JPH04335043A - Production of porous film - Google Patents

Production of porous film

Info

Publication number
JPH04335043A
JPH04335043A JP10717691A JP10717691A JPH04335043A JP H04335043 A JPH04335043 A JP H04335043A JP 10717691 A JP10717691 A JP 10717691A JP 10717691 A JP10717691 A JP 10717691A JP H04335043 A JPH04335043 A JP H04335043A
Authority
JP
Japan
Prior art keywords
film
stretching
resin
porous film
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10717691A
Other languages
Japanese (ja)
Inventor
Kazushige Tanaka
田中 多栄
Toshiyuki Ishii
利幸 石井
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP10717691A priority Critical patent/JPH04335043A/en
Publication of JPH04335043A publication Critical patent/JPH04335043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a porous film having high strength in the direction of thickness, high rigidity, good gas permeability and good balance among these properties and having a nonsticky surface. CONSTITUTION:A process for producing a porous film by forming a resin composition comprising 100 pts.wt. polypropylene resin or polyethylene resin having a density of 0.940g/cc or above and 100-400 pts.wt. filler into a film, wherein the resin composition in the form of a film extruded from the extruder die is drawn at a draw ratio of 20-1000, solidified by cooling, and unidirectionally stretched in the longitudinal direction at a stretch ratio of 1.3-6.0.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は包装材、ろ過材、防漏材
、電池セパレーター、電気二重層コンデンサーのセパレ
ーター等の用途に適する多孔質フィルムの製造方法に関
する。 【0002】更に詳しくは、優れた剛性と厚み方向の強
度を有し、加圧下でも細孔が潰れず充分な通気性を保持
する多孔質フィルムを安定して製造することのできる多
孔質フィルムの製造方法に関する。 【0003】 【従来の技術】従来より、包装材、ろ過材、防漏材等の
用途に供するため熱可塑性樹脂から多くの多孔質フィル
ムを製造する方法が種々提案されている。 【0004】特公昭46−40119号公報には、結晶
化度50%以上の重合体を引張率20以上でフィルム状
に製膜し、加熱により結晶化を促進し、次いで、冷延伸
し、更に、緊張状態で熱処理する多孔質フィルムの製造
方法が提案されている。 【0005】しかし、該方法はフィルム状に製膜した後
に結晶化を促進する工程が必要であり、工程が長くなる
ばかりでなく、該工程で長い時間の滞留を必要とするた
め生産性が悪い。 【0006】また、該方法は充填剤を添加することなし
に、延伸時の応力により高度に結晶化したフィルムのポ
リマー分子間に微細孔を発生させる方法であるため、結
晶化度と延伸度とがフィルムの開孔率に微妙に影響し、
開孔率を均一に制御し、一定の通気性を付与することが
困難であるばかりでなく、延伸時にフィルムが破れるこ
とが多く、延伸作業性が悪い欠点がある。この延伸時の
フィルム破れは、特に延伸時の歪み速度が大きい場合に
発生し、問題の多い方法である。 【0007】さらに、該方法は充填剤を添加することな
しに樹脂単独で製造されるため、剛性、弾性率、厚み方
向の強度も十分でない。そのため、加圧下で使用すると
フィルムの細孔が潰れ、一定の通気性が保持できない欠
点を有し、例えば、電池セパレーター、電気二重層コン
デンサーのセパレーター用の資材として加圧下で用いる
場合、フィルムの細孔が潰れイオンの透過性が低下する
。 【0008】特開昭57−47334号公報および特開
昭60−199037号公報には、ポリオレフィン系樹
脂および該樹脂と非相溶性の充填剤からなる樹脂組成物
を溶融押出によりフィルム状に製膜し、次いで、延伸処
理する多孔質フィルムの製造方法が開示されている。 【0009】特開昭57−47334号公報に開示され
る方法は、ポリオレフィン系樹脂に液状ゴム(例えば、
液状ポリブテン、液状ポリブタジエン)を添加すること
を特徴とする方法である。液状ゴム等の第三成分をポリ
オレフィン系樹脂に多量に添加すると、ポリオレフィン
系樹脂のポリマー分子の凝集力が小さくなり、ポリマー
分子鎖がすべり易くなり、配向し難くなる。そのため、
フィルムの異方性は小さくなるが、機械強度、剛性、厚
み方向の強度が低下する。そのため、例えば、電池セパ
レーター、電気二重層コンデンサーのセパレーター用の
資材として加圧下で用いる場合、フィルムの細孔が潰れ
イオンの透過性が低下する。 【0010】更に、機械的強度が小さいため、薄いフィ
ルムを製造する場合、延伸処理の際にフィルムが破れる
頻度が高くなり、生産性に難点がある。 【0011】また、液状ゴム等の第三成分がフィルム表
面にブリードアウトし、ベタベタした感触となり表面状
態を損なう原因となる。そのため、該フィルムを、例え
ば、電池セパレーターおよびろ過材等として用いる場合
、上記第三成分が溶出し、電極反応に悪影響を及ぼした
り、ろ液に混入する等の欠点を有する。 【0012】また、特開昭60−199037号公報に
は、特定のメルトインデックスおよび密度を有するポリ
エチレン樹脂と特定の粒子径を有する硫酸バリウムから
なる樹脂組成物から優れた柔軟性を有する多孔質フィル
ムを製造する方法が開示されている。しかし、該方法に
より得られる多孔質フィルムは、剛性に乏しく、且つ、
厚み方向の強度が低い。そのため、加圧下で使用すると
フィルムの細孔が潰れ、通気性が保持できない欠点を有
し、例えば、電池セパレーター、電気二重層コンデンサ
ーのセパレーター用の資材として加圧下で用いる場合、
フィルムの細孔が潰れイオンの透過性が低下する。 【0013】その対策として、該公報に開示される樹脂
に代えて高密度ポリエチレンまたはポリプロピレンを用
い、該公報に開示される方法に従って多孔質フィルムを
製造すると、延伸時にフィルムが破れる等して安定な延
伸操作ができない。従って、該公報に開示される方法は
、剛性および厚み方向の強度の良好な多孔質フィルムを
製造する方法としては充分とはいえない。 【0014】 【発明が解決しようとする課題】本発明は、上記問題点
を改善することを解決課題とする。すなわち、本発明の
目的は、優れた剛性と厚み方向の強度を有し、加圧下で
も孔が潰れず充分な通気性を保持し、かつ、表面にベタ
ベタした感触等のない表面状態の良好な多孔質フィルム
の製造方法を提供することにある。 【0015】また、本発明の他の目的は、延伸処理によ
りフィルムに細孔を発生させる際にフィルムが破れるこ
とのない、延伸性の良好な多孔質フィルムの製造方法を
提供することにある。 【0016】 【課題を解決するための手段】本発明者らは、鋭意検討
した結果、ポリプロピレン系樹脂または特定の密度を有
するポリエチレン系樹脂と充填剤からなる樹脂組成物を
溶融押出し、溶融状態の該樹脂組成物を特定の引張率で
引延し冷却固化させ、更に、縦方向に特定の倍率で一軸
延伸することにより上記課題が解決できることを見出し
、本発明を完成するに到った。 【0017】すなわち、本発明は、ポリプロピレン系樹
脂または0.940g/cm3以上の密度を有するポリ
エチレン系樹脂100重量部、および、充填剤100〜
400重量部からなる樹脂組成物を溶融押出法によりフ
ィルム状に製膜するに際し、押出機ダイより吐出したフ
ィルム状の該樹脂組成物を20〜1000の引張率で引
き延ばし冷却固化させ、更に、縦一軸方向に1.3〜6
.0倍延伸することを特徴とする多孔質フィルムの製造
方法である。 【0018】本発明における引張率とは、溶融押出機の
ダイから吐出したフィルム状の樹脂組成物が冷却固化す
るまでに縦方向に引張られ、フィルムの厚みが減少する
比率の逆数である。具体的には、該ダイのリップ開度を
冷却固化したフィルムの厚みで除した商である。(以下
、単に引張率と記す)また、本発明における縦方向とは
、フィルムの長さ方向である。また、本発明におけるポ
リエチレン系樹脂の密度はJIS  K  6760に
規定される方法で測定した値である。 【0019】本発明に用いられるポリプロピレン系樹脂
は、プロピレンのホモ重合体またはプロピレンとα−オ
レフィンの共重合体である。これらの樹脂は単独であっ
ても二種以上の混合物であっても良い。α−オレフィン
としては、エテン、ブテン、ヘキセン、オクテン等が挙
げられる。これらのα−オレフィンを共重合する場合、
プロピレンに対し8重量%未満であることが好ましい。 8重量%以上共重合させた共重合体を用いると、得られ
るフィルムの剛性および厚み方向の強度が低下するので
好ましくない。剛性および厚み方向の強度が低下すると
、例えば、電池セパレーター、電気二重層コンデンサー
のセパレーター用の資材として加圧下で用いる場合、フ
ィルムの細孔が潰れイオンの透過性が低下する。 【0020】ポリエチレン系樹脂は、密度が少なくとも
0.940g/cm3であるエチレンのホモ重合体また
はエチレンとα−オレフィンの共重合体である。α−オ
レフィンとしては、ブテン、ヘキセン、オクテン等が挙
げられる。エチレンとα−オレフィンを共重合する場合
、一般的にはα−オレフィンの添加比率を高くする程得
られる共重合体の密度が低下するが、密度が0.940
g/cm3未満とならない範囲で共重合することが好ま
しい。これらの樹脂は単独であっても二種以上の混合物
であっても良い。 【0021】ポリエチレン系樹脂の中で、密度が0.9
40g/cm3未満のものは延伸性は良好であるが、得
られるフィルムの剛性、縦方向の弾性率およびその他の
機械的強度、特に、厚み方向の強度が低いので好ましく
