JPS5953343B2 - Non-magnetic stainless steel and its manufacturing method - Google Patents

Non-magnetic stainless steel and its manufacturing method

Info

Publication number
JPS5953343B2
JPS5953343B2 JP55172340A JP17234080A JPS5953343B2 JP S5953343 B2 JPS5953343 B2 JP S5953343B2 JP 55172340 A JP55172340 A JP 55172340A JP 17234080 A JP17234080 A JP 17234080A JP S5953343 B2 JPS5953343 B2 JP S5953343B2
Authority
JP
Japan
Prior art keywords
steel
corrosion resistance
amount
stainless steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55172340A
Other languages
Japanese (ja)
Other versions
JPS5798625A (en
Inventor
和己 早乙女
武 相沢
義信 本蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP55172340A priority Critical patent/JPS5953343B2/en
Publication of JPS5798625A publication Critical patent/JPS5798625A/en
Publication of JPS5953343B2 publication Critical patent/JPS5953343B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Description

【発明の詳細な説明】 本発明は耐食性、機械的性質の優れた安価な非磁性ステ
ンレス鋼およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an inexpensive non-magnetic stainless steel with excellent corrosion resistance and mechanical properties, and a method for producing the same.

近年、化学、発電、超低温、原子力などプラントの大型
化に伴ない使用条件が苛酷化し、使用される電流、磁場
が巨大なものとなり、配管部材や構造部材においては、
要求される性能も耐食性、機械的性質のみならず非磁性
であることが強く求められるようになつてきた。オース
テナイト系ステンレス鋼の代表的鋼種であるSUS30
4は、耐食性、機械的性質、加工性が優れ、かつ非磁性
であるため広く使用されている。
In recent years, as plants such as chemical, power generation, ultra-low temperature, and nuclear power plants have become larger, the operating conditions have become more severe, and the electric currents and magnetic fields used have become enormous.
In addition to corrosion resistance and mechanical properties, there is also a strong demand for non-magnetic properties. SUS30, a typical type of austenitic stainless steel
No. 4 is widely used because it has excellent corrosion resistance, mechanical properties, and workability, and is nonmagnetic.

また、溶接施工を含む場合には前記SUS304では耐
粒界腐食性が不十分であり、耐粒界腐食性の優れたSU
S304Lが使用されている。しかしながら、これらの
鋼において減面率が大きく取れない大型部品では、凝固
時、偏析デルタ−フェライトが残留するという問題があ
る。また、SUS304、SUS304Lは準安定オー
ステナイト系ステンレス鋼でもあるため、矯正など冷間
加工によりマルテンサイトが誘起され磁気に感するよう
になつてしまうという欠点をも有している。このように
、前記SUS304、SUS304Lでは非磁性が不十
分であり、溶接施工を含む大型配管部材や大型構造部材
に適さないため、SUS304並みの機械的性質、加工
性を有し、かっSUS304L並みの耐粒界腐食性、一
般耐食性を有した安価な非磁性ステンレス鋼の開発が要
望されていた。本発明はこのような要望に応じて開発さ
れた耐食性、加工性、機械的性質の優れた安価な非磁性
ステンレス鋼を提供するものである。
In addition, when welding work is involved, the intergranular corrosion resistance of the SUS304 is insufficient, and the SUS304, which has excellent intergranular corrosion resistance,
S304L is used. However, with these steels, there is a problem in that segregated delta-ferrite remains during solidification in large parts where the area reduction rate cannot be large. Furthermore, since SUS304 and SUS304L are metastable austenitic stainless steels, they also have the disadvantage that martensite is induced by cold working such as straightening, making them sensitive to magnetism. In this way, SUS304 and SUS304L have insufficient non-magnetism and are not suitable for large piping parts or large structural members, including welding. There has been a demand for the development of an inexpensive non-magnetic stainless steel that has intergranular corrosion resistance and general corrosion resistance. The present invention has been developed in response to such demands and provides an inexpensive nonmagnetic stainless steel with excellent corrosion resistance, workability, and mechanical properties.

なお、本発明においていう非磁性とは透磁率1.03以
下をさすものである。一般に、オーステナイト系ステン
レス鋼において磁化の原因は、凝固時の偏析デルタフェ
ライトと、冷間加工により誘起されるマルテンサイトで
ある。
Note that the term "nonmagnetic" in the present invention refers to a magnetic permeability of 1.03 or less. In general, magnetization in austenitic stainless steel is caused by segregated delta ferrite during solidification and martensite induced by cold working.

