WO2018092481A1 - Method for manufacturing sheet, method for manufacturing resin molded body, and sheet - Google Patents

Method for manufacturing sheet, method for manufacturing resin molded body, and sheet Download PDF

Info

Publication number
WO2018092481A1
WO2018092481A1 PCT/JP2017/037342 JP2017037342W WO2018092481A1 WO 2018092481 A1 WO2018092481 A1 WO 2018092481A1 JP 2017037342 W JP2017037342 W JP 2017037342W WO 2018092481 A1 WO2018092481 A1 WO 2018092481A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
crystalline polymer
temperature
manufacturing
resin
Prior art date
Application number
PCT/JP2017/037342
Other languages
French (fr)
Japanese (ja)
Inventor
重樹 黒木
Original Assignee
株式会社Tbm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbm filed Critical 株式会社Tbm
Publication of WO2018092481A1 publication Critical patent/WO2018092481A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/885External treatment, e.g. by using air rings for cooling tubular films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a sheet manufacturing method, a resin molded body manufacturing method, and a sheet.
  • a sheet is stretched to form a thin film after being formed into a sheet shape by a T-die or the like.
  • Patent Document 1 a pellet containing a thermoplastic resin and 60% to 82% by weight of inorganic substance particles is extruded by a T-die to form a sheet, and then the longitudinal and lateral stretching ratios are set.
  • a method for producing a sheet having a step of stretching at a magnification of 1.1 to 3.0 times is disclosed.
  • Patent Document 1 when the sheet contains a lot of inorganic particles, there is a problem that it is difficult to stretch uniformly when the sheet is stretched depending on the kind of the thermoplastic resin.
  • the present invention has been made in view of the above circumstances, and includes a method for producing a sheet, a sheet, and a method for producing a resin molded body, which are easy to stretch uniformly during stretching even if they contain a large amount of inorganic fine powder or organic fine powder.
  • the purpose is to provide.
  • the present inventors have found that the inorganic fine powder or organic fine powder has a large amount of inorganic fine powder or organic fine powder, and that the stress is applied after lowering the temperature to below the crystallization temperature. . More specifically, the present invention provides the following.
  • a method for producing a resin molded body comprising a step of producing a sheet by any one of the methods (1) to (3) and a step of stretching the produced sheet.
  • the method for producing a sheet of the present invention comprises a step of obtaining a sheet by extruding a resin composition containing a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80 from a die, Adjusting the temperature so that the crystalline polymer contained in the composition is lower than the crystallization temperature, and after adjusting the temperature, the temperature of the sheet is the crystallization temperature of the crystalline polymer ⁇ 60 ° C. or more. Applying stress to the sheet when it is less. In the present invention, by applying stress in this manner, a sheet that is easily stretched uniformly during stretching can be obtained even if it contains a large amount of inorganic substance particles.
  • the crystallite size of the crystalline polymer in the sheet can be reduced, and the uniform stretchability of the sheet is improved.
  • the present invention includes a step of obtaining a sheet by extruding a resin composition containing a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80 from a die.
  • the resin composition contains a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80.
  • the crystalline polymer refers to a polymer having a crystalline region in which the polymer is regularly arranged and an irregular amorphous region and having a melting point.
  • the kind of the crystalline polymer is not particularly limited as long as it has crystallinity, but polyolefin resin (polypropylene resin, polyethylene resin, etc.), biodegradable resin, polyamide resin, polybutylene terephthalate (PBT), polyethylene terephthalate ( PET) and the like.
  • polyolefin resins and biodegradable resins are preferable, and polypropylene resins and polyethylene resins are particularly preferable.
  • polyolefin resin and polyamide resin refer to resin which has polyolefin and polyamide as a principal chain. More specifically, for example, a polypropylene resin refers to a resin having polypropylene as a main chain, and these resins may be copolymers with other resins as long as they have crystallinity. . For example, a propylene-ethylene copolymer may be used.
  • the biodegradable resin is a resin that is completely consumed by microorganisms in the natural world and is finally decomposed into water and carbon dioxide.
  • polylactic acid polycaprolactone
  • polybutylene succinate polybutylene adipate
  • polyethylene succinate polyethylene succinate
  • cellulose ester a polymer that is used alone or in combination of two or more.
  • a mixture of a polypropylene resin and a polyethylene resin may be used.
  • the kind of inorganic fine powder or organic fine powder contained in the resin composition in the present invention is not particularly limited, and examples thereof include calcium carbonate, titanium oxide, silica, clay, talc, kaolin, aluminum hydroxide, calcium sulfate, and barium sulfate. , Mica, zinc oxide, dolomite, glass fiber, hollow glass and the like.
  • the kind of organic fine powder is not specifically limited, For example, methylcellulose, ethylcellulose, a polystyrene, polyacrylic acid ester, polyvinyl acetate, etc. are mentioned. Of these, calcium carbonate is preferably used as the inorganic fine powder. These may be used alone or in combination of two or more.
  • the surface of the inorganic fine powder may be modified in advance according to a conventional method.
  • the mass ratio of the crystalline polymer and the inorganic fine powder or organic fine powder contained in the resin composition in the present invention is not particularly limited as long as it is a ratio of 50:50 to 20:80, but 48:52 to 30:
  • the ratio is preferably 70, more preferably 43:57 to 35:65, and still more preferably 41:59 to 39:61.
  • the average particle size of the inorganic fine powder or organic fine powder contained in the resin composition in the present invention is preferably 0.1 ⁇ m or more and 50 ⁇ m or less, and more preferably 1.0 ⁇ m or more and 15 ⁇ m or less.
  • the average particle diameter of the inorganic substance particles in the present invention is a 50% particle diameter (d50) obtained from an integrated% distribution curve measured with a laser diffraction particle size distribution analyzer.
  • shape of the inorganic substance particles any of granular, acicular, and flat shapes can be used.
  • inorganic fine powder, or organic fine powder in addition to the above-described crystalline polymer, inorganic fine powder, or organic fine powder, as an auxiliary agent, a colorant, a lubricant, a coupling agent, a fluidity improving material, a dispersion You may mix
  • lubricants examples include stearic acid, hydroxystearic acid, complex stearic acid, oleic acid and other fatty acid lubricants, fatty alcohol lubricants, stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, behenamide, methylol Amide, Methylenebisstearoamide, Methylenebisstearobehenamide, Bisamidic acid of higher fatty acid, Aliphatic amide type lubricant such as composite amide, stearic acid-n-butyl, methyl hydroxystearate, polyhydric alcohol fatty acid ester, Examples thereof include aliphatic ester lubricants such as saturated fatty acid esters and ester waxes, and fatty acid metal soap group lubricants.
  • phosphorus antioxidants such as phosphorous esters, more specifically phosphorous esters and phosphate esters, are preferably used.
  • Phosphorus antioxidants such as phosphorous esters, more specifically phosphorous esters and phosphate esters, are preferably used.
  • Examples of phosphites include triester, diester, and monoester of phosphorous acid such as triphenyl phosphite, trisnonylphenyl phosphite, and tris (2,4-di-tert-butylphenyl) phosphite. Can be mentioned.
  • phosphate ester examples include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, and the like. These phosphorus antioxidants may be used alone or in combination of two or more.
  • phenolic antioxidants include ⁇ -tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2- tert-Butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethyl) Aminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxymethyl] methane Etc., and these can be used alone or in combination of two or more. wear.
  • the resin composition in the present invention may be in the form of pellets or may not be in the form of pellets, but when it is in the form of pellets, the shape of the pellets is not particularly limited, for example, a cylinder, a sphere, an ellipse A spherical pellet or the like may be formed.
  • the size of the pellet may be appropriately set according to the shape. For example, in the case of a spherical pellet, the size may be 1 to 10 mm. In the case of an oval pellet, it may be an ellipse having an aspect ratio of 0.1 to 1.0 and may be 1 to 10 mm in length and width.
  • the diameter may be in the range of 1 to 10 mm in diameter and in the range of 1 to 10 mm in length.
  • These shapes may be formed on the pellets after the kneading step described later.
  • the shape of the pellet may be formed according to a conventional method.
  • the resin composition in the present invention may be prepared by a conventionally known method.
  • the resin composition includes a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80. It can be prepared by kneading.
  • kneading a conventionally known apparatus can be used.
  • a uniaxial or biaxial kneading extruder for example, a co-rotating biaxial kneading extruder HK-25D manufactured by Parker Corporation, C.T.
  • a special twin screw extruder for HTM type compound manufactured by E (CTE), a Banbury mixer (for example, a 75 liter 3D Banbury mixer manufactured by Kobe Steel Co., Ltd.) and the like can be used. Moreover, you may perform the process of kneading
  • a conventional known method can be used as a method of extruding the resin composition from the die to form a sheet.
  • a conventional known method can be used.
  • it is preferably performed with a sufficiently strong force, specifically, It is preferable to use a single-screw or multi-screw extruder (for example, a twin-screw extruder).
  • a combination of rotor segments may be used. If the extruder used is a multi-screw extruder with a rotor segment, the resin composition can be kneaded by the action of a strong shearing force by a screw.
  • the kneading state of the resin composition may be adjusted by appropriately adjusting the melting temperature, the rotational speed of the screw, the residence time of the resin composition in the extruder, etc. depending on the components of the resin composition and the type of the thermoplastic resin.
  • a mold for shaping the extruded molten resin into a sheet shape for example, a flat die (T die) or a circular die is used.
  • a screen may be installed to remove foreign matters mixed in the resin composition.
  • the temperature of kneading when extruding into a sheet form may be a temperature that sufficiently melts, and may be appropriately set according to the type of the crystalline polymer, for example, a temperature that is equal to or higher than the melting point of the crystalline polymer. Kneading may be performed.
  • the melting point of the crystalline polymer is preferably + 10 ° C. or higher, more preferably the melting point of the crystalline polymer + 20 ° C. or higher, and the melting point of the crystalline polymer + 30 ° C. or higher. More preferably, the melting point of the crystalline polymer is more preferably + 45 ° C. or more, and the melting point of the crystalline polymer is more preferably + 55 ° C. or more.
  • the kneading temperature may be the melting point of the crystalline polymer + 100 ° C. or lower (90 ° C. or lower, 80 ° C. or lower, 70 ° C. or lower, 60 ° C. or lower, 50 ° C. or lower, 40 ° C. or lower, 30 ° C. or lower, etc.). .
  • the present invention includes a step of adjusting the temperature so that the crystalline polymer contained in the sheet is lower than the crystallization temperature (hereinafter referred to as “temperature adjusting step” in this specification).
  • the temperature adjusting means may be any method as long as it is a conventionally known method, for example, it may be performed by winding the extruded sheet with a roll set at a desired cooling temperature, or Although it may be performed by water cooling or the like, it is preferably performed by winding the sheet after extrusion with a roll set to a desired cooling temperature, since the more rapidly cooled, the more uniformly stretched.
  • the cooling temperature it is preferable to cool the crystalline polymer to a crystallization temperature of ⁇ 70 ° C. or higher, and to cool to ⁇ 60 ° C. or higher.
  • cooling to ⁇ 50 ° C. or higher is further preferable, cooling to ⁇ 40 ° C. or higher is even more preferable, cooling to ⁇ 30 ° C. or higher is even more preferable, and cooling to ⁇ 20 ° C. or higher is particularly preferable. preferable.
  • the upper limit of the cooling temperature may be lower than the crystallization temperature of the crystalline polymer.
  • the crystallization temperature of the crystalline polymer is ⁇ 5 ° C. or lower ( ⁇ 10 ° C. or lower, ⁇ 20 ° C. or lower, ⁇ 30 ° C. ° C or lower, -40 ° C or lower, etc.).
  • the temperature adjustment time can be appropriately adjusted until a desired temperature is reached.
  • the present invention includes a step of applying stress to the sheet when the temperature of the sheet is equal to or higher than the crystallization temperature of the crystalline polymer ⁇ 60 ° C. or lower than the crystallization temperature of the crystalline polymer after the temperature adjusting step.
  • the stress is applied to the sheet when the sheet temperature is preferably a crystallization temperature of the crystalline polymer of ⁇ 70 ° C. or higher, more preferably ⁇ 60 ° C. or higher, and ⁇ 50 ° C. or higher. Is more preferably ⁇ 40 ° C. or higher, even more preferably ⁇ 30 ° C. or higher, and particularly preferably ⁇ 20 ° C. or higher.
  • the upper limit of the sheet temperature when stress is applied to the sheet may be lower than the crystallization temperature of the crystalline polymer.
  • the crystallization temperature of the crystalline polymer is ⁇ 5 ° C. or lower ( ⁇ 10 ° C. or lower). -20 ° C or lower, -30 ° C or lower, -40 ° C or lower, etc.).
  • a method of applying stress to the sheet may be performed by applying pressure by means capable of applying pressure to the sheet such as sandwiching by a roll.
  • 0.1 MPa or more 0.2 MPa
  • 1.0 MPa or more 2.0 MPa or more, 3.0 MPa or more, 4.0 MPa or more, 5.0 MPa or more, 6.0 MPa or more, 7.0 MPa or more, 8.0 MPa or more, or the like.
  • This invention includes the manufacturing method of a resin molding which has the process of manufacturing a sheet
  • the method of stretching the pellet is not particularly limited, and the pellet may be stretched by a flat die or the like.
  • the produced resin molded body can be used in any way, but is particularly suitable for applications where uniformity is required, such as paper substitutes (printing paper, packaging paper, insulating paper, etc.), packaging containers, etc. Can be used as
  • the present invention includes a sheet formed of a resin composition containing a crystalline polymer having a crystallite size of 210 mm or less and inorganic substance particles in a mass ratio of 50:50 to 20:80.
  • a sheet can be produced by the sheet production method of the present invention described above.
  • the crystallite size of the crystalline polymer contained in the sheet is not particularly limited as long as it is 210 mm or less, but if it is excessive, it becomes difficult to be uniform, and therefore it is preferably 200 mm or less, and 190 mm or less. More preferably, it is more preferably 180 ⁇ or less, still more preferably 160 ⁇ or less, still more preferably 140 ⁇ or less, and even more preferably 120 ⁇ or less. Further, the crystallite size of the crystalline polymer contained in the pellet may be 50 cm or more (75 cm or more, 100 cm or more, 125 cm or more, 150 cm or more, 170 cm or more, 180 mm or more, etc.).
  • the crystallite size is defined as G.G. This is calculated from the half-value width of the diffraction peak of the (040) plane of the resin crystal ( ⁇ crystal) specified by Natta et al. Specifically, for diffraction patterns obtained by wide-angle X-ray diffraction measurement, G. A base line from which an amorphous component of a resin (for example, a polypropylene resin) was removed was prepared by the drawing method of Natta (see A. Weidinger and PH Hermans Die Makromolekule Chemie 98-115, 50 (1961)).
  • the full width at half maximum is obtained from the diffraction peak corresponding to the (040) plane of the ⁇ crystal of the resin specified by Natta et al.
  • the crystallite size is calculated.
  • D (K ⁇ ) / ⁇ (B ⁇ b) cos ⁇ (Scherrer equation)
  • D crystallite size ( ⁇ )
  • A ⁇ : diffraction peak angle (rad)
  • B Half width (rad)
  • b Half width of the diffraction peak of an infinite crystal (rad)
  • An infinite crystal ideally has a half width of 0, but a peak width is generated depending on the accuracy of the device, and b is used as a correction term for the device accuracy.
  • powder silicon (# 200 mesh manufactured by Mitsuwa Chemical Co., Ltd.) is used as an infinite crystal.
  • the crystalline polymer contained in the sheet of the present invention is not particularly limited as long as the crystallite size is 210 mm or less, but in particular, when the crystallite size is 210 mm or less, the uniformity becomes good, so that it may be a polypropylene resin. preferable.
  • the sheet of the present invention is used for resin molding, and the type of molding (injection molding, non-stretch molding, extrusion molding (including profile extrusion molding), blow molding, stretching, etc.) is not particularly limited. Since it is suitable, it is preferably used for stretching.
  • a polypropylene homopolymer PP1 manufactured by Nippon Polypro Co., Ltd .: EA9 was used.
  • differential thermal analysis was performed with DSC-60A manufactured by Shimadzu Corporation. The temperature was raised from room temperature to 195 ° C. at 10 ° C./min, and then lowered to 40 ° C. at 10 ° C./min. As a result, the crystallization temperature from the top of the exothermic peak obtained was 117 ° C.
  • CC1 Ryton S-4, average particle size 2.2 ⁇ m
  • Magnesium stearate (MS1) was used as a lubricant.
  • the resin that came out of the T-die was brought into contact with a metal roll whose surface temperature was set to 110 ° C., and the other side was further sandwiched and cooled at a pressure of 10 MPa with a metal roll set to a surface temperature of 110 ° C. Winded up.
  • the resin that came out of the T-die was brought into contact with a metal roll whose surface temperature was set to 80 ° C., and the other side was further sandwiched and cooled at a pressure of 10 MPa with a metal roll set to a surface temperature of 80 ° C. Winded up.
  • the crystallite size was calculated from the half-value width of the diffraction peak of the (040) plane of the ⁇ phase, and it was 215 mm.
  • this sheet was stretched simultaneously at 125 ° C. 2 ⁇ 2 ⁇ biaxially, the stretching was almost non-uniform, the unstretched portion remained transparent, and the stretched portion became white.
  • Table 1 below shows the evaluation of the microcrystal size of the polyprene resin and the uniformity of stretching in the sheets produced by the production methods of Examples 1, 2, 3 and Comparative Example 1.
  • indicates that the uniformity is very good
  • indicates that the uniformity is good
  • x indicates that the uniformity is not good.
  • the crystallization temperature of the polypropylene resin was 117 ° C. From these facts, it was found that by applying stress when the temperature is lower than the crystallization temperature of the crystallized polymer, the crystallite size becomes 210 mm or less and the uniform stretchability is improved.