ない。剛性および厚み方向の強度が低いと、例えば、電
池セパレーター、電気二重層コンデンサーのセパレータ
ー用の資材として加圧下で用いる場合、フィルムの細孔
が潰れイオンの透過性が低下する。 【0022】上記ポリプロピレン系およびポリエチレン
系両樹脂は、メルトインテックス(以下、MIと記す)
が0.1〜15.0g/10minの範囲のものが好ま
しい。更に好ましくは0.5〜8.0g/10minの
範囲のものである。MIが0.1/10min未満では
溶融粘度が高く、押出工程での樹脂圧上昇により、生産
性が低下するうえ、得られるフィルムの通気特性が低い
ので好ましくない。また、15.0g/10minを越
えると、通気特性の良いフィルムが得られるが、溶融粘
度が低いため、フィルムの厚み精度が低下し、また、延
伸時にフィルム破れが発生する等、製膜および延伸の作
業性が悪くなり、更に、得られるフィルムの機械的強度
も低下するので好ましくない。 【0023】なお、MIはポリプロピレン系樹脂につい
ては、JIS  K  6758に準拠し、荷重2.1
6kg、温度230℃で測定した値であり、ポリエチレ
ン系樹脂については、JIS  K  6760に準拠
し、荷重2.16kg、温度190℃で測定した値であ
る。 【0024】本発明に用いられる充填剤は、無機物であ
っても有機物であっても良い。無機充填剤としては、硫
酸バリウム、硫酸カルシウム、硫酸マグネシウム、炭酸
バリウム、炭酸カルシウム、炭酸化マグネシウム、水酸
化アルミニウム、酸化亜鉛、酸化マグネシウム、酸化チ
タン、シリカ、アルミナ、タルク、ガラス粉等が例示さ
れる。これらの内で、硫酸バリウム、炭酸カルシウム、
水酸化マグネシウム、酸化亜鉛、シリカが特に好ましく
使用できる。有機充填剤としてはナイロン、ポリスチレ
ン等が使用できる。これらの無機及び有機の充填剤は単
独あるいは、二種以上の混合物で使用しても良い。 【0025】上記樹脂中への分散性および得られるフィ
ルムの孔径、通気特性等の物性の点から、充填剤の平均
粒径は0.05〜10μmが好ましく、更に好ましくは
  0.1〜5.0μmである。平均粒径が10μmを
越えると、延伸して得られた多孔質フィルムの孔径が大
きくなり過ぎるうえ、特に厚みの薄いフィルムを製造す
る場合には、延伸の際にフィルム破れが発生し易くなり
、延伸安定性が低下する。また、0.05μm未満の場
合には、樹脂中における分散性が悪く充填剤が凝集し易
くなり、延伸の際にフィルムの破れが発生し易くなり、
延伸安定性が低下する。そのため、得られたフィルムの
表面に充填剤の凝集物がフィッシュアイ状に発生し、フ
ィルムの表面状態が悪くなる。 【0026】充填剤の樹脂中への分散を向上させるため
、ステアリン酸等の脂肪酸またはその金属石鹸、シラン
系またはチタン系カップリング剤等で充填剤の表面にコ
ーティング処理を施すことが好ましい。 【0027】充填剤の配合量は、樹脂100重量部に対
し、100〜400重量部である。配合量が100重量
部未満では、充填量が少なすぎ、低温で高倍率に延伸し
ても十分な通気性が得られない。400重量部を越える
と充填量が多すぎ安定して延伸できず、延伸の際にフィ
ルムの破れが発生し易くなり、延伸安定性が低下する。 【0028】本発明の目的を損なわない範囲において、
上記充填剤の他、ポリオレフィン系樹脂の成形加工に用
いられる公知の滑剤、分散剤、赤外線吸収剤、染料、顔
料、結晶核剤等を添加しても良い。 【0029】本発明に用いる樹脂、充填剤および必要に
応じて添加される各種添加剤を混合する方法には特に制
限がない。好ましくは、通常のヘンシェルミキサー、ス
ーパーミキサー、タンブラー型ミキサー等の混合機を用
いて室温〜90℃の温度範囲において、1〜30分混合
し、樹脂組成物とする。 【0030】得られた樹脂組成物を直接製膜工程に供し
ても良いが、製膜工程における充填剤の分散性を良くす
る観点から、一軸あるいは二軸スクリュー押出機、好ま
しくは樹脂組成物中の水分を低減させる観点からベント
孔を有する押出機を用いて160〜260℃の温度範囲
で溶融押出し、円筒形または角柱状のペレット状に加工
して製膜延伸に供することが好ましい。ペレット状に加
工する方法には特に制限がない。通常用いられているス
トランドカット式、ホットカット式等が好ましく用いら
れる。 【0031】また、上記樹脂組成物を製膜工程に供する
前に、該樹脂組成物中の水分含有率を500ppm以下
にすることが好ましい。水分含有率が500ppm以上
であると得られるフィルムに気泡が発生したり、フィル
ムが破れたりするので、安定した延伸操作ができないの
で好ましくない。 【0032】上記樹脂組成物を製膜工程に供し、フィル
ム状に成形する。押出機は一軸スクリュー押出機でも二
軸スクリュー押出機でもよいが、定量押出性の点から一
軸スクリュー押出機が好ましい。また、T−ダイ法、イ
ンフレーション法のどちらであっても良い。 【0033】押出温度は、用いる樹脂の融点+30℃〜
該樹脂の分解温度未満である。好ましくは、樹脂の融点
+40℃〜260℃未満の温度範囲である。押出温度が
融点+30℃未満ではメルトフラクチャーが発生してし
まうし、樹脂の分解温度を越えると、樹脂が熱分解し、
フィルム状に成形することができなくなる。 【0034】上記方法で樹脂組成物を押出機のダイより
フィルム状に押出し、冷却固化させる際に、引張率が2
0〜1000となるように、該ダイのリップ開度と引取
り速度を調整する。好ましい引張率は35〜1000、
更に好ましくは50〜800の範囲である。ダイのリッ
プ開度の調整は開度調整用ボルトにより行う。 【0035】引張率が20未満であると、得られる未延
伸フィルムの縦方向の分子配向が小さくなる。そのため
、次工程においてフィルムを延伸する際にネッキング現
象を起こし、低倍率延伸では延伸ムラが残り、均一に延
伸されたフィルムを得ることができない。この延伸ムラ
は7.0倍以上の高倍率に延伸すると防ぐことができる
。しかし、7.0倍以上の高倍率に延伸すると、延伸の
際にフィルムが破れる頻度が極度に増えてしまう。また
、高倍率に延伸して得られる多孔質フィルムは、縦方向
の分子配向が大き過ぎ、縦方向の機械的強度は良好であ
るが、剛性や厚み方向の強度が低下する。更に、延伸時
の歪み速度が大きい場合は、均一に延伸されたフィルム
となる前にフィルムが破れる。 【0036】また、引張率が1000を越えると、得ら
れる未延伸フィルムの縦方向の分子配向が大きくなり過
ぎるため、次工程においてフィルムを延伸する際に、十
分開孔するまで延伸することができず、フィルムが破れ
てしまう。 【0037】上記のように、樹脂組成物を押出機のダイ
よりフィルム状で吐出させ、冷却固化する際に、引張率
を20〜1000にすることによりポリマー分子鎖が縦
方向に適度に配向する。そのため、次工程で延伸処理す
る際に該フィルムはネッキング現象を起こすことなく、
比較的低倍率の延伸であっても、均一に延伸されたフィ
ルムを得ることができる。その結果、開孔度が均一な多
孔質フィルムが得られる。 【0038】ダイより吐出した樹脂組成物をエアーナイ
フ、エアーリング等で冷却することおよびダイから冷却
固化するまでの距離、すなわち、エアーギャップを小さ
くすることは、分子鎖の縦方向の配向を大きくする点で
好ましく用いられる。 【0039】延伸処理は所定の温度において、縦一軸方
向に延伸倍率1.3〜6.0倍の範囲で延伸する。好ま
しい延伸倍率は1.5〜5.5倍、更に好ましくは1.
7〜5.0倍である。 【0040】延伸倍率が1.3倍未満では延伸度にバラ
ツキが生じ、均一な開孔度を有するフィルムが得られな
い。6.0倍を越えると通気特性は十分であるが、延伸
処理の際にフィルムが破れる頻度が高くなり、また、得
られる多孔質フィルムは、縦方向の分子配向が大き過ぎ
、縦方向の機械的強度は良好であるが、剛性や厚み方向
の強度が低下する。そのため、例えば、電池セパレータ
ー、電気二重層コンデンサーのセパレーター用の資材と
して加圧下で用いる場合、フィルムの細孔が潰れイオン
の透過性が低下するので好ましくない。 【0041】また、延伸処理は横一軸延伸や縦/横の逐
次二軸延伸も考えられるが、横一軸延伸ではネッキング
現象を起こし、高倍率延伸しないと均一なフィルムとな
らないし、延伸の際フィルムの破れが発生し、安定して
延伸操作をすることができない。同様に縦/横の逐次二
軸延伸でも横延伸の工程でネッキング現象を起こし、安
定して延伸操作をすることができない。これは未延伸フ
ィルムの分子鎖の配向に起因すると考えられる。 【0042】延伸処理の温度は用いる樹脂のガラス転移
温度+20〜該樹脂の融点−10℃の範囲である。延伸
の作業性、得られるフィルムの開孔度、通気特性等の点
から10〜該樹脂の融点−20℃の範囲が好ましい。 【0043】延伸処理の後、フィルムに形成された細孔
の形状やフィルムの寸法安定性を向上させるために熱固
定することは好ましい。熱固定の温度は、60℃〜樹脂
融点−5℃の範囲で行うのが一般的である。また、熱固
定の後に、縦方向に20%未満で弛緩させても良い。 【0044】 【実施例】以下、実施例によって本発明を更に詳細に説
明するが、本発明はその主旨を越えない限り、以下の実
施例に限定されるものでない。実施例における評価は下
記の方法によって行った。 【0045】1.厚み(μm) JIS  B  7509に規定されるダイヤルゲージ
を用い、試料を10枚重ね合わせ、下記測定条件で測定
し1枚当たりの厚みに換算した。 【0046】測定温度            23℃
測定圧力            0.4kg/cm2
  【0047】2.引張物性 JIS  P  8113に規定される方法に準拠して
測定し、測定条件は次の通りとした。 【0048】 試験片サイズ        100mm長さ×25m
m幅測定温度            23℃引張速度
            200mm/分■5%mod
ulus(kg/mm2)5%伸長時の応力を、フィル
ムの機械方向(以下、MDという)、フィルムの機械方
向と垂直な方向(以下、TDという)についてそれぞれ
測定し、1mm2断面積当りの応力に換算した。 ■破断強度(kg/mm2) 試験片が破断したときの応力を、MD、TDについてそ
れぞれ測定し、1mm2断面積当りの応力に換算した。 ■破断伸度(%) 試験片が破断したときの伸度を、MD、TDについてそ
れぞれ測定する。 【0049】3.透気度(秒/100ml)JIS  
P  8117に規定される方法に準拠して測定した。 透気度が低いほど通気性が良いことを示す。 【0050】4.延伸安定性 延伸安定性の評価は延伸加工時の観察より下記の評価を
行った。 【0051】 非常に良好である──────────1良好である─
────────────2延伸ムラがある─────
──────3延伸破れが発生する─────────
4延伸破れの頻度が極端に多い─────5【0052
】5.厚み変化率(%) 厚み方向の強度の評価であり、厚み変化率が小さい程、
厚み方向の強度が大きいことを示す。 【0053】厚み変化率=(1−t1/t0)×100
t0  :上記1.の方法で測定した厚み(μm)t1
  :測定圧力を10kg/cm2とした以外、上記1
.の方法と同様にして測定した厚み(μm)【0054
