状未延䌞フむルムを円錐台
圢のマンドレルに沿わせながら二軞延䌞し、匕き
続き、管状二軞延䌞フむルムの倖偎から気䜓を吹
付けるこずにより該フむルムを冷华するず共に、
該フむルムの内偎から連続的に気䜓を吹蟌むこず
により該フむルムの倖偎に貫通させるこずを特城
ずする。 ここで、゚チレン−α−オレフむン共重合䜓ず
は、C3〜C8の分子骚栌であるα−オレフむンが
〜20重量、奜たしくは〜15重量、゚チレ
ンが99〜80重量、奜たしくは97〜85重量から
なる盎鎖状䜎密床゚チレン共重合䜓であり、遷移
金属化合物ず有機金属化合物ずを組合せた觊媒を
甚いおむオン反応により゚チレンずC3〜C8の分
子骚栌であるα−オレフむンを぀以䞊含んで共
重合させお生成される暹脂であり、その密床が
0.910〜0.940cm3、奜たしくは0.916〜0.935
cm3、メルトフロヌレヌトMFRが0.1〜
10分、奜たしくは0.1〜10分の範囲に
含たれるものであ぀お、䞀般的に知られおいる酞
玠ラゞカルを開始剀ずし高圧力䞋でラゞカル反応
により゚チレンを重合させお生成される分岐状䜎
密床ポリ゚チレン暹脂ずは、分子構造、溶融特
性、結晶化特性、固䜓物性、延䌞特性においお異
な぀た性胜を有するものである。異なるむンデツ
クスを有する゚チレン−α−オレフむン共重合䜓
の混合物であ぀おも、混合物の密床、MFRが前
述の限定範囲内であれば、本発明に䜿甚しおもよ
い。奜たしくは単䞀の共重合䜓である。 この共重合䜓の密床が0.910cm3未満になる
ず均䞀延䌞性が悪化し、0.940cm3を越えるず
延䌞フむルムの゜フト感が損われる。たた、
MFRが0.110分未満になるず未延䌞フむルム
をダむ間隙より溶融抌出しする際、異垞流動が発
生し均䞀な未延䌞フむルムが埗られなくなり、
10分を越えるず均䞀延䌞性が悪化する。 たた、高密床ポリ゚チレンは、密床が0.941
cm3以䞊、奜たしくは0.945cm3以䞊、メル
トフロヌレヌトMFRが1.010分以䞋、奜
たしくは0.110分以䞋、数平均分子量に察す
る重量平均分子量の比で衚される倀が以䞊、
奜たしくは10以䞊である。異なるむンデツクスを
有する高密床ポリ゚チレンの混合物であ぀おも、
混合物の密床、MFR、倀が前述の限定範囲内
にあれば、本発明に䜿甚しおもよい。 この高密床ポリ゚チレンの密床が0.941cm3
未満になるず、マンドレルずフむルムずの密着が
匷くなり瞊方向の均䞀な延䌞が困難ずなる。
MFRが1.010分を越えるず暪方向円呚方
向の均䞀延䌞性が悪化し、同様に倀も未満
になるず均䞀延䌞性が悪化しお厚みの均䞀性が損
なわれる。 たた、無機充填剀は、炭酞カルシりム、酞化カ
ルシりム、タルク、クレヌ、シリカ、酞化チタ
ン、アルミナ、硫酞アルミニりム等であり、単独
あるいは混合状態で甚いるこずができる。奜たし
い無機充填剀の圢態ずしおは、板状、棒状、針状
以倖の球状、粒状、䞍定圢等であり、その平均粒
埄は0.1〜5Ό、奜たしくは0.6〜3Όである。平均粒
埄が0.1Ό未満になるず未延䌞フむルムの延䌞時の
䌞びがなくな぀お、二軞延䌞が困難になり、5ÎŒ
を越えるず二軞延䌞フむルムの衚面の凹凞が荒く
なり通気性フむルムずしお望たしくなくなるずず
もに、60Ό以䞋の薄いフむルムを補造するにおい
お連続安定延䌞性が損われる。 ゚チレン−α−オレフむン共重合䜓ず高密床ポ
リ゚チレンず無機充填剀ずの混緎方法ずしおは、
䞀軞あるいは二軞抌出機、バンバリヌミキサヌ、
ニヌダヌ、ミキシングロヌル等による加熱混緎が
採甚できる。加熱混緎の際には、分散剀、熱安定
剀、玫倖線吞収剀、滑剀、顔料、垯電防止剀等通
垞添加する添加剀を同時に混緎できる。特に、分
散剀ずしお、炭玠数12以䞊の高玚脂肪酞が奜結果
を䞎える。無機充填剀は、加熱混緎する前にこれ
らの分散剀等で凊理されおいおもよい。 ゚チレン−α−オレフむン共重合䜓ず高密床ポ
リ゚チレンずの混合割合は、゚チレン−α−オレ
フむン共重合䜓が10〜90重量、奜たしくは30〜
80重量、高密床ポリ゚チレンが90〜10重量、
奜たしくは70〜20重量である。高密床ポリ゚チ
レンが10重量未満になるず、暪方向円呚方
向の均䞀延䌞性の改良効果がなくなり、90重量
を越えるず通気性フむルムの゜フト感が損なわ
れおしたう。 ゚チレン−α−オレフむン共重合䜓ず高密床ポ
リ゚チレンずの暹脂混合物ず無機充填剀ずの組成
比は、暹脂混合物が42〜87䜓積、奜たしくは55
〜80䜓積、無機充填剀が58〜13䜓積、奜たし
くは45〜20䜓積である。無機充填剀が13䜓積
未満になるず、暹脂混合物ず無機充填剀ずの界面
が剥離しおできる隣接したボむドどうしが連通し
なくなり、通気性が埗られなくなる。たた、58䜓
積を越えるず、未延䌞フむルムの延䌞時の䌞び
がなくなり二軞延䌞が困難になる。 本発明にいう円錐台圢のマンドレルに沿わせな
がら二軞延䌞するマンドレル延䌞法ずは、管状未
延䌞フむルムの䞭に、䞀端が管状未延䌞フむルム
の盎埄に等しいかあるいは若干小さい盎埄を有
し、他端が延䌞しようずする暪方向円呚方向
の延䌞倍率にほが等しい盎埄を有する円錐台圢の
マンドレルを挿入し、該マンドレルの傟斜した偎
面に管状未延䌞フむルムを沿わせながら、マンド
レルの埌方に䜍眮する匕き取りニツプロヌルによ
぀お延䌞埌冷华された延䌞フむルムが匕き取られ
る際に発生する力により、実質的に円錐台圢のマ
ンドレル䞊で面圧を受けた状態で暪方向円呚方
向ず瞊方向ずに延䌞する方法をいう。このマン
ドレルの支持方法ずしおは、管状未延䌞フむルム
を抌し出す環状のダむに連結した支持棒に、マン
ドレルの小なる埄の端面を固定する方法が奜たし
い。 この延䌞における延䌞枩床は、いわゆる延䌞に
より配向が起こる枩床であ぀お、公知の劂く通垞
は比范的広い範囲の枩床幅を有し、フむルム加工
業界に斌いおは容易に確定可胜である。䞀般に融
点よりわずかに䜎い枩床範囲にあるが、マンドレ
ル延䌞の堎合には、マンドレルに接觊させお延䌞
するので、゚チレン−α−オレフむン共重合䜓の
融点をTmL、高密床ポリ゚チレンの融点を
TmH、延䌞枩床をTsずするず、TmH−50≩Ts
≩TmH−℃、奜たしくは、TmH−50≩Ts
TmL℃である。延䌞枩床ぞの加熱は、マンド
レル等を介しお内郚より加熱しおもよいし、倖郚
より加熱しおもよいが、均䞀加熱の面より少なく
ずも内郚は加熱するこずが奜たしい。 たた、延䌞倍率は、瞊暪それぞれ1.5〜倍が
安定延䌞に適する。 本発明においおは、マンドレルを離れ実質的に
延䌞を終了した管状二軞延䌞フむルムを、該フむ
ルムの倖偎から気䜓、䞀般には空気を吹付ける公
知の方法で冷华するず共に、該フむルムの内偎か
ら連続的に気䜓を吹蟌むこずにより該フむルムの
倖偎に気䜓を貫通させる。 この際の気䜓の吹蟌み量は、埗られた管状二軞
延䌞フむルムの物性および圢状、延䌞速床、冷华
気䜓の枩床および吹付け量等により倉化するため
䞀矩的には決定し埗ないが、20℃で0.1〜150Nl
m2・分、奜たしくは〜70Nlm2・分の範囲で、
管状二軞延䌞フむルムが延䌞終了時ずほゞ同等の
口埄を保぀ように適宜蚭定される。冷华気䜓の吹
付け量を倚くしながら、この気䜓の吹蟌み量を倚
くするず、通気床が挞次倧きな通気性フむルムが
埗られる。たた、この気䜓ずしおは空気が最も䞀