したがつて、一般に非磁性を要求される場合には、Ni
含有量を増加しオーステナイト相の安定化を図ることが
なされている。しかし、Ni量を高めれば、コストアッ
プにつながり、かつ強度が低下し好ましくない。他方、
低コストとするためSUS3O4LNのようにSUS3
O4Lに多量のNを含有せしめれば、オーステナイト相
の安定性は高まるが、耐粒界腐食性が劣化し、さらに、
強度が必要以上に向上し、加工性、切削性が低下するの
で好ましくない。
Therefore, if non-magnetism is generally required, Ni
Efforts have been made to increase the content to stabilize the austenite phase. However, increasing the amount of Ni leads to an increase in cost and a decrease in strength, which is not preferable. On the other hand,
SUS3 like SUS3O4LN for low cost
If O4L contains a large amount of N, the stability of the austenite phase will increase, but intergranular corrosion resistance will deteriorate, and furthermore,
This is not preferable because the strength increases more than necessary and the workability and machinability decrease.

そこで、本発明者等は従来鋼の欠点を克服するため研究
を重ねた結果、第1にNの適量の添加はSUS3O4並
みの機械的性質、加工性と、SUS3O4L並みの優れ
た耐粒界腐食性を同時に得る。
Therefore, as a result of repeated research to overcome the drawbacks of conventional steel, the present inventors found that, firstly, the addition of an appropriate amount of N provides mechanical properties and workability comparable to SUS3O4, and excellent intergranular corrosion resistance comparable to SUS3O4L. Get sex at the same time.

しかもオーステナイト相の安定性の改善に役立つこと。
第2に、偏析デルタフエライトについては、適量のN添
加と併せてSiの上限を規制し、必要に応じて高温で長
時間加熱することが最も安価に解決し得る手段であるこ
とを見い出した。なお、この場合、本発明鋼のNi量は
通常の市販SUS3O4L(7)Ni量9.6〜10.
6%程度で十分である。また、第3として、加工誘起マ
ルテンサイトについては、適量のN添加とMn量を高め
てNi当量T25.,O以上とすることで本発明鋼の諸
性能を損うことな・《解決し得ることを見S出L《耐食
性、゛機械的性質(加工性のすぐれた安価な非磁性ステ
ンレスを開発した。
Moreover, it helps improve the stability of the austenite phase.
Second, with regard to segregated delta ferrite, we have found that the cheapest solution is to add an appropriate amount of N, limit the amount of Si, and, if necessary, heat it at a high temperature for a long time. In this case, the amount of Ni in the steel of the present invention is 9.6 to 10.
About 6% is sufficient. Third, for deformation-induced martensite, an appropriate amount of N is added and the amount of Mn is increased to achieve a Ni equivalent of T25. , O or more, we have discovered that we can solve the problem without impairing the various performances of the steel of the present invention. .

、゛な台マ,81旨は次式にJ4つて求められるもので
あるi゛・““゛”−ゞ”″ ゛ 冫12.6(
C+N) +Ni+0.35Si+1.05Mn+0.
65Crさらに、本発明鋼はNi量が9.6〜10.6
%とその含有量が少ないため、鋼塊または連続鋳造片の
状態では偏析デルタフエライトを2〜6%含有している
, ゛nadaima, 81 is obtained by J4 in the following formula.
C+N) +Ni+0.35Si+1.05Mn+0.
65Cr Furthermore, the steel of the present invention has a Ni content of 9.6 to 10.6.
% and its content is small, so the steel ingot or continuously cast piece contains 2 to 6% of segregated delta ferrite.

鍜圧比が80を越える場合には加工によl消滅Lでしま
書Qで関題がないが、滅面率を大きくとれない大型構造
部材にお〜)ては凝?時の偏析デルタフエライトが残留
してしまう。第2発明は大型構造部材において、偏析デ
ルタフエライトが残留する場合、これを消滅させるため
のものであり、その特徴とするところは高温で長時間加
熱することである。
If the plating pressure ratio exceeds 80, there is no problem with the machining process as L disappears. The segregated delta ferrite remains. The second invention is for eliminating residual segregated delta ferrite in large structural members, and is characterized by heating at high temperature for a long time.

この点について以下に詳述する。This point will be explained in detail below.

凝固時の偏析デルタフエライト量を2%以下にするには
、Ni含有量を増せばよいが、しかしながら素材コスト
が上り、全体として高価な非磁性ステンレス鋼となつて
しまう。
In order to reduce the amount of segregated delta ferrite to 2% or less during solidification, it is sufficient to increase the Ni content, but this increases the material cost, resulting in an expensive non-magnetic stainless steel as a whole.