】6.剛性(リングクラッシュ値)(g/mm) 肉厚5mm、内径50mm、高さ5mmのステンレス製
の円筒状治具(A)を垂直に立てる。該治具(A)の中
に、肉厚5mm、外径49mm、高さ5mmのステンレ
ス製の円筒状治具(B)を差し込む。治具(A)(B)
間の円筒状の間隙に下記サイズの試料片をフィルムのT
Dが垂直方向となるように差し込み、試料片を円筒状と
する。治具(A)(B)の上に高さ5mmで出ている円
筒状の試料片に80×80mmの荷重板を用いて、加重
速度20g/分で垂直方向に荷重を加え、円筒状のフィ
ルムがつぶれる荷重を求める。この荷重を試験片の厚み
で除した商をリングクラッシュ値とする。この値が大き
いほど、剛性が高いことを示す。 【0055】 試験片サイズ    MD160mm×TD10mm測
定温度        23℃ 【0056】実施例1 〔表1〕に示すMIと密度を有する高密度ポリエチレン
(A−1)、充填剤(B−1)及び添加剤(C−1)を
〔表2〕に示す配合比率で用い、それらをヘンシェルミ
キサーを用いて混合し、樹脂組成物を得た。該樹脂組成
物をベント型二軸押出機を用い、成形温度200℃で押
出し、ペレット状に加工した。 【0057】 【表1】 次いで、リップ間隔(開度)が5.0mmに調整された
T−ダイを有する一軸押出機を用い、成形温度200℃
で溶融押出した。T−ダイより吐出した樹脂組成物を、
エアーナイフを用いて冷却しながら引張り、更に、温度
80℃のキャスティングロールで冷却し、固化させ巻取
りロールで巻き取った。得られた未延伸フィルムの厚み
は50μmであった。(引張率:100)該未延伸フィ
ルムをロール延伸機を用い、延伸温度50℃で延伸倍率
3倍で縦一軸方向に延伸し、次に、115℃でフィルム
を5%弛緩させて熱固定し、厚み23μmの多孔質フィ
ルムを得た。得られた多孔質フィルムの上記各種特性を
評価し、その結果を〔表2〕に示す。 【0058】 【表2】 【0059】実施例2〜5 T−ダイのリップ開度を調整し、〔表2〕に示す引張率
にした以外は実施例1と同様にして多孔質フィルムを得
た。得られたフィルムの特性を実施例1と同様に評価し
、得られた結果を〔表2〕に示す。引張率が大きいほど
、MDの5%モジュラス、破断強度が若干大きくなって
おり、MD配向が大きくなっている。 【0060】比較例1〜2 T−ダイのリップ開度を調整し〔表3〕に示す引張率と
し、かつ、〔表3〕に示す延伸倍率とした以外は実施例
1と同様にして延伸処理を行った。比較例1では縦方向
に3倍延伸したところ、明確なネッキング変形となり、
延伸ムラが残り、均一な厚みおよび開孔を有するフィル
ムを得ることができなかった。比較例2では7倍まで延
伸を試みたが、若干延伸ムラが残り、しかも延伸破れが
極度に多く発生した。結果を〔表3〕に示す。 【0061】 【表3】 【0062】比較例3 引張率を1200とした以外は実施例1と同様にして延
伸処理を試みた。しかし、未延伸フィルムの縦方向の分
子配向度が高過ぎ延伸倍率を3倍より大きくすることが
できなかった。結果を〔表3〕に示す。 【0063】実施例6〜9 〔表1〕に示すポリオレフィン系樹脂(A−2〜A−5
)を用いた以外は実施例1と同様にして、多孔質フィル
ムを得た。得られたフィルムの特性を実施例1と同様に
評価し、得られた結果を〔表4〕に示す。 【0064】 【表4】 【0065】比較例4〜5 〔表1〕に示すポリオレフィン系樹脂(A−6およびA
−7)を用いた以外は実施例1と同様にして、多孔質フ
ィルムを得た。得られたフィルムの特性を実施例1と同
様に評価し、得られた結果を〔表5〕に示す。いずれも
延伸安定性は良好であったが、用いた樹脂の密度が低い
ため、厚み方向の強度、縦方向の強度が小さく、更に、
通気性も若干低いものであった。 【0066】 【表5】 【0067】実施例10〜12 〔表6〕に示す延伸倍率で延伸処理を行った以外は実施
例1と同様にして、多孔質フィルムを得た。得られたフ
ィルムの特性を実施例1と同様に評価し、得られた結果
を〔表6〕に示す。 【0068】 【表6】 【0069】比較例6〜7 〔表6〕に示す延伸倍率にした以外は実施例1と同様に
して延伸処理を行った。比較例6では延伸倍率が大き過
ぎ、延伸やぶれが発生し安定して処理することができな
かった。比較例7では延伸倍率が小さ過ぎ、延伸ムラが
残った。得られた結果を〔表6〕に示す。 【0070】実施例13〜15 〔表7〕に示す配合比率の樹脂組成物とし、かつ、〔表
7〕に示す引張率とした以外は実施例1と同様にして、
多孔質フィルムを得た。得られたフィルムの特性を実施
例1と同様に評価し、得られた結果を〔表7〕に示す。 【0071】 【表7】 【0072】比較例8〜9 〔表7〕に示す配合比率の樹脂組成物を用いた以外は実
施例1と同様にして延伸処理を行った。比較例8では充
填剤の量が多すぎ、延伸やぶれが発生し安定して処理す
ることができなかった。比較例9では充填剤の量が少な
すぎ、通気性が小さいものとなった。得られた結果を〔
表7〕に示す。 【0073】実施例16〜17 〔表1〕に示す充填剤(B−2およびB−3)を〔表8
〕に示す配合比率で用いた以外は実施例1と同様にして
、多孔質フィルムを得た。得られたフィルムの特性を実
施例1と同様に評価し、得られた結果を〔表8〕に示す
。 【0074】 【表8】 【0075】比較例10〜11 実施例1と同様にして未延伸フィルムを製膜し、株式会
社東洋精機社製フィルムストレッチャーで延伸処理を行
った。比較例10では横一軸延伸を試みたが、延伸破れ
が発生し、均一な厚みおよび開孔を有するフィルムを得
ることができなかった。比較例11では縦方向に2.0
倍延伸し、次いで横方向に延伸する逐次二軸延伸を試み
たが、延伸時にフィルムの破れが発生し、均一な厚みお
よび開孔を有するフィルムを得ることができなかった。 【0076】比較例12 〔表8〕に示す樹脂組成物を用いた以外は実施例1と同
様にして多孔質フィルムを得た。得られたフィルムの特
性を実施例1と同様に評価し、得られた結果を〔表8〕
に示す。得られたフィルムの通気性は良好であるが、機
械強度と厚み方向の強度が小さいものであった。また、
実施例および他の比較例で得られた多孔質フィルムに比
べ、表面がベタベタした感触を有していた。 【0077】 【発明の効果】本発明の方法により得られるフィルムは
、高い厚み方向の強度、高い剛性および良好な通気特性
等をバランス良く有し、且つ、表面にベタベタした感触
等のない表面状態の良好な多孔質フィルムである。 【0078】そのため、包装材、ろ過材、防漏材等の用
途の他、加圧下でも細孔が潰れず充分な通気性が要求さ
れる電池セパレーターおよび電気二重層コンデンサー用
セパレーター等の用途に適する。 【0079】また、本発明の方法により多孔質フィルム
を製造する場合、延伸処理によりフィルムに細孔を発生
させる際にフィルムが破れることがなく安定的に延伸処
理ができる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention provides a method for producing a porous film suitable for uses such as packaging materials, filtration materials, leak prevention materials, battery separators, electric double layer capacitor separators, etc. Regarding. More specifically, it is possible to stably produce a porous film that has excellent rigidity and strength in the thickness direction, and maintains sufficient air permeability without collapsing the pores even under pressure. Regarding the manufacturing method. [0003] Conventionally, various methods have been proposed for producing many porous films from thermoplastic resins for use as packaging materials, filtration materials, leakage prevention materials, and the like. Japanese Patent Publication No. 46-40119 discloses that a polymer with a degree of crystallinity of 50% or more is formed into a film at a tensile rate of 20 or more, crystallization is promoted by heating, then cold-stretched, and then , a method for producing a porous film that is heat-treated under tension has been proposed. However, this method requires a step of promoting crystallization after forming a film, which not only lengthens the process, but also requires a long residence time in this step, resulting in poor productivity. . [0006] In addition, since this method generates micropores between polymer molecules in a highly crystallized film due to the stress during stretching without adding fillers, the degree of crystallinity and the degree of stretching are slightly affects the porosity of the film,