Abstract

Provided are a method for manufacturing a sheet that is easily uniformly stretchable during drawing even if the sheet contains plenty of inorganic substance particles, a sheet, and a method for manufacturing a resin molded body. The method for manufacturing a sheet according to the present invention comprises: a step of extruding a resin composition containing a crystalline polymer and inorganic fine powder or organic fine powder at a mass ratio of 50:50 to 20:80 from a die to obtain a sheet; a step of performing temperature adjustment so that the crystalline polymer contained in the sheet is less than a crystallization temperature; and a step of applying stress to the sheet when the temperature of the sheet is greater than or equal to the crystallization temperature of the crystalline polymer minus 60°C to less than the crystallization temperature of the crystalline polymer after the temperature adjustment.

Description

シートの製造方法、樹脂成形体の製造方法及びシートSheet manufacturing method, resin molded body manufacturing method, and sheet
 本発明は、シートの製造方法、樹脂成形体の製造方法及びシートに関する。 The present invention relates to a sheet manufacturing method, a resin molded body manufacturing method, and a sheet.
 従来より、樹脂成形体の製造方法としては、Tダイ等によりシート状に成形した後に、薄膜等にするためにシートの延伸が行われている。 Conventionally, as a method for producing a resin molded body, a sheet is stretched to form a thin film after being formed into a sheet shape by a T-die or the like.
 例えば、特許文献1には、熱可塑性樹脂と60重量%~82重量%の無機物質粒子とを含むペレットをTダイにより押出成形してシート状にし、その後、縦方向、横方向の延伸倍率をいずれも1.1倍~3.0倍に抑えて、延伸する工程を有するシートの製造方法が開示されている。 For example, in Patent Document 1, a pellet containing a thermoplastic resin and 60% to 82% by weight of inorganic substance particles is extruded by a T-die to form a sheet, and then the longitudinal and lateral stretching ratios are set. In any case, a method for producing a sheet having a step of stretching at a magnification of 1.1 to 3.0 times is disclosed.
特開2013-10931号公報JP 2013-10931 A
 しかしながら、特許文献1のように、シートが無機物質粒子を多く含む場合、熱可塑性樹脂の種類によってはシートを延伸したときに均一に伸びにくいという問題があった。 However, as in Patent Document 1, when the sheet contains a lot of inorganic particles, there is a problem that it is difficult to stretch uniformly when the sheet is stretched depending on the kind of the thermoplastic resin.
 本発明は以上の実情に鑑みてなされてものであり、無機微細粉末または有機微細粉末を多く含んでいても、延伸時に均一に伸びやすいシートの製造方法、シート、及び樹脂成形体の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a method for producing a sheet, a sheet, and a method for producing a resin molded body, which are easy to stretch uniformly during stretching even if they contain a large amount of inorganic fine powder or organic fine powder. The purpose is to provide.
 本発明者らは、無機微細粉末または有機微細粉末を多くシートにおいて、結晶化温度未満まで下げた後に応力を加えることで、延伸時に均一に伸びやすいことを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。 The present inventors have found that the inorganic fine powder or organic fine powder has a large amount of inorganic fine powder or organic fine powder, and that the stress is applied after lowering the temperature to below the crystallization temperature. . More specifically, the present invention provides the following.
 (1) 結晶性高分子と無機微細粉末または有機微細粉末とを50:50~20:80の質量比で含む樹脂組成物をダイから押出してシートを得る工程と、
 前記シートに含まれる前記結晶性高分子が結晶化温度未満となるように温度調整する工程と、
 前記温度調整後、シートの温度が前記結晶性高分子の結晶化温度-60℃以上前記結晶性高分子の結晶化温度未満であるときに該シート対して応力を加える工程と、を有する、シートの製造方法。
(1) a step of extruding a resin composition containing a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80 from a die to obtain a sheet;
Adjusting the temperature so that the crystalline polymer contained in the sheet is less than the crystallization temperature;
After the temperature adjustment, a step of applying stress to the sheet when the temperature of the sheet is not lower than the crystallization temperature of the crystalline polymer −60 ° C. or higher and lower than the crystallization temperature of the crystalline polymer. Manufacturing method.
 (2) 前記結晶性高分子が、ポリプロピレン樹脂又はポリエチレン樹脂を含む、(1)に記載の製造方法。 (2) The manufacturing method according to (1), wherein the crystalline polymer includes a polypropylene resin or a polyethylene resin.
 (3) 前記無機微細粉末が炭酸カルシウム粒子を含む、(1)又は(2)に記載の製造方法。 (3) The manufacturing method according to (1) or (2), wherein the inorganic fine powder includes calcium carbonate particles.
 (4) (1)から(3)のいずれかの方法によりシートを製造する工程と、製造されたシートを延伸する工程とを有する、樹脂成形体の製造方法。 (4) A method for producing a resin molded body, comprising a step of producing a sheet by any one of the methods (1) to (3) and a step of stretching the produced sheet.
 (5) 微結晶サイズが210Å以下である結晶性高分子と無機微細粉末または有機微細粉末とを50:50~20:80の質量比で含む樹脂組成物により形成されたシート。 (5) A sheet formed of a resin composition containing a crystalline polymer having a crystallite size of 210 mm or less and an inorganic fine powder or organic fine powder in a mass ratio of 50:50 to 20:80.
 本発明によれば、無機微細粉末または有機微細粉末を多量に含んでいても、延伸時に均一に伸びやすいシートを得ることができる。 According to the present invention, even if a large amount of inorganic fine powder or organic fine powder is contained, it is possible to obtain a sheet that is easily stretched uniformly during stretching.
 以下、本発明の実施形態について説明するが、本発明は特にこれに限定されず、適宜変更可能である。 Hereinafter, embodiments of the present invention will be described, but the present invention is not particularly limited thereto and can be appropriately changed.
 <シートの製造方法>
 本発明のシートの製造方法は、結晶性高分子と無機微細粉末または有機微細粉末とを50:50~20:80の質量比で含む樹脂組成物をダイから押出してシートを得る工程と、シートに含まれる結晶性高分子が結晶化温度未満となるように温度調整する工程と、温度調整後、シートの温度が結晶性高分子の結晶化温度-60℃以上結晶性高分子の結晶化温度未満であるときにシートに対して応力を加える工程と、を有する。本発明において、このように応力を加えることで、無機物質粒子を多く含んでいても、延伸時に均一に伸びやすいシートを得ることができる。
<Sheet manufacturing method>
The method for producing a sheet of the present invention comprises a step of obtaining a sheet by extruding a resin composition containing a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80 from a die, Adjusting the temperature so that the crystalline polymer contained in the composition is lower than the crystallization temperature, and after adjusting the temperature, the temperature of the sheet is the crystallization temperature of the crystalline polymer−60 ° C. or more. Applying stress to the sheet when it is less. In the present invention, by applying stress in this manner, a sheet that is easily stretched uniformly during stretching can be obtained even if it contains a large amount of inorganic substance particles.
 上記の温度領域でシートに応力を加えることにより、シート中の結晶性高分子の微結晶サイズを小さくすることができ、シートの均一延伸性が向上する。 By applying stress to the sheet in the above temperature range, the crystallite size of the crystalline polymer in the sheet can be reduced, and the uniform stretchability of the sheet is improved.
 (シートを得る工程)
 本発明は、結晶性高分子と無機微細粉末または有機微細粉末とを50:50~20:80の質量比で含む樹脂組成物をダイから押出してシートを得る工程を有する。
(Step of obtaining a sheet)
The present invention includes a step of obtaining a sheet by extruding a resin composition containing a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80 from a die.