般的である。なお、この気䜓吹蟌みのためには、
倖郚の加圧源に連結し、環状ダむ、および前述の
マンドレル支持棒、マンドレルを貫通しおマンド
レルの倧なる埄の端面に開口した導管を蚭けおお
く。 本発明における通気性フむルムの補造工皋は次
の぀の工皋よりなる。即ち、管状未延䌞フむル
ムを環状ダむのダむリツプ間隙より溶融状態で抌
し出し、ダむリツプ埄ず等しいかあるいはこれよ
り倧きい埄ずなした埌、冷华固化し連続的に匕き
取る管状未延䌞フむルム補造工皋ず、同フむルム
を適正延䌞枩床に加熱する予熱工皋ず、同加熱さ
れた管状未延䌞フむルムを円錐台圢のマンドレル
の衚面に面圧を受けた状態で沿わせながら二軞延
䌞する延䌞工皋ず、マンドレルを離れ実質的に延
䌞を終了した管状状態にあるフむルムを、管状フ
むルムの倖偎より制埡された冷华気䜓により冷华
するずずもに、管状状態にあるフむルムの内偎か
ら倖偎に向けお、制埡された加圧気䜓を連続的に
管状フむルム円呚党域に枡り貫通させお延䌞フむ
ルムに通気性を付䞎する工皋ず、延䌞されたフむ
ルムを冷华した埌補品ずしお巻きずる巻き取り工
皋ずよりなる。 本発明によ぀お補造されるフむルムの物性は、
暹脂の物性、無機充填剀の粒埄、皮類、充填割
合、二軞延䌞条件である延䌞枩床、瞊暪方向の延
䌞倍率、冷华気䜓の吹付け量、内偎からの気䜓の
吹蟌み量等により自由にコントロヌル可胜であ
る。通気性フむルムの厚みが25〜150Όの堎合、
JIS P8117で枬定した通気床は25〜30000秒100
c.c.、JIS  0208で枬定した透湿床は300〜25000
m2・24時間の範囲の倀を有するが望たしく、
特に厚みは゜フト感等より60Ό以䞋が奜たしい。 以䞋に本発明の実斜䟋を比范䟋ずずもに瀺し具
䜓的に説明する。尚、本発明は実斜䟋により限定
されるものではない。 実斜䟋  ゚チレン−ブテン−重量合䜓密床0.920
cm3、MFR1.010分、倀3.4、融点124℃
のパりダヌ50重量ず高密床ポリ゚チレン密床
0.949cm3、MFR0.0710分、倀16、融点
132℃のパりダヌ50重量の暹脂混合物65䜓積
、重質炭酞カルシりム平均粒埄1.2Ό、板状棒
状でない䞍定圢35䜓積、暹脂混合物100重量
郚に察しお熱安定剀−ゞ−−ブチル−
−クレゟヌル0.1重量郚、重質炭酞カルシり
ム100重量郚に察しお分散剀オレむン酞1.0重
量郚等をスヌパヌミキサヌで分間混合した埌、
二軞抌出機より230℃でストランド状に抌出した
埌、ペレツト状に切断した。 埗られたペレツトを、スクリナヌ埄50φ、
D25の抌出機に取り付けた環状ダむリツプ埄
75φ、リツプ間隙mmの条スパむラルダむよ
り230℃で抌出した埌、内郚を℃の氎が埪環す
る盎埄100φの冷华マンドレルに接觊せしめ、ブ
ロヌ比1.33で冷华固化しお厚み120Όの管状未延䌞
フむルムを分で匕き取぀た。 このフむルムを、冷华マンドレルの䞋方に連結
された盎埄98φの予熱マンドレルで118℃に加熱
した埌、予熱マンドレルに盎結する端面の盎埄が
98φでもう䞀方の端面の盎埄が250φで、その円錐
角が90゜の衚面を凹凞0.5Όに梚地加工した118℃の
円錐台圢のマンドレル衚面に沿わせながら暪方向
円呚方向に2.5倍延䌞しながら瞊方向に2.5倍
延䌞し、匕き続き、マンドレルを離れた管状状態
にある二軞延䌞フむルムの倖偎党呚に、マンドレ
ルの䞋端から50mmの䜍眮にお、盎埄350φ、リツ
プ間隙mmの゚アヌリングより、15℃、15秒
の空気を吹き付けるずずもに、マンドレルの䞋端
の導管より、管状フむルムの内郚に20℃の空気を
50Nlm2・分の割合で連続的に吹蟌むこずによ
り、内偎より倖偎に向けお連続的にフむルムの厚
み方向に貫通させながら、ニツプロヌルにより匕
き取るこずにより管状二軞延䌞通気性フむルムを
埗た。 埗られた通気性フむルムの倖芳および物性を衚
に瀺す。なお、透湿床はJIS Z0208、通気床は
JIS P8117、匕裂匷床はJIS Z1702にそれぞれ基
づいお枬定した。 実斜䟋  実斜䟋においお、甚いた高密床ポリ゚チレン
の代わりに密床0.952cm3、MFR0.0610分、
倀11、融点133℃の高密床ポリ゚チレンを甚
い、瞊方向の延䌞倍率を2.3倍ずし、管状二軞延
䌞フむルムの冷华空気の吹付けを10秒ずし、
空気の吹蟌みを30Nlm2・分ずした以倖、実斜
䟋ず同様な方法により通気性フむルムを埗た。
埗られた通気性フむルムの結果を衚に合せお蚘
す。 実斜䟋  実斜䟋に斌いお、゚チレン−ブテン−共重
合䜓を70重量、高密床ポリ゚チレンを30重量
ずし、平均粒埄1.08Όの重質炭酞カルシりムを甚
い、管状二軞延䌞フむルムの冷华空気の吹付けを
秒ずし、内郚の空気の吹蟌みを20Nl
m2・分ずした以倖、実斜䟋ず同䞀条件で通気性
フむルムを補造した。結果を衚に合せお瀺す。 比范䟋  実斜䟋に斌いお、゚チレン−ブテン−共重
合䜓を重量、高密床ポリ゚チレンを95重量
ずし、平均粒埄1.08Όの重質炭酞カルシりムを甚
い、管状二軞延䌞フむルム内郚の空気の吹蟌みを
60Nlm2・分ずした以倖、実斜䟋ず同䞀条件
で通気性フむルムを補造した。結果を衚に合せ
お蚘す。 比范䟋  実斜䟋に斌いお、高密床ポリ゚チレンずしお
密床0.95110cm3、MFR0.810分、倀5.3、
融点133℃のものを甚い、平均粒埄1.08Όの重質炭
酞カルシりムを甚いお、管状二軞延䌞フむルムの
冷华空気の吹付けを秒ずし、内郚の空気の
吹蟌みを20Nlm2・分ずした以倖、実斜䟋ず
同䞀条件で通気性フむルムを補造した。結果を衚
に合せお瀺す。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a breathable film having a soft feel, which is obtained by biaxially stretching an unstretched film made of a composition of a polyolefin resin and an inorganic filler. Conventionally, many methods have been proposed for producing a breathable film by biaxially stretching an unstretched film made of a composition of a polyolefin resin and an inorganic filler to generate voids communicating with the film. Biaxial stretching methods in this case include a method of biaxial stretching in a flat state and a method of biaxial stretching while maintaining a tubular shape. The method of biaxial stretching in a flat form has the disadvantages that the film is gripped with a clip and stretched in the horizontal direction, so the gripped part does not become a product, and the stretching equipment used in this method is very expensive. Than,