Not only is it difficult to uniformly control the porosity and provide a certain level of air permeability, but the film is often torn during stretching, resulting in poor stretching workability. This film tearing during stretching occurs particularly when the strain rate during stretching is high, and this method is problematic. Furthermore, since this method produces resin alone without adding fillers, the rigidity, elastic modulus, and strength in the thickness direction are not sufficient. Therefore, when used under pressure, the pores of the film collapse and a certain level of air permeability cannot be maintained.For example, when used under pressure as a material for battery separators and electric double layer capacitor separators, The pores are collapsed and ion permeability is reduced. [0008] In JP-A-57-47334 and JP-A-60-199037, a resin composition comprising a polyolefin resin and a filler incompatible with the resin is formed into a film by melt extrusion. A method for producing a porous film is disclosed in which the porous film is then subjected to a stretching treatment. [0009] The method disclosed in JP-A No. 57-47334 involves adding liquid rubber (for example,
This method is characterized by adding liquid polybutene, liquid polybutadiene). When a large amount of a third component such as liquid rubber is added to a polyolefin resin, the cohesive force of the polymer molecules of the polyolefin resin becomes small, and the polymer molecular chains become slippery and difficult to align. Therefore,
Although the anisotropy of the film is reduced, the mechanical strength, rigidity, and strength in the thickness direction are reduced. Therefore, when used under pressure as a material for a battery separator or an electric double layer capacitor separator, for example, the pores of the film are crushed and the ion permeability is reduced. Furthermore, since the mechanical strength is low, when producing a thin film, the film tends to tear more frequently during the stretching process, which poses a problem in productivity. [0011] Furthermore, the third component such as liquid rubber bleeds out onto the film surface, resulting in a sticky feel and impairing the surface condition. Therefore, when the film is used as, for example, a battery separator or a filter material, the third component has disadvantages such as elution, adversely affecting the electrode reaction, or being mixed into the filtrate. Furthermore, JP-A-60-199037 discloses a porous film having excellent flexibility made from a resin composition consisting of a polyethylene resin having a specific melt index and density and barium sulfate having a specific particle size. A method of manufacturing is disclosed. However, the porous film obtained by this method has poor rigidity and
The strength in the thickness direction is low. Therefore, when used under pressure, the pores of the film are crushed and air permeability cannot be maintained. For example, when used under pressure as a material for battery separators and electric double layer capacitor separators,
The pores of the film are crushed and the permeability of ions is reduced. As a countermeasure, if high-density polyethylene or polypropylene is used instead of the resin disclosed in the publication and a porous film is produced according to the method disclosed in the publication, the film may tear during stretching and become unstable. Stretching operation is not possible. Therefore, the method disclosed in this publication cannot be said to be sufficient as a method for producing a porous film with good rigidity and strength in the thickness direction. [0014] An object of the present invention is to improve the above-mentioned problems. That is, the object of the present invention is to have a material that has excellent rigidity and strength in the thickness direction, maintains sufficient air permeability without collapsing the pores even under pressure, and has a good surface condition without a sticky feel. An object of the present invention is to provide a method for manufacturing a porous film. Another object of the present invention is to provide a method for producing a porous film with good stretchability, which prevents the film from tearing when pores are generated in the film by stretching. Means for Solving the Problems As a result of extensive studies, the present inventors melt-extruded a resin composition consisting of a polypropylene resin or a polyethylene resin having a specific density and a filler, and It was discovered that the above problem could be solved by stretching the resin composition at a specific tensile rate, cooling and solidifying it, and further uniaxially stretching it in the longitudinal direction at a specific magnification, thereby completing the present invention. That is, the present invention provides 100 parts by weight of a polypropylene resin or a polyethylene resin having a density of 0.940 g/cm3 or more, and 100 to 100 parts of a filler.
When forming a resin composition consisting of 400 parts by weight into a film by melt extrusion, the resin composition in the form of a film discharged from an extruder die is stretched at a tensile rate of 20 to 1000, cooled and solidified, and then vertically 1.3 to 6 in one axis direction