 本発明のシートを得る工程において、樹脂組成物は、結晶性高分子と無機微細粉末または有機微細粉末とを50:50~20:80の質量比で含む。ここで、結晶性高分子とは、高分子が規則正しく配列する結晶領域と不規則な非晶領域を有し、融点を有する高分子のことを指す。結晶性高分子の種類は、結晶性を有するものであれば特に限定されないが、ポリオレフィン樹脂(ポリプロピレン樹脂、ポリエチレン樹脂等)、生分解性樹脂、ポリアミド樹脂、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)等が挙げられる。これらのうち、ポリオレフィン樹脂、生分解性樹脂が好ましく、特に、ポリプロピレン樹脂、ポリエチレン樹脂が好ましい。なお、ポリオレフィン樹脂、ポリアミド樹脂とは、ポリオレフィン、ポリアミドを主鎖として有する樹脂のことを指す。より具体的には、例えば、ポリプロピレン樹脂は、ポリプロピレンを主鎖として有する樹脂のことを指し、これらの樹脂は、結晶性を有するものであれば他の樹脂との共重合体であってもよい。例えば、プロピレン-エチレン共重合体を用いてもよい。なお、生分解性樹脂とは、自然界の微生物によって完全に消費され最終的に水と二酸化炭素に分解される樹脂をいう。具体的には、ポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンアジペート、ポリエチレンサクシネート、セルロースエステル等を挙げることができる。また、結晶性高分子は1種単独でもよく、2種以上を用いてもよく、例えば、ポリプロピレン樹脂とポリエチレン樹脂とを混合したものであってもよい。 In the step of obtaining the sheet of the present invention, the resin composition contains a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80. Here, the crystalline polymer refers to a polymer having a crystalline region in which the polymer is regularly arranged and an irregular amorphous region and having a melting point. The kind of the crystalline polymer is not particularly limited as long as it has crystallinity, but polyolefin resin (polypropylene resin, polyethylene resin, etc.), biodegradable resin, polyamide resin, polybutylene terephthalate (PBT), polyethylene terephthalate ( PET) and the like. Of these, polyolefin resins and biodegradable resins are preferable, and polypropylene resins and polyethylene resins are particularly preferable. In addition, polyolefin resin and polyamide resin refer to resin which has polyolefin and polyamide as a principal chain. More specifically, for example, a polypropylene resin refers to a resin having polypropylene as a main chain, and these resins may be copolymers with other resins as long as they have crystallinity. . For example, a propylene-ethylene copolymer may be used. The biodegradable resin is a resin that is completely consumed by microorganisms in the natural world and is finally decomposed into water and carbon dioxide. Specific examples include polylactic acid, polycaprolactone, polybutylene succinate, polybutylene adipate, polyethylene succinate, and cellulose ester. The crystalline polymer may be used alone or in combination of two or more. For example, a mixture of a polypropylene resin and a polyethylene resin may be used.
 本発明における樹脂組成物に含まれる無機微細粉末または有機微細粉末の種類は、特に限定されないが、例えば、炭酸カルシウム、酸化チタン、シリカ、クレー、タルク、カオリン、水酸化アルミニウム、硫酸カルシウム、硫酸バリウム、マイカ、酸化亜鉛、ドロマイト、ガラス繊維、中空ガラス等が挙げられる。有機微細粉末の種類は、特に限定されないが、例えば、メチルセルロース、エチルセルロース、ポリスチレン、ポリアクリル酸エステル、ポリ酢酸ビニル等が挙げられる。これらのうち、無機微細粉末としては、炭酸カルシウムを用いることが好ましい。これらは1種単独で用いてもよく、2種以上を併用してもよい。また、樹脂組成物中の無機微細粉末の分散性を高めるために、無機微細粉末の表面をあらかじめ常法に従い改質しておいてもよい。 The kind of inorganic fine powder or organic fine powder contained in the resin composition in the present invention is not particularly limited, and examples thereof include calcium carbonate, titanium oxide, silica, clay, talc, kaolin, aluminum hydroxide, calcium sulfate, and barium sulfate. , Mica, zinc oxide, dolomite, glass fiber, hollow glass and the like. Although the kind of organic fine powder is not specifically limited, For example, methylcellulose, ethylcellulose, a polystyrene, polyacrylic acid ester, polyvinyl acetate, etc. are mentioned. Of these, calcium carbonate is preferably used as the inorganic fine powder. These may be used alone or in combination of two or more. Moreover, in order to improve the dispersibility of the inorganic fine powder in the resin composition, the surface of the inorganic fine powder may be modified in advance according to a conventional method.
 本発明における樹脂組成物に含まれる結晶性高分子と無機微細粉末または有機微細粉末との質量比は、50:50~20:80の比率であれば特に限定されないが、48:52~30:70の比率であることが好ましく、43:57~35:65の比率であることがより好ましく、41:59~39:61の比率であることがさらに好ましい。 The mass ratio of the crystalline polymer and the inorganic fine powder or organic fine powder contained in the resin composition in the present invention is not particularly limited as long as it is a ratio of 50:50 to 20:80, but 48:52 to 30: The ratio is preferably 70, more preferably 43:57 to 35:65, and still more preferably 41:59 to 39:61.
 本発明における樹脂組成物に含まれる無機微細粉末または有機微細粉末の平均粒子径は、0.1μm以上50μm以下が好ましく、1.0μ以上15μm以下がより好ましい。本発明における無機物質粒子の平均粒子径は、レーザー回折式粒度分布測定装置で測定した、積算%の分布曲線から得られる50%粒子径(d50)である。無機物質粒子の形状は、粒状、針状、偏平状いずれも使用することができる。 The average particle size of the inorganic fine powder or organic fine powder contained in the resin composition in the present invention is preferably 0.1 μm or more and 50 μm or less, and more preferably 1.0 μm or more and 15 μm or less. The average particle diameter of the inorganic substance particles in the present invention is a 50% particle diameter (d50) obtained from an integrated% distribution curve measured with a laser diffraction particle size distribution analyzer. As the shape of the inorganic substance particles, any of granular, acicular, and flat shapes can be used.
 なお、上述した本発明における樹脂組成物においては、上述した結晶性高分子、無機微細粉末または有機微細粉末以外にも、補助剤として、色剤、滑剤、カップリング剤、流動性改良材、分散剤、酸化防止剤、紫外線吸収剤、安定剤、帯電防止剤、発泡剤等を配合してもよい。これらは、後述の混練工程において配合してもよく、混練工程の前にあらかじめ樹脂組成物に配合していてもよい。 In the above-described resin composition in the present invention, in addition to the above-described crystalline polymer, inorganic fine powder, or organic fine powder, as an auxiliary agent, a colorant, a lubricant, a coupling agent, a fluidity improving material, a dispersion You may mix | blend an agent, antioxidant, a ultraviolet absorber, a stabilizer, an antistatic agent, a foaming agent, etc. These may be blended in the kneading step described later, or may be blended in advance in the resin composition before the kneading step.
 滑剤としては、例えば、ステアリン酸、ヒドロキシステアリン酸、複合型ステアリン酸、オレイン酸等の脂肪酸系滑剤、脂肪族アルコール系滑剤、ステアロアミド、オキシステアロアミド、オレイルアミド、エルシルアミド、リシノールアミド、ベヘンアミド、メチロールアミド、メチレンビスステアロアミド、メチレンビスステアロベヘンアミド、高級脂肪酸のビスアミド酸、複合型アミド等の脂肪族アマイド系滑剤、ステアリン酸-n-ブチル、ヒドロキシステアリン酸メチル、多価アルコール脂肪酸エステル、飽和脂肪酸エステル、エステル系ワックス等の脂肪族エステル系滑剤、脂肪酸金属石鹸系族滑剤等を挙げることができる。 Examples of lubricants include stearic acid, hydroxystearic acid, complex stearic acid, oleic acid and other fatty acid lubricants, fatty alcohol lubricants, stearamide, oxystearamide, oleylamide, erucylamide, ricinolamide, behenamide, methylol Amide, Methylenebisstearoamide, Methylenebisstearobehenamide, Bisamidic acid of higher fatty acid, Aliphatic amide type lubricant such as composite amide, stearic acid-n-butyl, methyl hydroxystearate, polyhydric alcohol fatty acid ester, Examples thereof include aliphatic ester lubricants such as saturated fatty acid esters and ester waxes, and fatty acid metal soap group lubricants.
 酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、ペンタエリスリトール系酸化防止剤が使用できる。リン系、より具体的には亜リン酸エステル、リン酸エステル等のリン系酸化防止安定剤が好ましく用いられる。亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。 As the antioxidant, phosphorus antioxidants, phenol antioxidants, pentaerythritol antioxidants can be used. Phosphorus antioxidants, such as phosphorous esters, more specifically phosphorous esters and phosphate esters, are preferably used. Examples of phosphites include triester, diester, and monoester of phosphorous acid such as triphenyl phosphite, trisnonylphenyl phosphite, and tris (2,4-di-tert-butylphenyl) phosphite. Can be mentioned.
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート等が挙げられる。これらリン系酸化防止剤は単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Examples of the phosphate ester include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyl diphenyl phosphate, and the like. These phosphorus antioxidants may be used alone or in combination of two or more.
 フェノール系の酸化防止剤としては、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネイト、2-tert-ブチル-6-(3’-tert-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネイトジエチルエステル、及びテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン等が例示され、これらは単独で又は2種以上を組み合せて使用することができる。 Examples of phenolic antioxidants include α-tocopherol, butylhydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2- tert-Butyl-6- (3′-tert-butyl-5′-methyl-2′-hydroxybenzyl) -4-methylphenyl acrylate, 2,6-di-tert-butyl-4- (N, N-dimethyl) Aminomethyl) phenol, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxymethyl] methane Etc., and these can be used alone or in combination of two or more. wear.