The disadvantage is that the product cost is high. Furthermore,
The methods commonly used commercially have the disadvantage that the unstretched film is stretched in separate steps in the machine direction and in the transverse direction, resulting in unbalanced mechanical properties of the stretched film. The method of biaxial stretching while maintaining the tubular shape was proposed to solve the above-mentioned drawbacks of the flat shape.Compared to the method of biaxial stretching with the flat shape, the equipment cost is lower and it uses clips. Since it is not stretched at all, it is fully stretched without leaving any unstretched parts, resulting in high efficiency in turning it into a product.Furthermore, because it is stretched almost simultaneously in the longitudinal and transverse directions, its mechanical properties are well-balanced. are doing. This biaxial stretching method includes an internal pressure bubble stretching method in which the film is stretched using the internal pressure of pressurized gas, and a mandrel stretching method in which a truncated conical mandrel is inserted into the interior of a tubular unstretched film for stretching. The internal pressure bubble stretching method is a method of stretching in the longitudinal direction due to the peripheral speed difference between low-speed rolls and high-speed rolls, while stretching in the horizontal direction (circumferential direction) using internal pressure between the rolls. The low-speed roll and high-speed roll are of the nip roll type. Therefore, when attempting to biaxially stretch a tubular unstretched film made of a composition of a polyolefin resin and an inorganic filler using this internal pressure bubble stretching method,
When the tubular unstretched film passes through the low-speed nip rolls, it is pressed into a two-fold state by the nip rolls, so the bent edges at both ends are plastically deformed and the inorganic filler is peeled off from the resin. Since stretching starts at a low stretching stress in this locally peeled part, the shape of the tubular film during stretching changes and the stretching becomes unstable, and the stretching ratio locally increases in this peeled part. Moreover, void unevenness appears as vertical streaks in the stretched film, making it impossible to obtain a breathable film of uniform quality. Furthermore, this internal pressure bubble stretching method is a method in which pressurized gas is confined between low-speed rolls and high-speed rolls and stretched in the transverse direction (circumferential direction). The internal pressurized gas leaks, making continuous and stable production difficult. On the other hand, the mandrel stretching method is a method proposed to improve stretching instability and longitudinal streaks as in the internal pressure bubble stretching method. Stretching instability caused by local stretching is improved, and since there is no need to confine pressurized gas, creases due