JPS63203750A - Fe-ni-cr alloy having superior resistance to intergranular corrosion - Google Patents

Fe-ni-cr alloy having superior resistance to intergranular corrosion

Info

Publication number
JPS63203750A
JPS63203750A JP3565487A JP3565487A JPS63203750A JP S63203750 A JPS63203750 A JP S63203750A JP 3565487 A JP3565487 A JP 3565487A JP 3565487 A JP3565487 A JP 3565487A JP S63203750 A JPS63203750 A JP S63203750A
Authority
JP
Japan
Prior art keywords
alloy
intergranular corrosion
less
corrosion resistance
superior resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3565487A
Other languages
Japanese (ja)
Inventor
Toshihiro Uehara
利弘 上原
Rikizo Watanabe
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP3565487A priority Critical patent/JPS63203750A/en
Publication of JPS63203750A publication Critical patent/JPS63203750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture an Fe-Ni-Cr alloy having superior resistance to intergranular corrosion by adding specified percentages of C, Si, Mn, P, S, Ni, Cr, Al and Ti to Fe. CONSTITUTION:An Fe-Ni-Cr alloy consisting of, by weight, <=0.03% C, <=1.0% Si, <=1.5% Mn, <=0.02% P, >0.015-0.085% S, 30-35% Ni, 19-23% Cr, <=0.060% Al, 0.15-0.60% Ti and the balance Fe with inevitable impurities is manufactured. The alloy has characteristics comparable to those of conventional low-C alloy 800 and also has such superior resistance to intergranular corrosion that the alloy hardly undergoes intergranular corrosion even by strain relief annealing after welding. The alloy is useful for the piping of a nuclear powder plant or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として、粒界腐食を起こしやすい環境下で
用いられる耐粒界腐食性のすぐれたFe−Ni−Cr合
金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention primarily relates to an Fe-Ni-Cr alloy with excellent intergranular corrosion resistance that is used in environments where intergranular corrosion is likely to occur.

〔従来の技術〕[Conventional technology]

現在、原子力発電プラントの圧力容器、熱交換器、蒸気
発生管、その他配管や化学プラント合金などの耐食合金
が用いられている。
Corrosion-resistant alloys are currently used in pressure vessels, heat exchangers, steam generation pipes, and other piping in nuclear power plants, as well as in chemical plant alloys.

待に粒界腐食あるいは粒界型の応力腐食が問題となるよ
うな環境下で使用される合金の一つとして、約30〜3
5%のNi と約20%のOrを含むFe基合金である
Al1oy800があり、この合金は通常の固溶化処理
状態では粒界腐食は起こりにくい。
As one of the alloys used in environments where intergranular corrosion or intergranular stress corrosion is a problem, approximately
Aloy 800 is an Fe-based alloy containing 5% Ni and about 20% Or, and this alloy is less susceptible to intergranular corrosion under normal solution treatment conditions.

しかし、固溶化処理状態では粒界腐食されにくい合金で
も溶接後の歪取焼鈍などにより鋭敏化されると粒界腐食
が起こりやすくなることが一般に知られており、A11
oy 800も その例外ではない。
However, it is generally known that even alloys that are difficult to undergo intergranular corrosion under solution treatment become more susceptible to intergranular corrosion when sensitized by post-weld strain relief annealing, etc.
oy800 is no exception.

ここで鋭敏化とは、Cr炭化物が粒界に連続的に析出す
ることにより粒界に沿ってCr濃度の低い、いわゆるC
r欠乏層が形成される現象であり、粒界腐食はこのCr
欠乏層が優先腐食されることにより起こるとされている
Here, sensitization means that Cr carbides are continuously precipitated at grain boundaries, resulting in a low Cr concentration along the grain boundaries.
This is a phenomenon in which an r-depleted layer is formed, and intergranular corrosion is caused by this Cr
It is said that this occurs due to preferential corrosion of the deficient layer.

したがって、粒界腐食を防ぐには鋭敏化を抑制すればよ
いと考えられ、その一つの手段としf −<+1− F
a’イk ah −he 帖’IL l= jG 34
1−1 fr L、% ) A 4全市のC量を低くす
ることが有効とされでいる。
Therefore, in order to prevent intergranular corrosion, it is considered that it is sufficient to suppress sensitization, and one way to do this is f −<+1− F
a'ik ah -he cho'IL l= jG 34
1-1 fr L, %) A4 It is considered effective to lower the amount of C in the entire city.

しかしながら、低C化のみにより鋭敏化を防ぐにはCを
かなり低く抑えなければならず、一方、Cを低くすると
強度が低下するため、Cはあまり低く抑えられないとい
う問題があった。
However, in order to prevent sensitization only by lowering C, it is necessary to keep C quite low. On the other hand, lowering C lowers the strength, so there is a problem that C cannot be kept very low.