本発明はSUS3O4並みのNi量で非磁性を得るるも
のであり、鋼塊または連続鋳造片に残留する2〜6%偏
析デルタフエライトを分解消失させるためには、110
0〜1280℃の高温度域で、6〜15時間加熱保持す
ることにより、デルタフエライト量を0.2%以下にす
ることが素材コストおよび製造コストのいずれからも最
も効果的であることを見い出したものである。
The present invention obtains non-magnetism with the same amount of Ni as SUS3O4, and in order to decompose and eliminate the 2-6% segregated delta ferrite remaining in the steel ingot or continuous cast piece, 110%
It was discovered that reducing the amount of delta ferrite to 0.2% or less by heating and holding in a high temperature range of 0 to 1280°C for 6 to 15 hours is most effective in terms of both material cost and manufacturing cost. It is something that

最も望ましい実施態様としては、偏析デルタフエライト
量を3〜5%として、分塊圧延前の加熱において、12
00〜1280℃の温度で7〜12時間加熱、保持して
、分解消滅させる方法である。
In the most desirable embodiment, the amount of segregated delta ferrite is 3 to 5%, and 12
This is a method of heating and holding at a temperature of 00 to 1280°C for 7 to 12 hours to decompose and eliminate.

また、デルタフエライト量が5〜6%と比較的高い場場
合には、圧延前に1200〜1280℃で15時間程度
保持すれば、デルタフエライトは球状化し、かつ局部的
に平衡状態となり、これ以上デルタフエライトの分解は
ほとんど進行しないが、一度圧延すればデルタフエライ
トは球状のものから細長いひも状のものに変形し、再加
熱によつて急速に分解を始める。このように、本発明に
おいては残留デルタフエライト量が多い場合にも、圧延
前に1200〜1280℃で6〜15時間程度加熱、保
持し、かつ必要に応じて固溶体化処理の再加熱条件を1
100〜1200℃、1〜3時間保持するという2段階
加熱により解消し得るものである。
In addition, when the amount of delta ferrite is relatively high, such as 5 to 6%, if the delta ferrite is kept at 1200 to 1280 °C for about 15 hours before rolling, the delta ferrite will become spheroidized and locally in an equilibrium state, and no more Decomposition of delta ferrite hardly progresses, but once rolled, delta ferrite transforms from a spherical shape to a long, thin string, and begins to decompose rapidly upon reheating. As described above, in the present invention, even when the amount of residual delta ferrite is large, heating and holding at 1200 to 1280°C for about 6 to 15 hours is performed before rolling, and if necessary, the reheating conditions for solid solution treatment are changed to 1.
This problem can be solved by two-step heating at 100-1200°C for 1-3 hours.

なお、第1図は鋼塊中の残留デルタフエライト量とNi
バランスとの関係を示したものであり、これからしても
鋼塊中のデルタフエライト量を2〜6%にするにはNi
バランスを−0.5〜1.5の範囲内にすればよいこと
が分る。
Furthermore, Figure 1 shows the amount of residual delta ferrite in the steel ingot and the Ni
This shows the relationship with balance, and from now on, in order to maintain the amount of delta ferrite in a steel ingot from 2 to 6%, Ni
It turns out that the balance should be within the range of -0.5 to 1.5.

なお、Niバランスは次式によつて求められるものであ
る。30C+20N+Ni−1.3Cr−231+13
.5また、製品コストと鋼塊中の残留デルタフエライト
量との関係を要約して示すと第2図のようになる。
Note that the Ni balance is determined by the following equation. 30C+20N+Ni-1.3Cr-231+13
.. 5 In addition, the relationship between product cost and residual delta ferrite amount in the steel ingot is summarized as shown in FIG. 2.