to nip rolls do not occur, and quality defects due to longitudinal stripes are eliminated. However, since the stretched film is stretched along a truncated conical mandrel, considerable compressive stress acts on the stretched film in the thickness direction, and the voids developed by stretching are crushed, making it impossible to obtain a high-quality breathable film. have. As described above, in the conventional method of manufacturing a breathable film by biaxially stretching an unstretched film made of a composition of a polyolefin resin and an inorganic filler, it is difficult to maintain a balance between mechanical properties in the longitudinal and transverse directions. At present, it has not yet been possible to stably produce a film with a uniform thickness that is removable and has excellent air permeability. On the other hand, attempts are being made to apply this breathable film to sanitary products such as disposable diapers and sanitary products, and in this case, a breathable film that has a soft cloth-like feel is required instead of a paper-like paper-like feel. be done. In view of the above-mentioned current situation, the present invention was made with the aim of solving the problems and demands of conventional manufacturing methods. 0.910
0.940g/cm 3 , melt flow rate 0.1~5g/
Ethylene-α-olefin copolymer 10 in 10 minutes
~90% by weight, a density of 0.941 g/cm3 or more, a melt flow rate of 1.0 g/10 minutes or less, and a Q value expressed as the ratio of weight average molecular weight to number average molecular weight of 8 or more. A tubular unstretched film consisting of a composition of 42-87% by volume of a mixture of 10% by weight and 58-13% by volume of an inorganic filler is biaxially stretched along a truncated conical mandrel, and then By blowing gas from the outside of the axially stretched film, the film is cooled,
It is characterized in that gas is continuously blown from the inside of the film to penetrate the outside of the film. Here, the ethylene-α-olefin copolymer is 1 to 20% by weight, preferably 3 to 15% by weight of α-olefin, which is a C 3 to C 8 molecular skeleton, and 99 to 80% by weight of ethylene. Preferably, it is a linear low-density ethylene copolymer consisting of 97 to 85% by weight, which is formed by an ionic reaction between ethylene and a C 3 to C 8 molecular skeleton using a catalyst that combines a transition metal compound and an organometallic compound. It is a resin produced by copolymerizing one or more α-olefins, and its density is
0.910-0.940g/ cm3 , preferably 0.916-0.935
g/cm 3 , melt flow rate (MFR) 0.1-5
g/10 minutes, preferably in the range of 0.1 to 3 g/10 minutes, and is produced by polymerizing ethylene by a radical reaction under high pressure using a commonly known oxygen radical as an initiator. The branched low-density polyethylene resins have different performance in molecular structure, melting properties, crystallization properties, solid physical properties, and stretching properties. A mixture of ethylene-α-olefin copolymers having different indexes may be used in the present invention as long as the density and MFR of the mixture are within the above-mentioned limited ranges. Preferably it is a single copolymer. When the density of this copolymer is less than 0.910 g/cm 3 , uniform stretchability deteriorates, and when it exceeds 0.940 g/cm 3 , the soft feel of the stretched film is impaired. Also,