 本発明における樹脂組成物は、ペレットの形態であってもよく、ペレットの形態でなくてもよいが、ペレットの形態である場合、ペレットの形状は特に限定されず、例えば、円柱、球形、楕円球状等のペレットを成形してもよい。ペレットのサイズは、形状に応じて適宜設定すれば良いが、例えば、球形ペレットの場合、直径1~10mmであってよい。楕円球状のペレットの場合、縦横比0.1~1.0の楕円状とし、縦横1~10mmであってよい。円柱ペレットの場合は、直径1~10mmの範囲内、長さ1~10mmの範囲内であってよい。これらの形状は、後述する混練工程後のペレットに対して成形させてよい。ペレットの形状は、常法に従って成形させてよい。 The resin composition in the present invention may be in the form of pellets or may not be in the form of pellets, but when it is in the form of pellets, the shape of the pellets is not particularly limited, for example, a cylinder, a sphere, an ellipse A spherical pellet or the like may be formed. The size of the pellet may be appropriately set according to the shape. For example, in the case of a spherical pellet, the size may be 1 to 10 mm. In the case of an oval pellet, it may be an ellipse having an aspect ratio of 0.1 to 1.0 and may be 1 to 10 mm in length and width. In the case of a cylindrical pellet, the diameter may be in the range of 1 to 10 mm in diameter and in the range of 1 to 10 mm in length. These shapes may be formed on the pellets after the kneading step described later. The shape of the pellet may be formed according to a conventional method.
 本発明における樹脂組成物は、従来の公知の方法で調製してもよく、例えば、結晶性高分子と無機微細粉末または有機微細粉末とを50:50~20:80の質量比で含むように混練して調製することができる。混練には、従来公知の装置を用いることができ、例えば、一軸又は二軸の混練押出機(例えば、株式会社パーカーコーポレーション製の同方向回転ニ軸混錬押出機HK-25D、株式会社シーティーイー(CTE)社製のHTM型コンパウンド用特殊ニ軸押出機等)、バンバリーミキサー(例えば、株式会社神戸製鋼製の75リッター3Dバンバリーミキサー等)等を用いることができる。また、混練とシート状に押出す工程を押出し機により同時に行ってもよい。 The resin composition in the present invention may be prepared by a conventionally known method. For example, the resin composition includes a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80. It can be prepared by kneading. For kneading, a conventionally known apparatus can be used. For example, a uniaxial or biaxial kneading extruder (for example, a co-rotating biaxial kneading extruder HK-25D manufactured by Parker Corporation, C.T. A special twin screw extruder for HTM type compound manufactured by E (CTE), a Banbury mixer (for example, a 75 liter 3D Banbury mixer manufactured by Kobe Steel Co., Ltd.) and the like can be used. Moreover, you may perform the process of kneading | mixing and extruding in a sheet form simultaneously with an extruder.
 樹脂組成物をダイから押出してシート状にする方法は、従来の公知の方法を用いることができるが、例えば、混練と押出を同時に行う場合十分に強い力で行うことが好ましく、具体的には、1軸又は多軸押出機(例えば二軸押出機)を用いることが好ましい。また、ロータセグメントを組み合わせたものを用いてもよく、使用する押出機がロータセグメントを付けた多軸押出機であれば、スクリューによる強い剪断力の作用で、樹脂組成物を混練できる。なお、樹脂組成物をあらかじめバンバリーミキサー等により調製した状態で、押出し機のホッパーに投入してもよい。樹脂組成物の混練状態の調整は、樹脂組成物の成分や、熱可塑性樹脂の種類によって、溶融温度、スクリューの回転速度、樹脂組成物の押出機内での滞留時間等を適宜調整してもよい。ダイには、押し出される溶融樹脂をシート状に賦形する金型、例えば、フラットダイ(Tダイ)やサーキュラーダイ等が用いられる。また、ダイス手前には、スクリーンを設置し樹脂組成物中に混入した異物等を除去してもよい。 As a method of extruding the resin composition from the die to form a sheet, a conventional known method can be used. For example, when kneading and extruding are performed simultaneously, it is preferably performed with a sufficiently strong force, specifically, It is preferable to use a single-screw or multi-screw extruder (for example, a twin-screw extruder). Also, a combination of rotor segments may be used. If the extruder used is a multi-screw extruder with a rotor segment, the resin composition can be kneaded by the action of a strong shearing force by a screw. In addition, you may throw in into the hopper of an extruder in the state which prepared the resin composition previously with the Banbury mixer etc. The kneading state of the resin composition may be adjusted by appropriately adjusting the melting temperature, the rotational speed of the screw, the residence time of the resin composition in the extruder, etc. depending on the components of the resin composition and the type of the thermoplastic resin. . As the die, a mold for shaping the extruded molten resin into a sheet shape, for example, a flat die (T die) or a circular die is used. Further, before the dice, a screen may be installed to remove foreign matters mixed in the resin composition.
 シート状に押し出すときの混練の温度は、十分に溶融するような温度であればよく、結晶性高分子の種類に応じて適宜設定してもよく、例えば、結晶性高分子の融点以上の温度で混練を行えばよい。より均一に伸ばしやすいことから、結晶性高分子の融点+10℃以上以上であることが好ましく、結晶性高分子の融点+20℃以上であることがより好ましく、結晶性高分子の融点+30℃以上であることがさらに好ましく、結晶性高分子の融点+45℃以上であればより一層胃好ましく、結晶性高分子の融点+55℃以上であることが特に好ましい。他方、混練の温度は、結晶性高分子の融点+100℃以下(90℃以下、80℃以下、70℃以下、60℃以下、50℃以下、40℃以下、30℃以下等)であってよい。 The temperature of kneading when extruding into a sheet form may be a temperature that sufficiently melts, and may be appropriately set according to the type of the crystalline polymer, for example, a temperature that is equal to or higher than the melting point of the crystalline polymer. Kneading may be performed. The melting point of the crystalline polymer is preferably + 10 ° C. or higher, more preferably the melting point of the crystalline polymer + 20 ° C. or higher, and the melting point of the crystalline polymer + 30 ° C. or higher. More preferably, the melting point of the crystalline polymer is more preferably + 45 ° C. or more, and the melting point of the crystalline polymer is more preferably + 55 ° C. or more. On the other hand, the kneading temperature may be the melting point of the crystalline polymer + 100 ° C. or lower (90 ° C. or lower, 80 ° C. or lower, 70 ° C. or lower, 60 ° C. or lower, 50 ° C. or lower, 40 ° C. or lower, 30 ° C. or lower, etc.). .
 (温度調整工程)
 本発明は、シートに含まれる結晶性高分子が結晶化温度未満となるように温度調整する工程(以下、本明細書において「温度調整工程」という。)を有する。
(Temperature adjustment process)
The present invention includes a step of adjusting the temperature so that the crystalline polymer contained in the sheet is lower than the crystallization temperature (hereinafter referred to as “temperature adjusting step” in this specification).
 温度調整の手段は、従来の公知の方法であればどのように行ってもよく、例えば、押出し後のシートを所望の冷却温度に設定されたロールにより巻き取ることで行ってもよく、あるいは、水冷等により行ってもよいが、急速に冷却した方が、より均一に伸ばしやすことから、押出し後のシートを所望の冷却温度に設定されたロールでまきとることで行うことが好ましい。 The temperature adjusting means may be any method as long as it is a conventionally known method, for example, it may be performed by winding the extruded sheet with a roll set at a desired cooling temperature, or Although it may be performed by water cooling or the like, it is preferably performed by winding the sheet after extrusion with a roll set to a desired cooling temperature, since the more rapidly cooled, the more uniformly stretched.
 本発明において、冷却する温度に関して、後述の応力を加える工程に供することに鑑みると、結晶性高分子の結晶化温度-70℃以上まで冷却することが好ましく、-60℃以上まで冷却することより好ましく、-50℃以上まで冷却することがさらに好ましく、-40℃以上まで冷却することがより一層好ましく、-30℃以上まで冷却することがさらに一層好ましく、-20℃以上まで冷却することが特に好ましい。また、冷却する温度の上限は、結晶性高分子の結晶化温度未満であれば良く、例えば、結晶性高分子の結晶化温度-5℃以下(-10℃以下、-20℃以下、-30℃以下、-40℃以下等)であってよい。温度調整の時間は、所望の温度となるまで、適宜調整することができる。 In the present invention, in view of subjecting it to the step of applying stress, which will be described later, regarding the cooling temperature, it is preferable to cool the crystalline polymer to a crystallization temperature of −70 ° C. or higher, and to cool to −60 ° C. or higher. Preferably, cooling to −50 ° C. or higher is further preferable, cooling to −40 ° C. or higher is even more preferable, cooling to −30 ° C. or higher is even more preferable, and cooling to −20 ° C. or higher is particularly preferable. preferable. The upper limit of the cooling temperature may be lower than the crystallization temperature of the crystalline polymer. For example, the crystallization temperature of the crystalline polymer is −5 ° C. or lower (−10 ° C. or lower, −20 ° C. or lower, −30 ° C. ° C or lower, -40 ° C or lower, etc.). The temperature adjustment time can be appropriately adjusted until a desired temperature is reached.
 (応力を加える工程)
 本発明は、温度調整工程後、シートの温度が結晶性高分子の結晶化温度-60℃以上結晶性高分子の結晶化温度未満であるときにシートに対して応力を加える工程を有する。
(Process to apply stress)
The present invention includes a step of applying stress to the sheet when the temperature of the sheet is equal to or higher than the crystallization temperature of the crystalline polymer −60 ° C. or lower than the crystallization temperature of the crystalline polymer after the temperature adjusting step.