.. This is a method for producing a porous film characterized by stretching 0 times. The tensile rate in the present invention is the reciprocal of the rate at which a film-like resin composition discharged from a die of a melt extruder is stretched in the longitudinal direction and the thickness of the film is reduced until it is cooled and solidified. Specifically, it is the quotient obtained by dividing the lip opening degree of the die by the thickness of the cooled and solidified film. (Hereinafter, it will be simply referred to as tensile rate.) Also, the longitudinal direction in the present invention is the length direction of the film. Further, the density of the polyethylene resin in the present invention is a value measured by a method specified in JIS K 6760. The polypropylene resin used in the present invention is a homopolymer of propylene or a copolymer of propylene and α-olefin. These resins may be used alone or in a mixture of two or more. Examples of α-olefins include ethene, butene, hexene, octene, and the like. When copolymerizing these α-olefins,
Preferably it is less than 8% by weight, based on propylene. It is not preferable to use a copolymer copolymerized in an amount of 8% by weight or more because the resulting film will have lower rigidity and strength in the thickness direction. If the rigidity and strength in the thickness direction decrease, for example, when the film is used under pressure as a material for a battery separator or an electric double layer capacitor separator, the pores of the film will collapse and the ion permeability will decrease. The polyethylene resin is a homopolymer of ethylene or a copolymer of ethylene and α-olefin having a density of at least 0.940 g/cm 3 . Examples of the α-olefin include butene, hexene, octene, and the like. When copolymerizing ethylene and α-olefin, the density of the resulting copolymer generally decreases as the addition ratio of α-olefin increases, but the density is 0.940.
It is preferable to carry out copolymerization within a range that does not result in less than g/cm3. These resins may be used alone or in a mixture of two or more. Among polyethylene resins, the density is 0.9.
If it is less than 40 g/cm3, the stretchability is good, but the resulting film has low rigidity, longitudinal elastic modulus, and other mechanical strengths, especially strength in the thickness direction, so it is not preferable. If the rigidity and strength in the thickness direction are low, for example, when the film is used under pressure as a material for a battery separator or an electric double layer capacitor separator, the pores of the film are crushed and the ion permeability is reduced. Both the polypropylene and polyethylene resins mentioned above are melt intex (hereinafter referred to as MI).
is preferably in the range of 0.1 to 15.0 g/10 min. More preferably, it is in the range of 0.5 to 8.0 g/10 min. If the MI is less than 0.1/10 min, the melt viscosity is high and the resin pressure increases during the extrusion process, resulting in a decrease in productivity and the resulting film has poor air permeability, which is not preferable. If it exceeds 15.0 g/10 min, a film with good air permeability can be obtained, but the melt viscosity is low, so the thickness accuracy of the film decreases, and film tearing occurs during stretching. This is not preferable because the workability becomes worse and the mechanical strength of the resulting film is also reduced. [0023] For polypropylene resin, MI is based on JIS K 6758, and the load is 2.1.
6 kg at a temperature of 230° C. For polyethylene resins, the value was measured at a load of 2.16 kg and a temperature of 190° C. in accordance with JIS K 6760. The filler used in the present invention may be inorganic or organic. Examples of inorganic fillers include barium sulfate, calcium sulfate, magnesium sulfate, barium carbonate, calcium carbonate, magnesium carbonate, aluminum hydroxide, zinc oxide, magnesium oxide, titanium oxide, silica, alumina, talc, glass powder, etc. Ru. Among these, barium sulfate, calcium carbonate,
Magnesium hydroxide, zinc oxide, and silica can be particularly preferably used. Nylon, polystyrene, etc. can be used as the organic filler. These inorganic and organic fillers may be used alone or in a mixture of two or more. From the viewpoint of dispersibility in the resin and physical properties such as pore size and air permeability of the resulting film, the average particle size of the filler is preferably 0.05 to 10 μm, more preferably 0.1 to 5 μm. It is 0 μm. If the average particle size exceeds 10 μm, the pore size of the porous film obtained by stretching becomes too large, and the film is likely to break during stretching, especially when producing a thin film. Stretching stability decreases. In addition, if it is less than 0.05 μm, the filler will have poor dispersibility in the resin and will tend to aggregate, making it easy for the film to break during stretching.