図中1の領域は通常の製造法で非磁性を保証し得る範囲
で、図中(11)の領域は本発明の長時間、加熱により
非磁性を保証し得る範囲で、図中(111)の領域は本
発明の加熱方法においてもフエライト量を0.2%以下
に分解消滅させることが困難な範囲である。すなわち、
鋼塊または連続鋳造片の凝固時の偏析デルタフエライト
量が多くなるほど素材コストは安価となるが、偏析デル
タフエライト量が6%を越えると長時間加熱によつても
フエライト量を0.2%以下に分解消失させることが困
難となり、かえつて製品コストが高くなつてしまう。し
たがつて、安価に非磁性ステンレス鋼を得るには素材コ
ストと製造コストを勘案して、偏析デルタフエライト量
が2〜6%残留する素材を用いて、製造過程において分
解、消失させる方法が最も得策であることが分る。以下
に本発明鋼の成分限定理由について説明する。
The region 1 in the figure is the range where non-magnetism can be guaranteed by normal manufacturing methods, and the region (11) in the figure is the range where non-magnetism can be guaranteed by long-term heating according to the present invention. This region is a range in which it is difficult to decompose and eliminate the amount of ferrite to 0.2% or less even with the heating method of the present invention. That is,
The greater the amount of segregated delta ferrite during solidification of a steel ingot or continuously cast piece, the lower the material cost becomes, but if the amount of segregated delta ferrite exceeds 6%, the amount of ferrite cannot be reduced to 0.2% or less even after long-term heating. It becomes difficult to decompose and disappear, and the product cost increases. Therefore, in order to obtain non-magnetic stainless steel at a low cost, the best method is to use a material in which 2 to 6% of the segregated delta ferrite remains and decompose and eliminate it during the manufacturing process, taking into account the material cost and manufacturing cost. It turns out to be a good idea. The reasons for limiting the composition of the steel of the present invention will be explained below.

CはNと同様に強力なオーステナイト相安定化元素であ
るが、反面Cは耐食性、特に耐粒界腐食性を低下せしめ
るものでその上限を0.03%とした。
Like N, C is a strong austenite phase stabilizing element, but on the other hand, C lowers corrosion resistance, especially intergranular corrosion resistance, so the upper limit was set at 0.03%.

Siは脱酸剤として必要な元素であるが、強力なフエラ
イト形成元素でもあるのでその上限を0.50%とした
。なお、好ましくは、0.40%以下である。Mnは脱
酸剤、脱硫剤として有用な元素であり鋼の熱間加工性を
も改善するものである。
Although Si is a necessary element as a deoxidizing agent, it is also a strong ferrite-forming element, so its upper limit was set at 0.50%. Note that it is preferably 0.40% or less. Mn is an element useful as a deoxidizing agent and a desulfurizing agent, and also improves the hot workability of steel.

本発明においては常温でのオーステナイト相を最も安定
させて、Ni当量を増大させる主要な元素であるので1
.00%以上の含有が必要である。しかし、3%を越え
て含有させると本発明鋼の耐食性を損うので、その上限
を3.00%とした。Crはオーステナイト系ステンレ
ス鋼の優れた耐食性を得る上で必要な基本元素であり、
18%以上の含有が必要である。
In the present invention, 1 is the main element that most stabilizes the austenite phase at room temperature and increases the Ni equivalent.
.. 00% or more content is required. However, if the content exceeds 3%, the corrosion resistance of the steel of the present invention will be impaired, so the upper limit was set at 3.00%. Cr is a basic element necessary for obtaining excellent corrosion resistance of austenitic stainless steel.
The content must be 18% or more.

しかし、Crは強力なフエライト形成元素でもあるので
その上限を19%とした。Niはオーステナイト系ステ
ンレス鋼の基本元素で、優れた耐食性、冷鍜性および非
磁性を付与する元素である。
However, since Cr is also a strong ferrite-forming element, the upper limit was set at 19%. Ni is a basic element of austenitic stainless steel, and is an element that provides excellent corrosion resistance, cold hardening properties, and nonmagnetism.

本発明は安価な非磁性鋼を得ることを目的とするもので
あるので、高価なNiの使用を非磁性を保証するに必要
最小限にとどめその含有量を9.6%とした。また、1
0.6%を越えて含有させると、鋼塊または連続鋳造片
の状態で残留デルタフエライト量が2%以下になり、本
発明の特徴を生かせないのでその上限を10.6%とし
た。Nは強力なオーステナイト形成元素で、偏析デルタ
フエライトや加工誘起マルテンサイトの生成を抑制し、
安価に非磁性を得ために必要な元素である。
Since the purpose of the present invention is to obtain an inexpensive nonmagnetic steel, the use of expensive Ni was kept to the minimum necessary to ensure nonmagnetism, and its content was set at 9.6%. Also, 1
If the content exceeds 0.6%, the amount of residual delta ferrite in the steel ingot or continuously cast piece will be 2% or less, making it impossible to take advantage of the features of the present invention, so the upper limit was set at 10.6%. N is a strong austenite-forming element that suppresses the formation of segregated delta ferrite and deformation-induced martensite.
It is an element necessary to obtain non-magnetism at low cost.