 本発明は、シートに対して応力を加えるのが、シートの温度が結晶性高分子の結晶化温度-70℃以上であるときが好ましく、-60℃以上であるときより好ましく、-50℃以上であるときがさらに好ましく、-40℃以上であるときがより一層好ましく、-30℃以上であるときがさらに一層好ましく、-20℃以上であるときが特に好ましい。、シートに対して応力を加えるときのシートの温度の上限は、結晶性高分子の結晶化温度未満であれば良く、例えば、結晶性高分子の結晶化温度-5℃以下(-10℃以下、-20℃以下、-30℃以下、-40℃以下等)であってよい。 In the present invention, the stress is applied to the sheet when the sheet temperature is preferably a crystallization temperature of the crystalline polymer of −70 ° C. or higher, more preferably −60 ° C. or higher, and −50 ° C. or higher. Is more preferably −40 ° C. or higher, even more preferably −30 ° C. or higher, and particularly preferably −20 ° C. or higher. The upper limit of the sheet temperature when stress is applied to the sheet may be lower than the crystallization temperature of the crystalline polymer. For example, the crystallization temperature of the crystalline polymer is −5 ° C. or lower (−10 ° C. or lower). -20 ° C or lower, -30 ° C or lower, -40 ° C or lower, etc.).
 シートに対して応力を加える方法としては、例えば、ロールによる挟み込み等のシートに圧力をかけることが可能な手段により、圧力を加えることで行ってもよく、例えば、0.1MPa以上(0.2MPa以上、1.0MPa以上、2.0MPa以上、3.0MPa以上、4.0MPa以上、5.0MPa以上、6.0MPa以上、7.0MPa以上、8.0MPa以上等)であってもよい。あるいは、ロールで連続して巻き取る場合、ロールの巻き取る強さを部分的に変化させることで応力を加えてもよい。 As a method of applying stress to the sheet, for example, it may be performed by applying pressure by means capable of applying pressure to the sheet such as sandwiching by a roll. For example, 0.1 MPa or more (0.2 MPa) Or more, 1.0 MPa or more, 2.0 MPa or more, 3.0 MPa or more, 4.0 MPa or more, 5.0 MPa or more, 6.0 MPa or more, 7.0 MPa or more, 8.0 MPa or more, or the like. Or when winding with a roll continuously, you may apply stress by changing the strength which a roll winds up partially.
 <樹脂成形体の製造方法>
 本発明は、上述のシートの製造方法によりシートを製造する工程と、製造されたシートを延伸する工程とを有する、樹脂成形体の製造方法を包含する。
<Production method of resin molding>
This invention includes the manufacturing method of a resin molding which has the process of manufacturing a sheet | seat with the manufacturing method of the above-mentioned sheet | seat, and the process of extending | stretching the manufactured sheet | seat.
 本発明の樹脂成形体の製造方法において、ペレットを成形する工程は、該ペレットを延伸する方法は特に限定されず、フラットダイ等により延伸してもよい。 In the method for producing a resin molded body of the present invention, the method of stretching the pellet is not particularly limited, and the pellet may be stretched by a flat die or the like.
 製造した樹脂成形体の用途はどのように用いてもよいが、特に均一性が求められる用途に適しており、例えば、紙の代替品(印刷用紙、包装用紙、絶縁紙等)、包装容器等として用いることができる。 The produced resin molded body can be used in any way, but is particularly suitable for applications where uniformity is required, such as paper substitutes (printing paper, packaging paper, insulating paper, etc.), packaging containers, etc. Can be used as
 <シート>
 本発明は、微結晶サイズが210Å以下である結晶性高分子と無機物質粒子とを50:50~20:80の質量比で含む樹脂組成物により形成されたシートを包含する。かかるシートは、上述の本発明のシートの製造方法により製造できる。
<Sheet>
The present invention includes a sheet formed of a resin composition containing a crystalline polymer having a crystallite size of 210 mm or less and inorganic substance particles in a mass ratio of 50:50 to 20:80. Such a sheet can be produced by the sheet production method of the present invention described above.
 シートに含まれる結晶性高分子の微結晶サイズは、210Å以下であれば特に限定されないが、過剰であると、均一になりにくくなることから、200Å以下であることが好ましく、190Å以下であることがより好ましく、180Å以下であることがさらに好ましく、160Å以下であることがなお好ましく、140Å以下であることがより一層好ましく、120Å以下であることがさらに一層好ましい。また、ペレットに含まれる結晶性高分子の微結晶サイズは、50Å以上(75Å以上、100Å以上、125Å以上、150Å以上、170Å以上、180Å以上等)であってもよい。 The crystallite size of the crystalline polymer contained in the sheet is not particularly limited as long as it is 210 mm or less, but if it is excessive, it becomes difficult to be uniform, and therefore it is preferably 200 mm or less, and 190 mm or less. More preferably, it is more preferably 180 Å or less, still more preferably 160 Å or less, still more preferably 140 Å or less, and even more preferably 120 Å or less. Further, the crystallite size of the crystalline polymer contained in the pellet may be 50 cm or more (75 cm or more, 100 cm or more, 125 cm or more, 150 cm or more, 170 cm or more, 180 mm or more, etc.).
 本発明において微結晶サイズとは、シートに含まれる結晶性高分子の広角X線回折測定を行い、得られた回折パターンからG.Nattaらによって規定された樹脂の結晶(α晶)の(040)面の回折ピークの半値幅より計算したものである。具体的には、広角X線回折測定により得られた回折パターンについて、G.Nattaの作図法(A.Weidinger and P.H.Hermans  Die Makromolekulare Chemie 98-115, 50(1961)参照)により樹脂(例えばポリプロピレン樹脂)の非晶成分を除いたベースラインを作成し、G.Nattaらによって規定された樹脂のα晶の(040)面に相当する回折ピークから半値幅を求める。その半値幅を下記のScherrerの式に代入して微結晶サイズを計算する。
 D=(Kλ)/{(B-b)cos θ}      (Scherrerの式)
  D:微結晶サイズ  (Å)
  K:Scherrer定数=0.9λ:CuのKα線の波長=1.5405(A)
  θ:回折ピーク角度  (rad)
  B:半値幅  (rad)
  b:無限大の結晶の回折ピークの半値幅 (rad)
 なお、無限大の結晶とは理想的には半値幅が0であるが、装置の精度によってピーク幅を生ずるものであり、bは装置精度の補正項として用いている。無限大の結晶としては、粉末ケイ素(三津和化学社製 #200メッシュ)を使用する。
In the present invention, the crystallite size is defined as G.G. This is calculated from the half-value width of the diffraction peak of the (040) plane of the resin crystal (α crystal) specified by Natta et al. Specifically, for diffraction patterns obtained by wide-angle X-ray diffraction measurement, G. A base line from which an amorphous component of a resin (for example, a polypropylene resin) was removed was prepared by the drawing method of Natta (see A. Weidinger and PH Hermans Die Makromolekule Chemie 98-115, 50 (1961)). The full width at half maximum is obtained from the diffraction peak corresponding to the (040) plane of the α crystal of the resin specified by Natta et al. By substituting the full width at half maximum into the Scherrer equation below, the crystallite size is calculated.
D = (Kλ) / {(B−b) cos θ} (Scherrer equation)
D: crystallite size (Å)
K: Scherrer constant = 0.9λ: wavelength of Cu Kα ray = 1.5405 (A)
θ: diffraction peak angle (rad)
B: Half width (rad)
b: Half width of the diffraction peak of an infinite crystal (rad)
An infinite crystal ideally has a half width of 0, but a peak width is generated depending on the accuracy of the device, and b is used as a correction term for the device accuracy. As an infinite crystal, powder silicon (# 200 mesh manufactured by Mitsuwa Chemical Co., Ltd.) is used.
 本発明のシートに含まれる結晶性高分子は、微結晶サイズが210Å以下であれば特に限定されないが、特に、210Å以下であるときに均一性が良好となることから、ポリプロピレン樹脂であることが好ましい。 The crystalline polymer contained in the sheet of the present invention is not particularly limited as long as the crystallite size is 210 mm or less, but in particular, when the crystallite size is 210 mm or less, the uniformity becomes good, so that it may be a polypropylene resin. preferable.
 本発明のシートは、樹脂成形に用いられるものであり、成形の種類(射出成形、無延伸成形、押出成形(異型押出成形を含む)、ブロー成形、延伸等)は特に限定されないが、延伸に適しているため、延伸用として用いることが好ましい。 The sheet of the present invention is used for resin molding, and the type of molding (injection molding, non-stretch molding, extrusion molding (including profile extrusion molding), blow molding, stretching, etc.) is not particularly limited. Since it is suitable, it is preferably used for stretching.