Stretching stability decreases. As a result, aggregates of the filler are formed in a fish-eye shape on the surface of the obtained film, resulting in poor surface condition of the film. In order to improve the dispersion of the filler into the resin, it is preferable to coat the surface of the filler with a fatty acid such as stearic acid or its metal soap, a silane-based or titanium-based coupling agent, or the like. The blending amount of the filler is 100 to 400 parts by weight per 100 parts by weight of the resin. If the blending amount is less than 100 parts by weight, the filling amount is too small and sufficient air permeability cannot be obtained even when stretched at low temperature and at a high magnification. If it exceeds 400 parts by weight, the filling amount is too large to allow stable stretching, and the film is likely to break during stretching, resulting in decreased stretching stability. [0028] As long as the purpose of the present invention is not impaired,
In addition to the above-mentioned fillers, known lubricants, dispersants, infrared absorbers, dyes, pigments, crystal nucleating agents, etc. used in the molding process of polyolefin resins may be added. There are no particular restrictions on the method of mixing the resin, filler, and various additives added as necessary in the present invention. Preferably, the resin composition is prepared by mixing for 1 to 30 minutes at a temperature ranging from room temperature to 90° C. using a conventional mixer such as a Henschel mixer, a super mixer, or a tumbler type mixer. The obtained resin composition may be directly subjected to the film forming process, but from the viewpoint of improving the dispersibility of the filler in the film forming process, it is preferable to use a single or twin screw extruder, preferably in the resin composition. From the viewpoint of reducing moisture content, it is preferable to melt-extrude at a temperature range of 160 to 260° C. using an extruder having a vent hole, process the pellets into cylindrical or prismatic pellets, and use the pellets for film-forming and stretching. There are no particular restrictions on the method of processing into pellets. Usually used strand cut type, hot cut type, etc. are preferably used. [0031] Furthermore, before the resin composition is subjected to a film forming process, it is preferable to reduce the water content in the resin composition to 500 ppm or less. If the water content is 500 ppm or more, air bubbles may be generated in the resulting film or the film may be torn, making it impossible to perform a stable stretching operation, which is not preferable. [0032] The above resin composition is subjected to a film forming process and formed into a film. The extruder may be a single-screw extruder or a twin-screw extruder, but a single-screw extruder is preferred from the standpoint of quantitative extrusion. Further, either the T-die method or the inflation method may be used. [0033] The extrusion temperature is the melting point of the resin used + 30°C ~
below the decomposition temperature of the resin. Preferably, the temperature range is from the melting point of the resin +40°C to less than 260°C. If the extrusion temperature is less than the melting point + 30°C, melt fracture will occur, and if it exceeds the decomposition temperature of the resin, the resin will thermally decompose.
It becomes impossible to form it into a film. [0034] When the resin composition is extruded into a film form from the die of an extruder by the above method and solidified by cooling, the tensile modulus is 2.
The lip opening degree and take-up speed of the die are adjusted so that it becomes 0 to 1000. The preferred tensile modulus is 35 to 1000,
More preferably, it is in the range of 50 to 800. The lip opening of the die is adjusted using the opening adjustment bolt. If the tensile modulus is less than 20, the molecular orientation in the longitudinal direction of the resulting unstretched film will be small. Therefore, a necking phenomenon occurs when the film is stretched in the next step, and stretching unevenness remains at low stretching ratios, making it impossible to obtain a uniformly stretched film. This stretching unevenness can be prevented by stretching to a high magnification of 7.0 times or more. However, if the film is stretched to a high magnification of 7.0 times or more, the frequency of tearing of the film during stretching becomes extremely high. In addition, a porous film obtained by stretching at a high magnification has too large a molecular orientation in the longitudinal direction, and although the mechanical strength in the longitudinal direction is good, the rigidity and the strength in the thickness direction are reduced. Furthermore, if the strain rate during stretching is high, the film will tear before it is evenly stretched. [0036] If the tensile rate exceeds 1000, the molecular orientation in the longitudinal direction of the obtained unstretched film will become too large, so that when the film is stretched in the next step, it will not be possible to stretch the film until the pores are sufficiently opened. Otherwise, the film will be torn. As mentioned above, when the resin composition is discharged in the form of a film from the extruder die and solidified by cooling, the polymer molecular chains are properly oriented in the longitudinal direction by setting the tensile modulus to 20 to 1000. . Therefore, during the stretching process in the next step, the film does not cause necking phenomenon.
Even with relatively low stretching, a uniformly stretched film can be obtained. As a result, a porous film with a uniform degree of pore opening is obtained. Cooling the resin composition discharged from the die with an air knife, air ring, etc. and reducing the distance from the die until it cools and solidifies, that is, the air gap, greatly increases the vertical orientation of the molecular chains. It is preferably used in this respect. The stretching process is carried out at a predetermined temperature in the longitudinal uniaxial direction at a stretching ratio of 1.3 to 6.0 times. The preferred stretching ratio is 1.5 to 5.5 times, more preferably 1.
It is 7 to 5.0 times. [0040] If the stretching ratio is less than 1.3 times, the degree of stretching will vary and a film with uniform pore size cannot be obtained. If it exceeds 6.0 times, the air permeability is sufficient, but the film will break more frequently during the stretching process, and the resulting porous film will have too much longitudinal molecular orientation and will not be easily machined in the longitudinal direction. The mechanical strength is good, but the rigidity and strength in the thickness direction are reduced. Therefore, when used under pressure as a material for a battery separator or an electric double layer capacitor separator, for example, it is not preferable because the pores of the film are crushed and the ion permeability is reduced. [0041]Also, transverse uniaxial stretching or longitudinal/horizontal sequential biaxial stretching can be considered as the stretching treatment, but transverse uniaxial stretching causes a necking phenomenon, and a uniform film cannot be obtained unless stretched at a high magnification. Tears occur and the stretching operation cannot be performed stably. Similarly, even in the case of longitudinal/horizontal sequential biaxial stretching, a necking phenomenon occurs during the transverse stretching process, making it impossible to stably perform the stretching operation. This is considered to be due to the orientation of molecular chains in the unstretched film. [0042] The temperature of the stretching treatment is in the range from the glass transition temperature of the resin used +20°C to the melting point of the resin -10°C. The temperature range is preferably from 10°C to the melting point of the resin -20°C from the viewpoint of the workability of stretching, the degree of opening of the obtained film, the ventilation characteristics, etc. After the stretching process, it is preferable to heat set the film in order to improve the shape of the pores formed in the film and the dimensional stability of the film. The heat setting temperature is generally in the range of 60°C to -5°C below the melting point of the resin. Further, after heat setting, the film may be relaxed by less than 20% in the longitudinal direction. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it departs from the gist thereof. Evaluations in Examples were performed by the following method. 1. Thickness (μm) Using a dial gauge specified in JIS B 7509, 10 samples were stacked and measured under the following measurement conditions, and the thickness was converted into the thickness per sample. Measurement temperature: 23°C
Measurement pressure 0.4kg/cm2
2. Tensile properties were measured in accordance with the method specified in JIS P 8113, and the measurement conditions were as follows. [0048] Test piece size: 100mm length x 25m
m width measurement temperature 23℃ tensile speed 200mm/min ■5% mod
The stress at 5% elongation (kg/mm2) was measured in the machine direction of the film (hereinafter referred to as MD) and the direction perpendicular to the machine direction of the film (hereinafter referred to as TD), and the stress per 1 mm2 cross-sectional area was calculated. It was converted into ■ Breaking strength (kg/mm2) The stress at which the test piece broke was measured in MD and TD, respectively, and was converted into stress per 1 mm2 cross-sectional area. ■Elongation at break (%) The elongation when the test piece breaks is measured in MD and TD, respectively. 3. Air permeability (sec/100ml) JIS
It was measured in accordance with the method specified in P.8117. The lower the air permeability, the better the air permeability. 4. Stretching Stability The stretching stability was evaluated as follows based on observation during stretching. Very good──────────1 Good─
────────────2 There is uneven stretching──────
──────3 Stretching tear occurs ─────────
4 The frequency of stretching tearing is extremely high──────50052
]5. Thickness change rate (%) This is an evaluation of the strength in the thickness direction, and the smaller the thickness change rate, the
Indicates that the strength in the thickness direction is large. [0053]Thickness change rate=(1-t1/t0)×100
t0: 1. above. Thickness (μm) t1 measured by the method of
: 1 above, except that the measurement pressure was 10 kg/cm2
.. Thickness (μm) measured in the same manner as in 0054
]6. Rigidity (ring crush value) (g/mm) A stainless steel cylindrical jig (A) with a wall thickness of 5 mm, an inner diameter of 50 mm, and a height of 5 mm is stood vertically. A stainless steel cylindrical jig (B) with a wall thickness of 5 mm, an outer diameter of 49 mm, and a height of 5 mm is inserted into the jig (A). Jig (A) (B)
Place a sample piece of the following size in the cylindrical gap between the film T.