さらに、Nは固溶強化能が大きく、本発明のように低C
オーステナイト系ステンレス鋼の耐粒界腐食性を損うこ
となく強度不足を補う元素でもあり、これらの性能を発
揮させるには、0.06%以上の含有が必要である。し
かしながら、0.09%を越えて含有させると粒界腐食
感受性を高めるので、その上限を0.09%とした。な
お、好ましくは、0.06〜0.07%である。つぎに
本発明鋼の特徴を従来鋼と比べ実施例でもつて明らかに
する。
Furthermore, N has a large solid solution strengthening ability, and as in the present invention, low C
It is also an element that compensates for the lack of strength without impairing the intergranular corrosion resistance of austenitic stainless steel, and in order to exhibit these properties, it must be contained in an amount of 0.06% or more. However, if the content exceeds 0.09%, susceptibility to intergranular corrosion increases, so the upper limit was set at 0.09%. Note that the content is preferably 0.06 to 0.07%. Next, the characteristics of the steel of the present invention will be clarified through examples in comparison with conventional steel.

第1表は、これらの供試鋼の化学成分を示すものである
Table 1 shows the chemical composition of these test steels.

第1表においてA1〜A4鋼は従来鋼で、A1はSUS
3O4、A2、A3はSUS3O4Lで、A2はNi量
が規格下限に近いもので、A3はNi量が規格上限に近
いものである。
In Table 1, A1 to A4 steels are conventional steels, and A1 is SUS.
3O4, A2, and A3 are SUS3O4L, and A2 has a Ni content close to the lower limit of the specification, and A3 has a Ni content close to the upper limit of the specification.

また、A4はSUS3O4L<7)Ni量を増加させた
ものである。B1〜B5鋼は本発明鋼である。
Further, A4 is SUS3O4L<7) with an increased amount of Ni. B1 to B5 steels are steels of the present invention.

第2表は第1表の固溶体化熱処理を施したA1〜A4鋼
、B1〜B5鋼の強度、耐食性、非磁性を示したもので
ある。
Table 2 shows the strength, corrosion resistance, and nonmagnetism of the A1 to A4 steels and B1 to B5 steels subjected to the solid solution heat treatment shown in Table 1.

強度については、JIS4号試験片を用いて耐力、引張
り強さ、伸びを測定した。
Regarding strength, yield strength, tensile strength, and elongation were measured using JIS No. 4 test pieces.

耐食性については耐硫酸性、耐孔食性、耐粒界腐食性に
ついて測定し、耐硫酸性は沸謄した5%H,SO4水溶
液中に6Hr浸漬した場合の腐食減量を示したもので、
耐孔食性は40℃の4%FeCl3水溶液中に24Hr
浸漬した場合の腐食減量を示したもので、耐粒界腐食性
は650℃で2Hr鋭敏化処理後、JISGO575の
硫酸一硫酸銅腐食試験を行ない、ついで、曲げ試験にお
けるワレの有無を示したものである。
Regarding corrosion resistance, sulfuric acid resistance, pitting corrosion resistance, and intergranular corrosion resistance were measured, and sulfuric acid resistance indicates the corrosion loss when immersed in a boiling 5% H, SO4 aqueous solution for 6 hours.
Pitting corrosion resistance is measured in 4% FeCl3 aqueous solution at 40℃ for 24 hours.
This shows the corrosion loss when immersed, and the intergranular corrosion resistance is determined by performing a copper sulfate monosulfate corrosion test according to JISGO575 after sensitization treatment at 650°C for 2 hours, and then showing the presence or absence of cracking in a bending test. It is.

非磁性については、2.6t鋼塊に、造塊後、(1)は
1265℃で3Hr加熱後、38φ (鍜圧比158)
に圧延したもの、 (11)は1265℃で3Hr加熱
後、60φ、100φ、200φ (鍜圧比は60φが
71.100φが26、200φが6である)に圧延し
たもの、(I)は1265℃10Hr加熱後、60φ、
100φ、200φに圧延したもの、(IV)は(I)
の圧延後、1150℃で2Hr固溶体化熱処理を施した
もの、 (V)は()の処理後、30%冷間圧縮を施し
たもので、○印は透磁率(μ)1.03以下、×印は(
μ)1.03を越えるものである。
For non-magnetic properties, after ingot making, (1) was heated to 1265℃ for 3 hours, 38φ (rolling pressure ratio 158).
(11) is heated at 1265℃ for 3 hours and then rolled to 60φ, 100φ, and 200φ (rolling ratio is 71 for 60φ, 26 for 100φ, and 6 for 200φ), (I) is 1265℃ After heating for 10 hours, 60φ,
Rolled to 100φ and 200φ, (IV) is (I)
After rolling, it was subjected to solid solution heat treatment for 2 hours at 1150℃, (V) is the one that was subjected to 30% cold compression after the treatment in (), ○ indicates magnetic permeability (μ) 1.03 or less, The × mark is (
μ) exceeds 1.03.