また、Si 、P%S等は耐食性その他の特性に悪影響
を及ぼす不純物元素として一般に低く抑えられている。
Furthermore, Si, P%S, etc. are generally kept low as impurity elements that adversely affect corrosion resistance and other properties.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はかかる点に鑑み、従来の低CレベルのA11o
y800と同等の特性を有し、溶接後歪取焼鈍によりで
も粒界腐食されに(いすぐれた耐粒界腐食性を有するF
e−Ni−Cr合金を提供するものである。
In view of this point, the present invention provides a conventional low C level A11o.
It has the same characteristics as Y800, and does not suffer from intergranular corrosion even after stress relief annealing after welding (F with excellent intergranular corrosion resistance).
The present invention provides an e-Ni-Cr alloy.

〔問題点を解決するための手段〕[Means for solving problems]

発明者は、かかる問題を解決すべく、A11oy800
相当のFe−Ni−Cr合金を対象に実験を行なった結
果、一般には不純物元素として低く抑えられているSを
通常レベル以上に積極的に添加することでTi との相
互作用により歪取焼鈍後の耐粒界腐食性を大幅に改善す
る効果があることを新規に見出だし、本発明に至ったも
のであり、具体的には、重量%にてC0,03以下、S
i 1.0以下、Mn1.5以下、p  o。
In order to solve this problem, the inventor developed A11oy800.
As a result of experiments conducted on a considerable number of Fe-Ni-Cr alloys, it was found that by actively adding S, which is generally kept low as an impurity element, above the normal level, the effect of S on the alloy after strain relief annealing due to its interaction with Ti. The present invention was developed based on the new discovery that the intergranular corrosion resistance of
i 1.0 or less, Mn 1.5 or less, po.

02以下、80,015を超え 0.085以下、Ni
 30〜35、Cr19〜23、AI!0.60以下、
Ti O,15〜0.60、残部Feおよび不可避的な
不純物よりなることを特徴とする耐粒界腐食性のすぐれ
たFe−Ni−Cr合金である。
02 or less, over 80,015, 0.085 or less, Ni
30-35, Cr19-23, AI! 0.60 or less,
It is a Fe-Ni-Cr alloy with excellent intergranular corrosion resistance characterized by consisting of TiO, 15 to 0.60, the balance Fe and unavoidable impurities.

本発明における成分範囲の限定理由は、次の通りである
The reason for limiting the range of components in the present invention is as follows.

C:Cは 0.03%を超えると耐粒界腐食性が大幅に
劣化するだけでなくS添加の効果がなくなることから、
0.03%以下とした。
C: If C exceeds 0.03%, not only will the intergranular corrosion resistance deteriorate significantly but also the effect of S addition will disappear.
It was set to 0.03% or less.

Si : Siは脱酸剤として添加するが、1゜0%よ
り多いと耐粒界腐食性が劣化することから、1.0%以
下とした。
Si: Si is added as a deoxidizing agent, but if it is more than 1.0%, intergranular corrosion resistance deteriorates, so the content is limited to 1.0% or less.

Mn:Mnは脱酸剤、脱硫剤として添加されるが、1.
5%を超えると耐粒界腐食性が劣化するので1.5%以
下とした。
Mn: Mn is added as a deoxidizing agent and desulfurizing agent, but 1.
If it exceeds 5%, intergranular corrosion resistance deteriorates, so the content is set to 1.5% or less.

P :Pは 0.02%より多いと耐粒界腐食性が劣化
するので0.02%以下とした。
P: If P is more than 0.02%, intergranular corrosion resistance deteriorates, so it is set to 0.02% or less.

s :sはTi との相互作用により粒界へのC「炭化
物の析出を不連続にし、耐粒界腐食性を大幅に改善する
が、0.015%以下テハ、その効果がなく、また、0
.085% を超えると熱間加工性が劣化することから
、 0.o i s%を超え 0.085%以下とした
s: S makes the precipitation of C carbides discontinuous at the grain boundaries through interaction with Ti, and greatly improves intergranular corrosion resistance, but below 0.015%, it has no effect, and 0
.. If it exceeds 0.085%, hot workability will deteriorate; o i s% and 0.085% or less.

Ni : Niはオーステナイトを安定化するだけでな
く、耐応力腐食割れ性を改善する効果があるが、30%
より少ないと十分な効果が得られず、また、35%を超
えても、より一層の向上効果が得られないことから、3
0〜35%とした。
Ni: Ni not only stabilizes austenite but also has the effect of improving stress corrosion cracking resistance.
If it is less than 35%, a sufficient effect cannot be obtained, and even if it exceeds 35%, no further improvement effect can be obtained.
It was set at 0 to 35%.