Insert the sample piece so that D is in the vertical direction to make the sample piece cylindrical. Using a load plate of 80 x 80 mm, a load was applied in the vertical direction at a loading rate of 20 g/min to the cylindrical sample piece placed at a height of 5 mm on the jigs (A) and (B). Find the load at which the film will collapse. The ring crush value is the quotient of this load divided by the thickness of the test piece. The larger this value is, the higher the rigidity is. [0055] Test piece size: MD 160 mm x TD 10 mm Measurement temperature: 23°C [0056] Example 1 High-density polyethylene (A-1) having the MI and density shown in [Table 1], filler (B-1) and additives ( C-1) was used at the blending ratio shown in [Table 2] and mixed using a Henschel mixer to obtain a resin composition. The resin composition was extruded using a vented twin-screw extruder at a molding temperature of 200°C and processed into pellets. [Table 1] Next, using a single screw extruder having a T-die with a lip interval (opening degree) adjusted to 5.0 mm, molding temperature was 200°C.
It was melt extruded. The resin composition discharged from the T-die,
It was pulled while being cooled using an air knife, further cooled with a casting roll at a temperature of 80°C, solidified, and wound up with a winding roll. The thickness of the obtained unstretched film was 50 μm. (Tensile rate: 100) The unstretched film was stretched in the longitudinal uniaxial direction at a stretching temperature of 50°C and a stretching ratio of 3 times using a roll stretching machine, and then the film was relaxed by 5% and heat-set at 115°C. A porous film with a thickness of 23 μm was obtained. The above-mentioned various properties of the obtained porous film were evaluated, and the results are shown in [Table 2]. [Table 2] Examples 2 to 5 Porous films were obtained in the same manner as in Example 1, except that the lip opening degree of the T-die was adjusted and the tensile rate was set as shown in [Table 2]. Ta. The properties of the obtained film were evaluated in the same manner as in Example 1, and the obtained results are shown in [Table 2]. As the tensile modulus increases, the MD 5% modulus and breaking strength become slightly larger, and the MD orientation becomes larger. Comparative Examples 1 to 2 Stretching was carried out in the same manner as in Example 1, except that the lip opening of the T-die was adjusted to obtain the tensile ratio shown in [Table 3] and the stretching ratio shown in [Table 3]. processed. In Comparative Example 1, when stretched 3 times in the longitudinal direction, clear necking deformation occurred.
Stretching unevenness remained, and a film with uniform thickness and openings could not be obtained. In Comparative Example 2, an attempt was made to stretch the film up to 7 times, but some stretching unevenness remained and an extremely large number of stretching tears occurred. The results are shown in [Table 3]. [Table 3] Comparative Example 3 Stretching treatment was attempted in the same manner as in Example 1 except that the tensile rate was 1200. However, the degree of molecular orientation in the longitudinal direction of the unstretched film was too high and the stretching ratio could not be increased to more than 3 times. The results are shown in [Table 3]. Examples 6 to 9 Polyolefin resins (A-2 to A-5) shown in [Table 1]
) A porous film was obtained in the same manner as in Example 1, except that a porous film was used. The properties of the obtained film were evaluated in the same manner as in Example 1, and the obtained results are shown in [Table 4]. [Table 4] Comparative Examples 4-5 Polyolefin resins (A-6 and A-6) shown in [Table 1]
A porous film was obtained in the same manner as in Example 1 except that -7) was used. The properties of the obtained film were evaluated in the same manner as in Example 1, and the obtained results are shown in [Table 5]. In both cases, the stretching stability was good, but because the density of the resin used was low, the strength in the thickness direction and the longitudinal direction was low.
Air permeability was also slightly low. [Table 5] Examples 10 to 12 Porous films were obtained in the same manner as in Example 1, except that the stretching treatment was carried out at the stretching ratio shown in [Table 6]. The properties of the obtained film were evaluated in the same manner as in Example 1, and the obtained results are shown in [Table 6]. [Table 6] Comparative Examples 6 to 7 Stretching was carried out in the same manner as in Example 1 except that the stretching ratios shown in [Table 6] were used. In Comparative Example 6, the stretching ratio was too large, and stretching blur occurred, making stable processing impossible. In Comparative Example 7, the stretching ratio was too small, and stretching unevenness remained. The obtained results are shown in [Table 6]. Examples 13 to 15 The same procedure as in Example 1 was carried out except that the resin compositions had the blending ratios shown in [Table 7] and the tensile ratios shown in [Table 7].
A porous film was obtained. The properties of the obtained film were evaluated in the same manner as in Example 1, and the obtained results are shown in [Table 7]. [Table 7] Comparative Examples 8 to 9 Stretching treatment was carried out in the same manner as in Example 1 except that the resin compositions having the blending ratios shown in [Table 7] were used. In Comparative Example 8, the amount of filler was too large, and stretching and blurring occurred, making it impossible to stably process the film. In Comparative Example 9, the amount of filler was too small, resulting in low air permeability. The obtained results [
Table 7]. Examples 16-17 The fillers (B-2 and B-3) shown in [Table 1] were mixed with the fillers (B-2 and B-3) shown in [Table 8].
] A porous film was obtained in the same manner as in Example 1, except that the blending ratios shown were used. The properties of the obtained film were evaluated in the same manner as in Example 1, and the obtained results are shown in [Table 8]. [Table 8] Comparative Examples 10 to 11 An unstretched film was formed in the same manner as in Example 1, and stretched using a film stretcher manufactured by Toyo Seiki Co., Ltd. In Comparative Example 10, horizontal uniaxial stretching was attempted, but stretching breakage occurred and it was not possible to obtain a film with uniform thickness and openings. In Comparative Example 11, 2.0 in the vertical direction
An attempt was made to perform sequential biaxial stretching in which the film was stretched twice and then in the transverse direction, but the film broke during stretching and it was not possible to obtain a film with uniform thickness and openings. Comparative Example 12 A porous film was obtained in the same manner as in Example 1, except that the resin composition shown in Table 8 was used. The properties of the obtained film were evaluated in the same manner as in Example 1, and the obtained results are shown in [Table 8]
Shown below. Although the resulting film had good air permeability, its mechanical strength and strength in the thickness direction were low. Also,
The surface had a sticky feel compared to the porous films obtained in Examples and other comparative examples. Effects of the Invention: The film obtained by the method of the present invention has a good balance of high strength in the thickness direction, high rigidity, good air permeability, etc., and also has a surface condition with no sticky feeling on the surface. It is a good porous film. [0078] Therefore, in addition to applications such as packaging materials, filter media, and leak prevention materials, it is suitable for applications such as battery separators and electric double layer capacitor separators that require sufficient air permeability without crushing pores even under pressure. . Further, when a porous film is produced by the method of the present invention, the stretching process can be stably performed without tearing the film when generating pores in the film by the stretching process.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  ポリプロピレン系樹脂または0.94
0g/cm3以上の密度を有するポリエチレン系樹脂1
00重量部、および、充填剤100〜400重量部から
なる樹脂組成物を溶融押出法によりフィルム状に製膜す
るに際し、押出機ダイより吐出したフィルム状の該樹脂
組成物を20〜1000の引張率で引き延ばし冷却固化
させ、更に、縦一軸方向に1.3〜6.0倍延伸するこ
とを特徴とする多孔質フィルムの製造方法。
[Claim 1] Polypropylene resin or 0.94
Polyethylene resin 1 having a density of 0 g/cm3 or more
When forming a resin composition consisting of 00 parts by weight and 100 to 400 parts by weight of a filler into a film by melt extrusion, the resin composition in the form of a film discharged from an extruder die is subjected to a tensile strength of 20 to 1000. 1. A method for producing a porous film, which comprises stretching the film at a constant speed, cooling and solidifying the film, and further stretching the film 1.3 to 6.0 times in the longitudinal uniaxial direction.