 ポリプロピレン樹脂として、ポリプロピレン単独重合体PP1(日本ポリプロ(株)製:EA9)を用いた。PP1の結晶化温度を調べるために、島津製作所製DSC-60Aで示差熱分析を行った。室温から195℃まで10℃/分で昇温後、10℃/分で40℃まで降温した。その結果得られた発熱ピークのトップから結晶化温度は117℃であった。炭酸カルシウムとして、CC1(ライトンS―4 平均粒径 2.2μm)を用いた。滑剤としてステアリン酸マグネシウム(MS1)を用いた。株式会社神戸製鋼製75リッター3DバンバリーミキサーでPP1/CC1/MS1=40/60/0.5の比率で15分間混錬した。排出樹脂温度は180℃であった。その後、180℃に維持された有限会社勝製作所製150 mm L/D=10 ストレーナー中を通し、190℃でダイからストランドを押出し、水冷後カットすることでペレット化した。このようにして作製したペレットを東洋精機製作所製ラボプラ一軸Tダイ押出成形装置(φ20mm、L/D=25)、195℃でTダイからシート押出し、東洋精機製フィルム・シート引き取り機FT3W20で巻き取った。さらに、それらのシートを株式会社井元製作所製ニ軸延伸機IMC-11A9を用い、125℃で縦横2倍×2倍、7mm/分で同時ニ軸延伸した。 As the polypropylene resin, a polypropylene homopolymer PP1 (manufactured by Nippon Polypro Co., Ltd .: EA9) was used. In order to investigate the crystallization temperature of PP1, differential thermal analysis was performed with DSC-60A manufactured by Shimadzu Corporation. The temperature was raised from room temperature to 195 ° C. at 10 ° C./min, and then lowered to 40 ° C. at 10 ° C./min. As a result, the crystallization temperature from the top of the exothermic peak obtained was 117 ° C. CC1 (Ryton S-4, average particle size 2.2 μm) was used as calcium carbonate. Magnesium stearate (MS1) was used as a lubricant. It knead | mixed for 15 minutes with the ratio of PP1 / CC1 / MS1 = 40/60 / 0.5 with the 75 liter 3D Banbury mixer made from Kobe Steel. The discharged resin temperature was 180 ° C. Then, the strand was extruded from a die at 190 ° C through a 150 mm L / D = 10 strainer manufactured by Katsu Seisakusho, which was maintained at 180 ° C, and pelletized by cutting after water cooling. The pellets thus produced were lab plastic uniaxial T-die extrusion molding equipment (φ20mm, L / D = 25) manufactured by Toyo Seiki Seisakusho, sheet extruded from the T-die at 195 ° C, and taken up by a film / sheet take-up machine FT3W20 manufactured by Toyo Seiki It was. Further, these sheets were simultaneously biaxially stretched at 125 ° C. at 2 × 2 × 7 mm / min using a biaxial stretching machine IMC-11A9 manufactured by Imoto Seisakusho.
 <実施例1>
 作製したペレットを東洋精機製作所製ラボプラ一軸Tダイ押出成形装置(φ20mm、L/D=25)、195℃で押出しシートに成形した。Tダイから出てきた樹脂を表面温度が110℃に設定した金属ロールに接触させ、その反面をさらに表面温度を110℃に設定した金属ロールで圧力10MPaで挟みこみ冷却し、シート成形したものを巻き取った。得られたシートの粉末の広角X線回折パターンをリガク製Ultima IV X線回折装置で観測したところ、アイソタクチックポリプロピレンのα相由来の回折パターンが得られた。このα相の(040)面の回折ピークの半値幅から微結晶サイズを算出したところ、111Åであった。このシートを125℃で縦横2倍×2倍ニ軸同時延伸したところ、均一に延伸でき均一な白色シートを作製できた。
<Example 1>
The produced pellets were molded into an extruded sheet at 195 ° C. at a laboratory plastic uniaxial T-die extrusion molding apparatus (φ20 mm, L / D = 25) manufactured by Toyo Seiki Seisakusho. The resin that came out of the T-die was brought into contact with a metal roll whose surface temperature was set to 110 ° C., and the other side was further sandwiched and cooled at a pressure of 10 MPa with a metal roll set to a surface temperature of 110 ° C. Winded up. When the wide-angle X-ray diffraction pattern of the powder of the obtained sheet was observed with a Rigaku Ultimate IV X-ray diffractometer, a diffraction pattern derived from the α phase of isotactic polypropylene was obtained. When the crystallite size was calculated from the half-value width of the diffraction peak of the (040) plane of the α phase, it was 111 Å. When this sheet was stretched simultaneously at 125 ° C. twice in the vertical and horizontal directions and twice in the biaxial direction, it could be uniformly stretched to produce a uniform white sheet.
 <実施例2>
 作製したペレットを東洋精機製作所製ラボプラ一軸Tダイ押出成形装置(φ20mm、L/D=25)、195℃で押出しシートに成形した。Tダイから出てきた樹脂を表面温度が80℃に設定した金属ロールに接触させ、その反面をさらに表面温度を80℃に設定した金属ロールで圧力10MPaで挟みこみ冷却し、シート成形したものを巻き取った。得られたシートの粉末の広角X線回折パターンをリガク製Ultima IV X線回折装置で観測したところ、アイソタクチックポリプロピレンのα相由来の回折パターンが得られた。このα相の(040)面の回折ピークの半値幅から微結晶サイズを算出したところ、185Åであった。このシートを125℃で縦横2倍×2倍ニ軸同時延伸したところ、均一に延伸でき均一な白色シートを作製できた。
<Example 2>
The produced pellets were molded into an extruded sheet at 195 ° C. at a laboratory plastic uniaxial T-die extrusion molding apparatus (φ20 mm, L / D = 25) manufactured by Toyo Seiki Seisakusho. The resin that came out of the T-die was brought into contact with a metal roll whose surface temperature was set to 80 ° C., and the other side was further sandwiched and cooled at a pressure of 10 MPa with a metal roll set to a surface temperature of 80 ° C. Winded up. When the wide-angle X-ray diffraction pattern of the powder of the obtained sheet was observed with a Rigaku Ultimate IV X-ray diffractometer, a diffraction pattern derived from the α phase of isotactic polypropylene was obtained. The crystallite size was calculated from the half-value width of the diffraction peak of the (040) plane of the α phase, and it was 185 mm. When this sheet was stretched simultaneously at 125 ° C. twice in the vertical and horizontal directions and twice in the biaxial direction, it could be uniformly stretched to produce a uniform white sheet.
 <実施例3>
 作製したペレットを東洋精機製作所製ラボプラ一軸Tダイ押出成形装置(φ20mm、L/D=25)、195℃で押出しシートに成形した。Tダイから出てきた樹脂を表面温度が70℃に設定した金属ロールに接触させ、その反面をさらに表面温度を70℃に設定した金属ロールで圧力0.5MPaで挟みこみ冷却し、シート成形したものを巻き取った。得られたシートの粉末の広角X線回折パターンをリガク製Ultima IV X線回折装置で観測したところ、アイソタクチックポリプロピレンのα相由来の回折パターンが得られた。このα相の(040)面の回折ピークの半値幅から微結晶サイズを算出したところ、193Åであった。このシートを125℃で縦横2倍×2倍ニ軸同時延伸したところ、良好に均一に延伸されていた部分が観察されたが、一部に不均一の部分が観察された。延伸されない部分は透明なまま、延伸された部分は白色となった。
<Example 3>
The produced pellets were molded into an extruded sheet at 195 ° C. at a laboratory plastic uniaxial T-die extrusion molding apparatus (φ20 mm, L / D = 25) manufactured by Toyo Seiki Seisakusho. The resin coming out of the T-die was brought into contact with a metal roll whose surface temperature was set at 70 ° C., and the other side was further sandwiched and cooled at a pressure of 0.5 MPa with a metal roll set at a surface temperature of 70 ° C. I rolled up things. When the wide-angle X-ray diffraction pattern of the powder of the obtained sheet was observed with a Rigaku Ultimate IV X-ray diffractometer, a diffraction pattern derived from the α phase of isotactic polypropylene was obtained. The crystallite size was calculated from the half-value width of the diffraction peak of the (040) plane of the α phase, and it was 193 mm. When this sheet was stretched simultaneously at 125 ° C. 2 × 2 × biaxially, a portion that was satisfactorily stretched uniformly was observed, but a non-uniform portion was partially observed. The unstretched portion remained transparent, and the stretched portion became white.
 <比較例1>
 作製したペレットを東洋精機製作所製ラボプラ一軸Tダイ押出成形装置(φ20mm、L/D=25)、195℃で押出しシートに成形した。Tダイから出てきた樹脂を表面温度が80℃に設定した金属ロールに接触させ、その反面は空冷し、シート成形したものを巻き取った。得られたシートの粉末の広角X線回折パターンをリガク製Ultima IV X線回折装置で観測したところ、アイソタクチックポリプロピレンのα相由来の回折パターンが得られた。このα相の(040)面の回折ピークの半値幅から微結晶サイズを算出したところ、215Åであった。このシートを125℃で縦横2倍×2倍ニ軸同時延伸したところ、延伸はほとんど不均一になり、延伸されない部分は透明なまま、延伸された部分は白色となった。
<Comparative Example 1>
The produced pellets were molded into an extruded sheet at 195 ° C. at a laboratory plastic uniaxial T-die extrusion molding apparatus (φ20 mm, L / D = 25) manufactured by Toyo Seiki Seisakusho. The resin coming out of the T-die was brought into contact with a metal roll whose surface temperature was set to 80 ° C., while the other side was air-cooled and the sheet-formed one was wound up. When the wide-angle X-ray diffraction pattern of the powder of the obtained sheet was observed with a Rigaku Ultimate IV X-ray diffractometer, a diffraction pattern derived from the α phase of isotactic polypropylene was obtained. The crystallite size was calculated from the half-value width of the diffraction peak of the (040) plane of the α phase, and it was 215 mm. When this sheet was stretched simultaneously at 125 ° C. 2 × 2 × biaxially, the stretching was almost non-uniform, the unstretched portion remained transparent, and the stretched portion became white.
 以下の表1に、実施例1、2、3、比較例1の製法により製造されたシートにおけるポリプレン樹脂の微結晶サイズと延伸の均一性の評価を示す。表1中、「◎」は均一性が非常に良好であったこと、「○」は均一性が良好であったこと、「×」は均一性が良好でなかったことを示す。 Table 1 below shows the evaluation of the microcrystal size of the polyprene resin and the uniformity of stretching in the sheets produced by the production methods of Examples 1, 2, 3 and Comparative Example 1. In Table 1, “◎” indicates that the uniformity is very good, “◯” indicates that the uniformity is good, and “x” indicates that the uniformity is not good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施例においてポリプロピレン樹脂の結晶化温度は117℃であった。これらのことから、結晶化高分子の結晶化温度未満のときに応力を加える事で、微結晶サイズが210Å以下となり、均一延伸性が向上することがわかった。 In this example, the crystallization temperature of the polypropylene resin was 117 ° C. From these facts, it was found that by applying stress when the temperature is lower than the crystallization temperature of the crystallized polymer, the crystallite size becomes 210 mm or less and the uniform stretchability is improved.