Cr : Crは耐食性を得るために必要な元素であり
、19%より少ないと十分な効果が得られず、また、2
3%を題えるとσ相を析出しやすくなることから、19
〜23%とした。
Cr: Cr is an element necessary to obtain corrosion resistance, and if it is less than 19%, a sufficient effect cannot be obtained;
Since it becomes easier to precipitate the σ phase if 3% is determined, 19
~23%.

に効果があるが、0.6%を超えても、より一層の向上
効果が得られないことから、0.6%以下とした。
However, even if it exceeds 0.6%, no further improvement effect can be obtained, so it was set to 0.6% or less.

Ti : Tiは脱酸剤として有効であるだけでなく、
Sとの相互作用で耐粒界腐食性を大幅に改善するが、0
.15%より少ないとその効果が得られず、また、0.
60%をこえても、より一層の向上効果が得ら゛れない
ことから、0.15〜0.60%とした。
Ti: Ti is not only effective as a deoxidizing agent, but also
Intergranular corrosion resistance is greatly improved by interaction with S, but 0
.. If it is less than 15%, the effect will not be obtained, and if it is less than 15%, the effect will not be obtained.
Even if it exceeds 60%, no further improvement effect can be obtained, so it was set at 0.15 to 0.60%.

〔実施例〕〔Example〕

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

WS1表に示す組成の合金を真空誘導溶解炉にて一10
kg溶解したのち、インゴットに鋳造し、さらに105
0℃に加熱後鍛造し、30+m角の棒に仕上げた。これ
より採取した試験片に、1050℃×1時間の固溶化処
理を行なった後、油冷した。
An alloy having the composition shown in Table WS1 was melted in a vacuum induction melting furnace.
After melting 105 kg, it is cast into ingots and further 105
After heating to 0°C, it was forged and finished into a 30+m square bar. The test piece taken from this was subjected to solution treatment at 1050°C for 1 hour, and then cooled in oil.

さらに溶接後の歪取焼鈍に相当する鋭敏化処理として、
625℃X40時間の加熱保持後500  ”/’! 
 Y  9  A  賎開ハ石教IZ蝕 九粁か −ト
傾   売冷した。
Furthermore, as a sensitization treatment equivalent to stress relief annealing after welding,
500"/' after heating and holding at 625℃ for 40 hours!
Y 9 A Shakaiha Sekikyo IZ eclipse 9 粁 か - ト inclination It was sold cold.

この後、仕上加工により3m+*X15mmX50■の
試験片に仕上げ、これを耐粒界腐食試験に供した。
Thereafter, it was finished into a test piece measuring 3 m + * x 15 mm x 50 cm, which was subjected to an intergranular corrosion resistance test.

耐粒界腐食試験としては、改良ストライカ試験を用いた
が、この方法は、通常のストライカ試験(ASTM  
G28)の硫酸第二鉄量を2倍にした試験液を用いた2
4時間の沸騰液中浸漬試験である。
A modified striker test was used as the intergranular corrosion test, but this method is similar to the standard striker test (ASTM
G28) using a test solution with twice the amount of ferric sulfate
This is a 4-hour immersion test in boiling liquid.

試験後、腐食減量を測定し、さらに試験片を半径50m
−の円弧型に白げ、最大割れ深さを求めた。耐粒界腐食
性はこの腐食減量と最大割れ深さにより評価した。
After the test, the corrosion loss was measured, and the test piece was placed in a radius of 50 m.
There was whitening in the arc shape of -, and the maximum crack depth was determined. Intergranular corrosion resistance was evaluated based on this corrosion weight loss and maximum crack depth.

その結果を第2表に示す。The results are shown in Table 2.

11P12表 第2表の結果から明らかなように、比較合金3は通常の
A11oy 800であるが、Cfiをこの程度低くし
ても耐粒界腐食性は悪いが、本発明合金1.2にみちれ
るようにSを規定量添加することによって耐粒界腐食性
は大幅に改善されることがわかる。
As is clear from the results in Table 2 of Table 11P12, Comparative Alloy 3 is the normal A11oy 800, and although it has poor intergranular corrosion resistance even if the Cfi is reduced to this extent, it is as good as Invention Alloy 1.2. It can be seen that intergranular corrosion resistance is significantly improved by adding a specified amount of S so as to improve the intergranular corrosion resistance.

また、このSの効果は比較合金4.5にみらh1シニー
〒:RLra厄+−L目−シー ル鯖人人6.7にみら
れるようにC量が高いとその効果は少ない。
In addition, the effect of S is small when the amount of C is high, as seen in comparative alloy 4.5 and h1 Shiny: RLra Yaku + - L eye - Seal Sabahinjin 6.7.