第2表から知られるように、従来鋼であるA1鋼は強度
については優れているが、耐粒界腐食性、非磁性につい
ては劣るものである。
As is known from Table 2, A1 steel, which is a conventional steel, has excellent strength, but is inferior in intergranular corrosion resistance and non-magnetism.

A1鋼のC量を下げ、かつNi量を増加したA2鋼は優
れた耐食性を有しているが、強度が不足し、かつ、非磁
性を得ることができないものである。A2鋼のNi量を
さらに増加させたA3鋼は非磁性、耐食性については優
れているが、強度についてはA2鋼と同様に低いもので
ある。A4鋼は14.46%と多量のNi量を含有させ
たことにより通常圧延により非磁性を得ることができる
が、強度、耐粒界腐食性については劣るものである。こ
れらに対して、本発明鋼であるB1〜B5鋼はSUS3
O4Lをペースとして、適量のNを含有させるとともに
Mn量を高め、かつ、Si量を規制することにより、N
iバランスを−0.5〜1.5となし、Ni当量を25
.0以上になしたことにより、強度については、耐力2
2.5kg/m!l以上、引張り強さ56kg/Mii
,以上、伸び54%以上と優れており、耐食性について
も、耐硫酸性、75〜89g/m・・Hr、耐孔食性6
.0〜6.9g/MhHrとその腐食減量が少なく優れ
ており、耐粒界腐食性についてもSUS3O4LでるA
2,A3鋼同様にワレの発生がないものである。
A2 steel, which has a lower C content and an increased Ni content than A1 steel, has excellent corrosion resistance, but lacks strength and cannot obtain nonmagnetic properties. A3 steel, which is obtained by further increasing the Ni content of A2 steel, has excellent nonmagnetism and corrosion resistance, but has low strength like A2 steel. Although A4 steel contains a large amount of Ni (14.46%), it can be made non-magnetic by normal rolling, but it is inferior in strength and intergranular corrosion resistance. In contrast, B1 to B5 steels, which are the steels of the present invention, are SUS3
By using O4L as a pace, containing an appropriate amount of N, increasing the amount of Mn, and regulating the amount of Si, N
The i balance is set to -0.5 to 1.5, and the Ni equivalent is set to 25.
.. By making it more than 0, the strength is 2
2.5kg/m! l or more, tensile strength 56kg/Mii
, the elongation is 54% or more, which is excellent, and the corrosion resistance is sulfuric acid resistance, 75 to 89 g/m...Hr, and pitting corrosion resistance is 6.
.. 0 to 6.9g/MhHr, the corrosion loss is small and excellent, and SUS3O4L has excellent intergranular corrosion resistance.
2. Similar to A3 steel, there is no cracking.

非磁性についてはNi含有量が9.68〜10.51%
と低いため、(1)の鍜圧比が80を越えるものについ
ては非磁性を保証し得るが、(11)の鍜圧比が80以
下下で、通常の1265℃で3H助口熱という圧延前の
加熱では非磁性を保証することはできないが、 (11
1)の1265℃で10Hr加熱後に圧延したものはB
5鋼を除いていずれも非磁性を保証でき、また、Niお
よびNの含有量が少ないためNiバランスが−0.3で
あるB5鋼については圧延後、1150℃で2Hr固溶
体化熱処理を施すことにより非磁性を保証し得るもので
、また、圧延後に30%の冷間圧縮を施すことによつて
も、マルテンサイトが誘起されることがないもので、B
1〜B5鋼のいずれについても非磁性を保証し得るもの
であり、非磁性についても低Niで安価に保証し得るも
のである。これからしても、本発明鋼はSUS3O4と
同等以上の強度を有し、耐食性についてもSUS3O4
Lと同等以上であり、優れた非磁性ステンレス鋼である
ことが分る。
For non-magnetic properties, Ni content is 9.68-10.51%
Therefore, non-magnetism can be guaranteed for products with a rolling pressure ratio of (1) exceeding 80, but when the rolling pressure ratio of (11) is below 80, the normal 3H sub-cut heat at 1265°C is obtained before rolling. Although heating cannot guarantee non-magnetism, (11
1) rolled after heating at 1265℃ for 10 hours is B.
Non-magnetism can be guaranteed for all steels except B5 steel, and B5 steel, which has a Ni balance of -0.3 due to its low Ni and N content, is subjected to solid solution heat treatment for 2 hours at 1150°C after rolling. B
Non-magnetism can be guaranteed for any of the steels No. 1 to B5, and non-magnetism can also be guaranteed at low cost with low Ni. From now on, the steel of the present invention will have a strength equal to or higher than that of SUS3O4, and will also have corrosion resistance compared to SUS3O4.
It can be seen that it is equivalent to or higher than L, and is an excellent non-magnetic stainless steel.