If the MFR is less than 0.1 g/10 minutes, abnormal flow will occur when the unstretched film is melt-extruded from the die gap, making it impossible to obtain a uniform unstretched film.
If it exceeds g/10 minutes, uniform stretchability will deteriorate. Also, high density polyethylene has a density of 0.941
g/cm 3 or more, preferably 0.945 g/cm 3 or more, melt flow rate (MFR) is 1.0 g/10 min or less, preferably 0.1 g/10 min or less, expressed as the ratio of weight average molecular weight to number average molecular weight. Q value is 8 or more,
Preferably it is 10 or more. Even mixtures of high-density polyethylene with different indexes
If the density, MFR, and Q value of the mixture are within the above-mentioned limited ranges, it may be used in the present invention. The density of this high-density polyethylene is 0.941g/cm 3
If it is less than that, the adhesion between the mandrel and the film becomes strong, making it difficult to stretch uniformly in the longitudinal direction.
If the MFR exceeds 1.0 g/10 minutes, the uniform stretchability in the transverse direction (circumferential direction) will deteriorate, and similarly, if the Q value is less than 8, the uniform stretchability will deteriorate and the uniformity of the thickness will be impaired. Inorganic fillers include calcium carbonate, calcium oxide, talc, clay, silica, titanium oxide, alumina, aluminum sulfate, etc., and can be used alone or in a mixed state. Preferred forms of the inorganic filler include plate-like, rod-like, spherical, granular, and amorphous shapes other than needle-like shapes, and the average particle size thereof is 0.1 to 5 Όm, preferably 0.6 to 3 Όm. When the average particle size is less than 0.1Ό, the unstretched film loses its elongation during stretching, making biaxial stretching difficult;
If it exceeds this value, the surface of the biaxially stretched film will become rough, making it undesirable as a breathable film, and the continuous and stable stretchability will be impaired in the production of thin films of 60 Όm or less. The method for kneading the ethylene-α-olefin copolymer, high-density polyethylene, and inorganic filler is as follows:
Single or twin screw extruder, Banbury mixer,
Heat kneading using a kneader, mixing roll, etc. can be used. During heating and kneading, commonly used additives such as dispersants, heat stabilizers, ultraviolet absorbers, lubricants, pigments, and antistatic agents can be kneaded at the same time. In particular, higher fatty acids having 12 or more carbon atoms give good results as a dispersant. The inorganic filler may be treated with these dispersants or the like before being heated and kneaded. The mixing ratio of the ethylene-α-olefin copolymer and high-density polyethylene is 10 to 90% by weight, preferably 30 to 90% by weight of the ethylene-α-olefin copolymer.