Claims (5)

  1.  結晶性高分子と無機微細粉末または有機微細粉末とを50:50~20:80の質量比で含む樹脂組成物をダイから押出してシートを得る工程と、
     前記シートに含まれる結晶性高分子が結晶化温度未満となるように温度調整する工程と、
     前記温度調整後、シートの温度が前記結晶性高分子の結晶化温度-60℃以上前記結晶性高分子の結晶化温度未満であるときに該シートに対して応力を加える工程と、を有する、シートの製造方法。
    A step of extruding a resin composition containing a crystalline polymer and an inorganic fine powder or an organic fine powder in a mass ratio of 50:50 to 20:80 from a die to obtain a sheet;
    Adjusting the temperature so that the crystalline polymer contained in the sheet is less than the crystallization temperature;
    After the temperature adjustment, a step of applying stress to the sheet when the temperature of the sheet is not lower than the crystallization temperature of the crystalline polymer −60 ° C. or higher and lower than the crystallization temperature of the crystalline polymer. Sheet manufacturing method.
  2.  前記結晶性高分子が、ポリプロピレン樹脂又はポリエチレン樹脂を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the crystalline polymer includes a polypropylene resin or a polyethylene resin.
  3.  前記無機微細粉末が炭酸カルシウム粒子を含む、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the inorganic fine powder contains calcium carbonate particles.
  4.  請求項1から3のいずれかの方法によりシートを製造する工程と、製造されたシートを延伸する工程とを有する、樹脂成形体の製造方法。 A method for producing a resin molded body, comprising a step of producing a sheet by the method according to any one of claims 1 to 3 and a step of stretching the produced sheet.
  5.  微結晶サイズが210Å以下である結晶性高分子と無機物質粒子とを50:50~20:80の質量比で含む樹脂組成物により形成されたシート。 A sheet formed of a resin composition containing a crystalline polymer having a crystallite size of 210 mm or less and inorganic substance particles in a mass ratio of 50:50 to 20:80.
PCT/JP2017/037342 2016-11-17 2017-10-16 Method for manufacturing sheet, method for manufacturing resin molded body, and sheet WO2018092481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016224440A JP6765118B2 (en) 2016-11-17 2016-11-17 Sheet manufacturing method, resin molded product manufacturing method and sheet
JP2016-224440 2016-11-17