上述のように本発明鋼は安価な非磁性鋼を得るに、高価
なNiの使用を最小必要量にとどめて、適量のNを含有
させるとともに、Mn量を高め、かつSi量を規制する
ことにより、Niバランスを一0.5〜1.5かつNi
当量を25.0%以上とし、強度、耐食性を劣化させる
ことなく非磁性を得ることに成功したものであり、さら
に、大型構造部材について偏析デルタフエライトが残留
する場合にも、高温でも長時間加熱することにより分解
、消滅させ得るものであり、溶接施工を含む大型配管部
材や大型構造部材として高い実用性を有するものである
As mentioned above, in order to obtain an inexpensive non-magnetic steel, the steel of the present invention requires the use of expensive Ni to be kept to the minimum required amount, containing an appropriate amount of N, increasing the amount of Mn, and regulating the amount of Si. By adjusting the Ni balance to -0.5 to 1.5 and Ni
With an equivalent weight of 25.0% or more, we have succeeded in obtaining non-magnetic properties without deteriorating strength and corrosion resistance. Furthermore, even when segregated delta ferrite remains in large structural members, it can be heated for a long time even at high temperatures. It can be disassembled and destroyed by doing so, and has high practicality as a large piping member or large structural member, including welding work.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1 重量比にしてC0.03%以下、Si0.50%以
下、Mn1.00〜3.00%、Ni9.6〜10.6
%、Cr18〜19%、N0.06〜0.09%を含有
し、残部Feならびに不純物元素からなり、Niバラン
スが−0.5〜1.5であり、かつNi当量が25.0
以上であることを特徴とする非磁性ステンレス鋼。 2 重量比にしてC0.03%以下、Si0.50%以
下、Mn1.00〜3.00%、Ni9.6〜10.6
%、Cr18〜19%、N0.06〜0.09%を含有
し、残部Feならびに不純物元素からなり、Niバラン
スが−0.5〜1.5であり、かつNi当量が25.0
以上である鋼塊または連続鋳造片を1100〜1280
℃の温度で6〜15時間保持した後、鍜圧比80以下の
熱間加工において透磁率が1.03以下とすることを特
徴とすると非磁性ステンレス鋼の製造方法。
[Claims] 1. C0.03% or less, Si 0.50% or less, Mn 1.00 to 3.00%, Ni 9.6 to 10.6% by weight.
%, Cr18~19%, N0.06~0.09%, the balance consists of Fe and impurity elements, the Ni balance is -0.5~1.5, and the Ni equivalent is 25.0
A non-magnetic stainless steel characterized by: 2 Weight ratio: C 0.03% or less, Si 0.50% or less, Mn 1.00-3.00%, Ni 9.6-10.6
%, Cr18~19%, N0.06~0.09%, the balance consists of Fe and impurity elements, the Ni balance is -0.5~1.5, and the Ni equivalent is 25.0
Steel ingots or continuous cast pieces with a weight of 1100 to 1280 or more
A method for producing non-magnetic stainless steel, characterized in that the magnetic permeability is reduced to 1.03 or less in hot working at a heating pressure ratio of 80 or less after holding at a temperature of 6 to 15 hours.
JP55172340A 1980-12-06 1980-12-06 Non-magnetic stainless steel and its manufacturing method Expired JPS5953343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55172340A JPS5953343B2 (en) 1980-12-06 1980-12-06 Non-magnetic stainless steel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55172340A JPS5953343B2 (en) 1980-12-06 1980-12-06 Non-magnetic stainless steel and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5798625A JPS5798625A (en) 1982-06-18
JPS5953343B2 true JPS5953343B2 (en) 1984-12-24

Family

ID=15940083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55172340A Expired JPS5953343B2 (en) 1980-12-06 1980-12-06 Non-magnetic stainless steel and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5953343B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024512A1 (en) * 1994-03-08 1995-09-14 Nippon Steel Corporation ALLOY AND MULTILAYER STEEL PIPE HAVING CORROSION RESISTANCE IN ENVIRONMENT FOR BURNING FUEL CONTAINING V, Na, S and Cl