80% by weight, 90-10% by weight of high density polyethylene,
Preferably it is 70 to 20% by weight. When the high density polyethylene content is less than 10% by weight, the effect of improving uniform stretchability in the lateral direction (circumferential direction) is lost, and when it exceeds 90% by weight, the soft feel of the breathable film is impaired. The composition ratio of the resin mixture of ethylene-α-olefin copolymer and high-density polyethylene to the inorganic filler is 42 to 87% by volume, preferably 55% by volume.
~80% by volume, 58-13% by volume of inorganic filler, preferably 45-20% by volume. 13% by volume of inorganic filler
If it is less than that, adjacent voids formed by peeling of the interface between the resin mixture and the inorganic filler will no longer communicate with each other, making it impossible to obtain air permeability. Moreover, if it exceeds 58 volume %, the unstretched film loses its elongation during stretching, making biaxial stretching difficult. The mandrel stretching method in which biaxial stretching is carried out along a truncated conical mandrel as used in the present invention refers to the method of biaxially stretching a tubular unstretched film along a truncated conical mandrel. Lateral direction (circumferential direction) in which the end is trying to stretch
A truncated conical mandrel having a diameter approximately equal to the stretching ratio is inserted, and while the tubular unstretched film is placed along the slanted side of the mandrel, it is stretched and cooled by a take-up roll located behind the mandrel. This is a method in which the film is stretched in the transverse direction (circumferential direction) and the longitudinal direction while being subjected to surface pressure on a substantially truncated conical mandrel due to the force generated when the film is taken off. As a method for supporting this mandrel, it is preferable to fix the end face of the mandrel with a small diameter to a support rod connected to an annular die for extruding the tubular unstretched film. The stretching temperature in this stretching is the temperature at which orientation occurs due to so-called stretching, and as is known, usually has a relatively wide temperature range and can be easily determined in the film processing industry. Generally, the temperature range is slightly lower than the melting point, but in the case of mandrel stretching, the melting point of the ethylene-α-olefin copolymer is TmL, and the melting point of high-density polyethylene is
When TmH and stretching temperature are Ts, TmH−50≩Ts
≩TmH−5°C, preferably TmH−50≩Ts<
TmL (°C). Heating to the stretching temperature may be done from the inside via a mandrel or the like, or from the outside, but it is preferable to heat at least the inside for uniform heating. Further, a stretching ratio of 1.5 to 4 times in both length and width is suitable for stable stretching. In the present invention, the tubular biaxially stretched film that has left the mandrel and has substantially finished stretching is cooled by a known method of blowing gas, generally air, from the outside of the film, and continuously from the inside of the film. By blowing gas into the film, the gas is passed through the outside of the film. The amount of gas blown at this time cannot be determined uniquely because it varies depending on the physical properties and shape of the obtained tubular biaxially stretched film, the stretching speed, the temperature of the cooling gas, the amount of blown gas, etc. 0.1~150Nl/℃
m 2 ·min, preferably in the range of 1 to 70Nl/m 2 ·min,
The diameter is appropriately set so that the tubular biaxially stretched film maintains approximately the same diameter as at the end of stretching. By increasing the amount of cooling gas blown and increasing the amount of this gas blown, a breathable film with gradually increasing air permeability can be obtained. Moreover, air is the most common gas. In addition, for this gas injection,
A conduit is provided that is connected to an external pressure source, passes through the annular die, the aforementioned mandrel support rod, and the mandrel, and opens at the large diameter end face of the mandrel. The manufacturing process of the breathable film in the present invention consists of the following five steps. That is, a process for manufacturing a tubular unstretched film in which a tubular unstretched film is extruded in a molten state through the die lip gap of an annular die, the diameter is equal to or larger than the die lip diameter, the film is cooled and solidified, and then continuously withdrawn; a preheating step in which the heated tubular unstretched film is heated to an appropriate stretching temperature; a stretching step in which the heated tubular unstretched film is biaxially stretched along the surface of a truncated conical mandrel under surface pressure; The film, which is in a tubular state after being stretched, is cooled by controlled cooling gas from the outside of the tubular film, and controlled pressurized gas is continuously applied from the inside of the tubular film to the outside. It consists of a step of penetrating the entire circumference of the tubular film to impart air permeability to the stretched film, and a winding step of cooling the stretched film and then winding it up as a product. The physical properties of the film produced according to the present invention are as follows:
It can be adjusted freely depending on the physical properties of the resin, the particle size, type, filling ratio of the inorganic filler, the stretching temperature (biaxial stretching conditions), the stretching ratio in the longitudinal and lateral directions, the amount of cooling gas blown, the amount of gas blown from the inside, etc. It is controllable. When the thickness of the breathable film is 25~150Ό,
Air permeability measured according to JIS P8117 is 25-30000 seconds/100
cc, moisture permeability measured according to JIS Z 0208 is 300 to 25000
g/ m2 ·24 hours, preferably
In particular, the thickness is preferably 60Ό or less in view of the soft feel. Examples of the present invention will be shown below together with comparative examples and will be specifically explained. Note that the present invention is not limited to the examples. Example 1 Ethylene-butene-1 weight combination (density 0.920
g/ cm3 , MFR1.0g/10min, Q value 3.4, melting point 124℃)
50% by weight of powder and high density polyethylene (density
0.949g/ cm3 , MFR0.07g/10min, Q value 16, melting point
65% by volume of a resin mixture containing 50% by weight of powder (132°C), 35% by volume of heavy calcium carbonate (average particle size 1.2Ό, irregular shape, not a plate or rod shape), and 100 parts by weight of a resin mixture, a heat stabilizer (2 ,6-di-t-butyl-
After mixing 0.1 part by weight of p-cresol) and 1.0 part by weight of a dispersant (oleic acid) with 100 parts by weight of heavy calcium carbonate in a super mixer for 5 minutes,
After extruding into strands using a twin-screw extruder at 230°C, the mixture was cut into pellets. The obtained pellets were passed through a screw with a screw diameter of 50φ, L/
An annular die (lip diameter) attached to a D25 extruder
After extruding at 230℃ through a 75φ, 4-row spiral die with a lip gap of 1mm, it is brought into contact with a 100φ diameter cooling mandrel in which water at 5℃ circulates, and is cooled and solidified at a blow ratio of 1.33 to form a tubular blank with a thickness of 120ÎŒ. The stretched film was drawn at a rate of 5 m/min. After heating this film to 118℃ with a preheating mandrel with a diameter of 98φ connected below the cooling mandrel, the diameter of the end face directly connected to the preheating mandrel is
The diameter of the other end face is 98φ and the diameter of the other end is 250φ, and the surface with a cone angle of 90° is 2.5 times larger in the lateral direction (circumferential direction) while following the surface of a 118℃ truncated conical mandrel that has been satin-finished to have an unevenness of 0.5ÎŒ. While stretching, the biaxially stretched film is stretched 2.5 times in the longitudinal direction, and then an air ring with a diameter of 350φ and a lip gap of 3mm is placed around the entire outer circumference of the biaxially stretched film that has left the mandrel and is in a tubular state, at a position 50mm from the lower end of the mandrel. At the same time, air at 15℃ and 15m/sec is blown into the inside of the tubular film through the conduit at the bottom end of the mandrel.
A tubular biaxially stretched breathable film was obtained by continuously blowing at a rate of 50 Nl/m 2 ·min to continuously penetrate the film in the thickness direction from the inside to the outside, and then taking it off with a Nippro roll. . Table 1 shows the appearance and physical properties of the breathable film obtained. In addition, the moisture permeability is JIS Z0208, and the air permeability is
JIS P8117 and tear strength were measured based on JIS Z1702. Example 2 In Example 1, instead of the high-density polyethylene used, density 0.952 g/cm 3 , MFR 0.06 g/10 minutes,
Using high-density polyethylene with a Q value of 11 and a melting point of 133°C, the stretching ratio in the longitudinal direction was set to 2.3 times, and the cooling air was blown to the tubular biaxially stretched film at 10 m/sec.
A breathable film was obtained in the same manner as in Example 1 except that air was blown at 30 Nl/m 2 ·min.
The results of the obtained breathable film are also shown in Table 1. Example 3 In Example 1, 70% by weight of ethylene-butene-1 copolymer and 30% by weight of high-density polyethylene
Using heavy calcium carbonate with an average particle size of 1.08 Ό, cooling air was blown onto the tubular biaxially stretched film at 8 m/sec, and internal air was blown at 20 Nl/sec.
A breathable film was produced under the same conditions as in Example 1, except that m 2 ·min. The results are also shown in Table 1. Comparative Example 1 In Example 1, 5% by weight of ethylene-butene-1 copolymer and 95% by weight of high-density polyethylene
Using heavy calcium carbonate with an average particle size of 1.08Ό, air was blown inside the tubular biaxially stretched film.