【請求項2】  多孔質フィルムの厚み変化率が7.0
%以下である請求項1記載の多孔質フィルムの製造方法
[Claim 2] The thickness change rate of the porous film is 7.0.
% or less. % or less.
【請求項3】  多孔質フィルムのリングクラッシュ値
が3000g/mm以上である請求項1記載の多孔質フ
ィルムの製造方法。
3. The method for producing a porous film according to claim 1, wherein the porous film has a ring crush value of 3000 g/mm or more.
JP10717691A 1991-05-13 1991-05-13 Production of porous film Pending JPH04335043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10717691A JPH04335043A (en) 1991-05-13 1991-05-13 Production of porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10717691A JPH04335043A (en) 1991-05-13 1991-05-13 Production of porous film

Publications (1)

Publication Number Publication Date
JPH04335043A true JPH04335043A (en) 1992-11-24

Family

ID=14452402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10717691A Pending JPH04335043A (en) 1991-05-13 1991-05-13 Production of porous film

Country Status (1)

Country Link
JP (1) JPH04335043A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115852A (en) * 1997-06-17 1999-01-12 Grand Polymer:Kk Polypropylene biaxially oriented film having pearl luster
JP2000198865A (en) * 1999-01-04 2000-07-18 Kao Corp Production of porous film
US6472445B1 (en) 1999-12-27 2002-10-29 Tokuyama Corporation Polypropylene base porous film and production process for the same
WO2012165311A1 (en) * 2011-05-31 2012-12-06 株式会社Tbm Method for producing inorganic substance powder highly-oriented thin film sheet
WO2018092481A1 (en) * 2016-11-17 2018-05-24 株式会社Tbm Method for manufacturing sheet, method for manufacturing resin molded body, and sheet
JP2018528108A (en) * 2015-07-10 2018-09-27 ベリー グローバル, インコーポレイテッドBerry Global, Inc. Microporous breathable film and method for forming microporous breathable film
USRE48555E1 (en) 2014-05-13 2021-05-18 Berry Film Products Company, Inc. Breathable and microporous thin thermoplastic film
US11472085B2 (en) 2016-02-17 2022-10-18 Berry Plastics Corporation Gas-permeable barrier film and method of making the gas-permeable barrier film
US11584111B2 (en) 2018-11-05 2023-02-21 Windmoeller & Hoelscher Kg Breathable thermoplastic film with reduced shrinkage

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115852A (en) * 1997-06-17 1999-01-12 Grand Polymer:Kk Polypropylene biaxially oriented film having pearl luster
JP2000198865A (en) * 1999-01-04 2000-07-18 Kao Corp Production of porous film
US6472445B1 (en) 1999-12-27 2002-10-29 Tokuyama Corporation Polypropylene base porous film and production process for the same
TWI619599B (en) * 2011-05-31 2018-04-01 Tbm股份有限公司 A method of producing a film sheet with a high blend of inorganic material powders, and a film sheet for printing
US10363701B2 (en) 2011-05-31 2019-07-30 Tbm Co., Ltd. Method for producing inorganic substance powder highly-oriented thin film sheet
CN103562281A (en) * 2011-05-31 2014-02-05 株式会社Tbm Method for producing inorganic substance powder highly-oriented thin film sheet
KR20150126710A (en) * 2011-05-31 2015-11-12 가부시키가이샤 티비엠 Method for producing inorganic substance powder highly-oriented thin film sheet
US9492964B2 (en) 2011-05-31 2016-11-15 Tbm Co., Ltd. Method for producing inorganic substance powder highly-oriented thin film sheet
WO2012165311A1 (en) * 2011-05-31 2012-12-06 株式会社Tbm Method for producing inorganic substance powder highly-oriented thin film sheet
JP2013010931A (en) * 2011-05-31 2013-01-17 Tbm Co Ltd Method for producing inorganic substance powder highly-oriented thin film sheet
USRE48555E1 (en) 2014-05-13 2021-05-18 Berry Film Products Company, Inc. Breathable and microporous thin thermoplastic film
US11931229B2 (en) 2014-05-13 2024-03-19 Berry Film Products Company, Inc. Breathable and microporous thin thermoplastic film
JP2018528108A (en) * 2015-07-10 2018-09-27 ベリー グローバル, インコーポレイテッドBerry Global, Inc. Microporous breathable film and method for forming microporous breathable film
JP2021100814A (en) * 2015-07-10 2021-07-08 ベリー グローバル, インコーポレイテッドBerry Global, Inc. Microporous breathable film and method of forming microporous breathable film
US11872740B2 (en) 2015-07-10 2024-01-16 Berry Plastics Corporation Microporous breathable film and method of making the microporous breathable film
US11472085B2 (en) 2016-02-17 2022-10-18 Berry Plastics Corporation Gas-permeable barrier film and method of making the gas-permeable barrier film
JP2018079641A (en) * 2016-11-17 2018-05-24 株式会社Tbm Method for manufacturing sheet, method for manufacturing resin molded body and sheet
WO2018092481A1 (en) * 2016-11-17 2018-05-24 株式会社Tbm Method for manufacturing sheet, method for manufacturing resin molded body, and sheet
US11584111B2 (en) 2018-11-05 2023-02-21 Windmoeller & Hoelscher Kg Breathable thermoplastic film with reduced shrinkage

Similar Documents

Publication Publication Date Title
US4704238A (en) Process for the production of air-permeable films
US5439628A (en) Method for manufacturing polypropylene film and sheet
US20050087487A1 (en) Porous polyolefin membrane
US4767580A (en) Process for preparation of porous sheets
US6703439B2 (en) Polyolefin resin composition and polyolefin film prepared from the same
JPH0416330B2 (en)
KR100364301B1 (en) Biaxially oriented polypropylene-base film
US5308904A (en) Resin composition, porous film or sheet
JPH04335043A (en) Production of porous film
US5853638A (en) Process for producing stretched porous film
JP4894794B2 (en) Polyolefin resin porous membrane
JPS6227438A (en) Production of gas-permeable film
JP4797813B2 (en) Polyolefin resin porous membrane
JPH10292059A (en) Production of air-permeable film
AU610874B2 (en) Porous resin film and process for producing the same
JP2003327731A (en) Polyolefin resin porous membrane
JP4540858B2 (en) Porous film and method for producing the same
JP4466039B2 (en) Polyolefin resin porous membrane
JP2005145999A (en) Porous film made of polyolefin resin
JP4742213B2 (en) Polyolefin resin degreasing film
KR20000075653A (en) Uniaxially stretched polypropylene film
JP4742214B2 (en) Polyolefin resin porous membrane
JP2001294717A (en) Polyolefin resin composition and polyolefin film obtained therefrom
KR20020011290A (en) Polypropylene composition provided by the calendering process for decoration sheet and method for preparing polypropylene film and sheet using the same
US5158731A (en) Film process of making and antiblocking