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062931B2 (en) * 1983-09-30 1994-01-12 住友金属工業株式会社 Stainless steel non-magnetic steel for electronic device parts
KR100744129B1 (en) 2006-02-10 2007-08-01 삼성전자주식회사 Balancer, head stack assembly with the same, and method for manufacturing the balancer and overmold of the head stack assembly
CN106282844B (en) * 2016-08-31 2018-05-08 河北中泊防爆工具集团股份有限公司 A kind of high-strength corrosion-resisting magnetism-free stainless steel instrument and preparation method thereof
KR102015510B1 (en) * 2017-12-06 2019-08-28 주식회사 포스코 Non-magnetic austenitic stainless steel with excellent corrosion resistance and manufacturing method thereof
CN112695151B (en) * 2020-12-18 2022-01-25 东北大学 Method for obtaining solidification pressure required by preparing high-nitrogen austenitic stainless steel through pressure induction and preparation method
CN114981465B (en) * 2020-12-30 2023-11-28 株式会社Posco Non-magnetic austenitic stainless steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939558A (en) * 1972-08-23 1974-04-13
JPS503243A (en) * 1973-05-11 1975-01-14
JPS527318A (en) * 1975-07-08 1977-01-20 Nippon Steel Corp Stainless steel having excellent malleability
JPS5489916A (en) * 1977-12-27 1979-07-17 Sumitomo Electric Ind Ltd Non-magnetic stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939558A (en) * 1972-08-23 1974-04-13
JPS503243A (en) * 1973-05-11 1975-01-14
JPS527318A (en) * 1975-07-08 1977-01-20 Nippon Steel Corp Stainless steel having excellent malleability
JPS5489916A (en) * 1977-12-27 1979-07-17 Sumitomo Electric Ind Ltd Non-magnetic stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995024512A1 (en) * 1994-03-08 1995-09-14 Nippon Steel Corporation ALLOY AND MULTILAYER STEEL PIPE HAVING CORROSION RESISTANCE IN ENVIRONMENT FOR BURNING FUEL CONTAINING V, Na, S and Cl

Also Published As

Publication number Publication date
JPS5798625A (en) 1982-06-18

Similar Documents

Publication Publication Date Title
JPS5953343B2 (en) Non-magnetic stainless steel and its manufacturing method
SE8704155L (en) FERRIT-MARTENSITIC STAINLESS STEEL WITH DEFORMATION-INDUCED MARTENSIT PHASE
KR20010083939A (en) Cr-mn-ni-cu austenitic stainless steel
KR100209451B1 (en) High strength stainless steel
RU2005125717A (en) HOT-STEEL VERY HIGH STRENGTH AND METHOD FOR PRODUCING FROM IT TAPES
JPS6254063A (en) Martensitic stainless steel for oil well tube
JPS5716154A (en) High strength martensite-containing stainless steel having excellent pitting resistance
JP2591256B2 (en) High strength non-magnetic steel
CN1015002B (en) Magnetism-free stainless steel
JPS6338558A (en) High strength nonmagnetic stainless steel having superior workability
JPS63171857A (en) Manufacture of precipitation hardening-type stainless steel excellent in fatigue characteristic
CN1125778A (en) Iron-nickel-copper series new-type thermal magnetic alloy
JPH10508658A (en) Applications of non-magnetic stainless steel
CN113817969B (en) High-strength super-corrosion-resistant non-magnetic stainless steel and preparation method thereof
JPS5662947A (en) Ferritic stainless steel with superior corrosion resistance for bright annealing finish
JPS61261463A (en) Work hardening-type nonmagnetic stainless steel
JPH0463247A (en) High strength and high ductility stainless steel
JPS63203750A (en) Fe-ni-cr alloy having superior resistance to intergranular corrosion
CN87102390B (en) Stronger sulfuric acid-resisting stainless steel
JPS61106747A (en) Martensitic stainless steel for oil well
JP2007197806A (en) Austenitic stainless steel and spring produced by the steel
JPS61213353A (en) Non-magnetic stainless steel excelling in spring characteristic
KR920006605B1 (en) Austenitic stainless steel having a good welding resistant corrosion toughness properties
KR930013184A (en) Manufacturing method of ferritic stainless steel with excellent moldability, rigidity and corrosion resistance
JPH02111845A (en) Two-phase stainless steel of austenite and ferrite having high corrosion resistance and high strength