Publications (1)

Publication Number Publication Date
WO2018092481A1 true WO2018092481A1 (en) 2018-05-24

Family

ID=62146532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037342 WO2018092481A1 (en) 2016-11-17 2017-10-16 Method for manufacturing sheet, method for manufacturing resin molded body, and sheet

Country Status (2)

Country Link
JP (1) JP6765118B2 (en)
WO (1) WO2018092481A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3542982A4 (en) * 2016-11-17 2020-07-15 TBM Co., Ltd. Method for producing pellets, production method for resin molding, and pellets
WO2020235157A1 (en) * 2019-05-20 2020-11-26 株式会社Tbm Printing sheet and method for manufacturing printing sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962631B1 (en) * 2021-05-27 2021-11-05 株式会社Tbm Resin composition and molded product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198636A (en) * 1988-02-03 1989-08-10 Mitsubishi Petrochem Co Ltd Production of thermoplastic resin film having improved slipperiness
JPH04335043A (en) * 1991-05-13 1992-11-24 Mitsui Toatsu Chem Inc Production of porous film
JPH07113074A (en) * 1993-10-19 1995-05-02 Sumitomo Electric Ind Ltd Latent heat recovery heat reservoir
JP2013010931A (en) * 2011-05-31 2013-01-17 Tbm Co Ltd Method for producing inorganic substance powder highly-oriented thin film sheet
WO2015060271A1 (en) * 2013-10-21 2015-04-30 株式会社Tbm Process for manufacturing filler-containing plastic sheet
WO2016051612A1 (en) * 2014-09-29 2016-04-07 株式会社Tbm Precursor of sheet for vacuum molding use, sheet for vacuum molding use, method for producing said sheet, and method for producing molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198636A (en) * 1988-02-03 1989-08-10 Mitsubishi Petrochem Co Ltd Production of thermoplastic resin film having improved slipperiness
JPH04335043A (en) * 1991-05-13 1992-11-24 Mitsui Toatsu Chem Inc Production of porous film
JPH07113074A (en) * 1993-10-19 1995-05-02 Sumitomo Electric Ind Ltd Latent heat recovery heat reservoir
JP2013010931A (en) * 2011-05-31 2013-01-17 Tbm Co Ltd Method for producing inorganic substance powder highly-oriented thin film sheet
WO2015060271A1 (en) * 2013-10-21 2015-04-30 株式会社Tbm Process for manufacturing filler-containing plastic sheet
WO2016051612A1 (en) * 2014-09-29 2016-04-07 株式会社Tbm Precursor of sheet for vacuum molding use, sheet for vacuum molding use, method for producing said sheet, and method for producing molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3542982A4 (en) * 2016-11-17 2020-07-15 TBM Co., Ltd. Method for producing pellets, production method for resin molding, and pellets
WO2020235157A1 (en) * 2019-05-20 2020-11-26 株式会社Tbm Printing sheet and method for manufacturing printing sheet

Also Published As

Publication number Publication date
JP2018079641A (en) 2018-05-24
JP6765118B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
KR102365289B1 (en) Inorganic material powder blended thermoplastic resin composition and molded article
WO2012165311A1 (en) Method for producing inorganic substance powder highly-oriented thin film sheet
WO2018092481A1 (en) Method for manufacturing sheet, method for manufacturing resin molded body, and sheet
CN109715714B (en) Method for producing sheet
WO2011122264A1 (en) Transparentization agent composition containing sorbitol compound and method for producing polypropylene resin composition using this sorbitol compound
CN112795067A (en) Special material for polyolefin breathable film with high breathability and high permeation resistance as well as preparation method and application of special material
JP6701501B2 (en) Foam blow molding method
JP6492269B2 (en) Method for producing filler-containing plastic sheet
JP6675530B2 (en) Precursor for vacuum forming sheet, vacuum forming sheet and method for producing the same, and method for producing molded article
JP6614667B2 (en) Method for producing pellets, method for producing resin moldings, and pellets
JPH10292059A (en) Production of air-permeable film
JP6334247B2 (en) Recycled filler-containing plastic sheet and method for producing the same
KR20040099865A (en) Polypropylene composition provided by the calendering process for transparent film and sheet, and method for preparing polypropylene transparent film and sheet using the same
CN107841039B (en) Rubber toughened polypropylene compound and application thereof
JPH04335043A (en) Production of porous film
JP2008260848A (en) Polypropylene-based resin composition and film therefrom
KR20070052957A (en) Compound composition for air and water vapor-permeable and waterproof film and method for preparing film using the same
CN112646304A (en) Resin material for blowing breathable film
CN102421843B (en) Method for controlling crystal growth rate of amide compound and method for producing molded article of polyolefin-based resin
JP6909394B2 (en) Foam auxiliary material and foam molding method
JP7191429B1 (en) Method for manufacturing dielectric material
KR20020011290A (en) Polypropylene composition provided by the calendering process for decoration sheet and method for preparing polypropylene film and sheet using the same
KR20150033093A (en) Masterbatch for improvement of smoothness and liquidity and film composition using the same
JP2005126694A (en) Ethylenic polymer composition for high-speed drawn film-forming and method for producing porous film
JP2018119093A (en) Polypropylene resin composition, and compact produced therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17872605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17872605

Country of ref document: EP

Kind code of ref document: A1