したがってS添加の効果はC量がある程度低く、かつ、
Tiがある程度含まれている場合に有効であることがわ
かり、この条件が満たされれば、耐粒界腐食性は大幅に
改善される。
Therefore, the effect of S addition is that the amount of C is low to some extent, and
It has been found that it is effective when Ti is contained to some extent, and if this condition is met, intergranular corrosion resistance is significantly improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明合金は、低CレベルのA11
oy800にSを添加することにより、耐粒界腐食性を
大幅に改善したものであり、本合金を原子力発電プラン
トの配管をはじめとする種々の耐食部材に使用すれば、
溶接により構造物を組み立てた場合においても、耐粒界
腐食性をそこなうことはな(、工業上顕着な効果を有す
るものである。
As explained above, the alloy of the present invention has a low C level of A11
By adding S to oy800, intergranular corrosion resistance has been greatly improved, and if this alloy is used in various corrosion-resistant parts such as piping in nuclear power plants,
Even when a structure is assembled by welding, intergranular corrosion resistance is not impaired (this has a significant industrial effect).

Claims (1)

【特許請求の範囲】[Claims] 重量%にてC0.03以下、Si1.0以下、Mn1.
5以下、P0.02以下、S0.015を超え0.08
5以下、Ni30〜35、Cr19〜23、Al0.6
0以下、Ti0.15〜0.60、残部Feおよび不可
避的な不純物よりなることを特徴とする耐粒界腐食性の
すぐれたFe−Ni−Cr合金。
C 0.03 or less, Si 1.0 or less, Mn 1.0 in weight%.
5 or less, P0.02 or less, S0.015 or more 0.08
5 or less, Ni30-35, Cr19-23, Al0.6
An Fe-Ni-Cr alloy with excellent intergranular corrosion resistance, characterized by comprising: 0.0 or less, Ti: 0.15 to 0.60, the balance being Fe and unavoidable impurities.
JP3565487A 1987-02-20 1987-02-20 Fe-ni-cr alloy having superior resistance to intergranular corrosion Pending JPS63203750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3565487A JPS63203750A (en) 1987-02-20 1987-02-20 Fe-ni-cr alloy having superior resistance to intergranular corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3565487A JPS63203750A (en) 1987-02-20 1987-02-20 Fe-ni-cr alloy having superior resistance to intergranular corrosion

Publications (1)

Publication Number Publication Date
JPS63203750A true JPS63203750A (en) 1988-08-23

Family

ID=12447864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3565487A Pending JPS63203750A (en) 1987-02-20 1987-02-20 Fe-ni-cr alloy having superior resistance to intergranular corrosion

Country Status (1)

Country Link
JP (1) JPS63203750A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790608A (en) * 2016-10-04 2019-05-21 日本冶金工业株式会社 Fe-Cr-Ni alloy and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790608A (en) * 2016-10-04 2019-05-21 日本冶金工业株式会社 Fe-Cr-Ni alloy and its manufacturing method
CN109790608B (en) * 2016-10-04 2021-05-07 日本冶金工业株式会社 Fe-Cr-Ni alloy and method for producing same

Similar Documents

Publication Publication Date Title
CA1243862A (en) Ferritic-austenitic stainless steel
JPH08511829A (en) Ferrite-austenitic stainless steel and its use
GB2084187A (en) Ferritic stainless steel
CA1214667A (en) Duplex alloy
JP4614547B2 (en) Martensitic heat resistant alloy with excellent high temperature creep rupture strength and ductility and method for producing the same
US4162930A (en) Austenitic stainless steel having excellent resistance to intergranular and transgranular stress corrosion cracking
JPS59197548A (en) Stainless steel
US4626408A (en) Ni-based alloy excellent in intergranular corrosion resistance, stress corrosion cracking resistance and hot workability
JPH02290949A (en) Stainless steel material for structural body exposed to hot concentrated sulfuric acid
JPS62287051A (en) Austenitic stainless steel excellent in resistance to intergranular stress corrosion cracking and intergranular corrosion resistance
JPS5940901B2 (en) Corrosion-resistant austenitic stainless steel
US4808371A (en) Exterior protective member made of austenitic stainless steel for a sheathing heater element
JPS63203750A (en) Fe-ni-cr alloy having superior resistance to intergranular corrosion
JPH0114991B2 (en)
JPS5953343B2 (en) Non-magnetic stainless steel and its manufacturing method
JP3779043B2 (en) Duplex stainless steel
JPH055891B2 (en)
JPH0377269B2 (en)
JPH0377268B2 (en)
JPS5827951A (en) Nodular graphite austenite cast iron with heat resistance
US3859080A (en) Corrosion resistant alloys
JPS61147855A (en) Precipitation hardening stainless steel
JPS6187817A (en) Manufacture of heat resistant austenitic stainless steel
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPS6057501B2 (en) Mo-saving austenitic stainless steel with excellent seawater resistance