A breathable film was produced under the same conditions as in Example 1 except that the flow rate was 60 Nl/m 2 ·min. The results are also shown in Table 1. Comparative Example 2 In Example 1, high density polyethylene had a density of 0.951 g/10 cm 3 , an MFR of 0.8 g/10 min, a Q value of 5.3,
Using heavy calcium carbonate with a melting point of 133°C and an average particle size of 1.08 ÎŒ, cooling air was blown onto the tubular biaxially stretched film at 5 m/sec, and internal air was blown at 20 Nl/m 2 . A breathable film was produced under the same conditions as in Example 1 except that the amount of air permeable film was set at 100%. The results are also shown in Table 1. 【table】

Claims (1)

【特蚱請求の範囲】[Claims]  密床が0.910〜0.940cm3、メルトフロヌレ
ヌトが0.1〜10分である゚チレン−α−オ
レフむン共重合䜓10〜90重量ず密床が0.941
cm3以䞊、メルトフロヌレヌトが1.010分
以䞋、数平均分子量に察する重量平均分子量の比
で衚される倀が以䞊である高密床ポリ゚チレ
ン90〜10重量ずの混合物42〜87䜓積ず、無機
充填剀58〜13䜓積ずの、組成物からなる管状未
延䌞フむルムを円錐台圢のマンドレルに沿わせな
がら二軞延䌞し、匕き続き、管状二軞延䌞フむル
ムの倖偎から気䜓を吹付けるこずにより該フむル
ムを冷华するず共に、該フむルムの内偎から連続
的に気䜓を吹蟌むこずにより該フむルムの倖偎に
貫通させるこずを特城ずする通気性フむルムの補
造方法。
1 10 to 90% by weight of an ethylene-α-olefin copolymer having a density of 0.910 to 0.940 g/cm 3 and a melt flow rate of 0.1 to 5 g/10 minutes and a density of 0.941
g/cm 3 or more, a melt flow rate of 1.0 g/10 min or less, and a Q value expressed as the ratio of weight average molecular weight to number average molecular weight of 8 or more. Mixture 42 with 90 to 10% by weight of high density polyethylene A tubular unstretched film made of a composition of 87% by volume and 58 to 13% by volume of an inorganic filler is biaxially stretched along a truncated conical mandrel, and then gas is introduced from the outside of the tubular biaxially stretched film. A method for producing a breathable film, which comprises cooling the film by blowing the film, and penetrating the film to the outside by continuously blowing gas from the inside of the film.
JP58113485A 1983-06-23 1983-06-23 Manufacture of gas-permeable film Granted JPS606441A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58113485A JPS606441A (en) 1983-06-23 1983-06-23 Manufacture of gas-permeable film
US06/620,828 US4585604A (en) 1983-06-23 1984-06-15 Process for preparing an air-permeable film
GB08415472A GB2143772B (en) 1983-06-23 1984-06-18 Preparing air-permeable thermoplastic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113485A JPS606441A (en) 1983-06-23 1983-06-23 Manufacture of gas-permeable film

Publications (2)

Publication Number Publication Date
JPS606441A JPS606441A (en) 1985-01-14
JPH0314060B2 true JPH0314060B2 (en) 1991-02-25

Family

ID=14613477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113485A Granted JPS606441A (en) 1983-06-23 1983-06-23 Manufacture of gas-permeable film

Country Status (1)

Country Link
JP (1) JPS606441A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129321A (en) * 1985-11-29 1987-06-11 Tokuyama Soda Co Ltd Production of porous sheet
JPS62151429A (en) * 1985-12-26 1987-07-06 Nippon Petrochem Co Ltd Production of porous film or sheet
MX2015011396A (en) * 2013-03-15 2016-02-03 Hilex Poly Co Llc Mineral-containing films.

Also Published As

Publication number Publication date
JPS606441A (en) 1985-01-14

Similar Documents

Publication Publication Date Title
US4704238A (en) Process for the production of air-permeable films
US4585604A (en) Process for preparing an air-permeable film
US5439628A (en) Method for manufacturing polypropylene film and sheet
US4777073A (en) Breathable films prepared from melt embossed polyolefin/filler precursor films
US4968464A (en) Process for producing a porous resin film
US6703439B2 (en) Polyolefin resin composition and polyolefin film prepared from the same
JPH055253B2 (en)
JPH0314060B2 (en)
AU610874B2 (en) Porous resin film and process for producing the same
JPH0314056B2 (en)
JPH04335043A (en) Production of porous film
JPS6218435A (en) Production of gas-permeable film
NO832438L (en) CONSTRUCTION OF PLASTIC MATERIALS WITH CROSSING INTERIOR RIBBES
JPH0314059B2 (en)
JPH0314057B2 (en)
JPS6215579B2 (en)
JPS6156087B2 (en)
JPH03231936A (en) Foamed film
JPH0764942B2 (en) Method for producing porous sheet
JPH0314058B2 (en)
JPS6141732B2 (en)
JPS5953851B2 (en) Method for manufacturing transparent containers
JP3436579B2 (en) Polyethylene resin for blown film molding and method for producing film
JPH0139898B2 (en)
JP3501397B2 (en) Polypropylene resin foam sheet and method for producing the same