JPS5953338B2 - Method for manufacturing aluminum matrix composite material - Google Patents

Method for manufacturing aluminum matrix composite material

Info

Publication number
JPS5953338B2
JPS5953338B2 JP11850080A JP11850080A JPS5953338B2 JP S5953338 B2 JPS5953338 B2 JP S5953338B2 JP 11850080 A JP11850080 A JP 11850080A JP 11850080 A JP11850080 A JP 11850080A JP S5953338 B2 JPS5953338 B2 JP S5953338B2
Authority
JP
Japan
Prior art keywords
composite material
aluminum
matrix composite
pumice
aluminum matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11850080A
Other languages
Japanese (ja)
Other versions
JPS5743952A (en
Inventor
栄一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11850080A priority Critical patent/JPS5953338B2/en
Publication of JPS5743952A publication Critical patent/JPS5743952A/en
Publication of JPS5953338B2 publication Critical patent/JPS5953338B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/01Vibration-dampers; Shock-absorbers using friction between loose particles, e.g. sand

Description

【発明の詳細な説明】 本発明はアルミニウム複合材料の製造方法に関し、とく
に軽く、衝撃吸収性の優れたアルミニウム基複合材料を
得んとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aluminum composite material, and is intended to obtain an aluminum matrix composite material that is particularly light and has excellent shock absorption properties.

本発明において、アルミニウムとは純アルミニウム(例
えば99.9%AI)に限らずAI −4,5Cu(A
CIA)、 Al−4,5Si−4Cu (AC2A)
、 Al−6,3Si−3,8Cu (AC2B)、
Al−6Si−3Cu (AC2C)、 Al−125
i (AC3A)、 Al−93i−0,5Mg−0,
5Mn(AC4A)、 Al−95i−3Cu (AC
4B)、 Al−75i−0,3Mg (AC4C)等
をも含める。
In the present invention, aluminum is not limited to pure aluminum (e.g. 99.9% AI) but also AI-4,5Cu (A
CIA), Al-4,5Si-4Cu (AC2A)
, Al-6,3Si-3,8Cu (AC2B),
Al-6Si-3Cu (AC2C), Al-125
i (AC3A), Al-93i-0,5Mg-0,
5Mn (AC4A), Al-95i-3Cu (AC
4B), Al-75i-0,3Mg (AC4C), etc.

又軽石とは微細な空気孔を持つ天然または人工的に得ら
れる発泡石をいう。
Also, pumice refers to a natural or artificially obtained foam stone that has minute air holes.

近年軽量かつ衝撃吸収性の高い材料として、発泡アルミ
ニウムが注目されている。
In recent years, aluminum foam has attracted attention as a lightweight material with high shock absorption properties.

発泡アルミニウムは例えば溶融アルミニウムにTiを加
えさらにMgを加えて溶解し更にこの溶融合金が凝固す
るときにSiを加え、その後自然冷却によって溶融合金
が適温に降下したときによく攪拌し、しかる後あらかじ
め保温加熱した鋳型で鋳造することにより製造されるも
のである。
Foamed aluminum is produced by, for example, adding Ti to molten aluminum, then adding Mg to melt it, then adding Si when the molten alloy solidifies, and then stirring it thoroughly when the molten alloy has cooled down to an appropriate temperature by natural cooling. It is manufactured by casting in a heated mold.

この発泡アルミニウムは上述した優れた特性を有してい
るが、製造工程が複雑であり、製造コストが高いなどの
欠点がある。
Although this foamed aluminum has the above-mentioned excellent properties, it has drawbacks such as a complicated manufacturing process and high manufacturing cost.

本発明は、上述した点を考慮し、製造工程が簡単で製造
コストがやすく、しかも得られたものは発泡アルミニウ
ムとなんら遜色のない特性を有しているものを得んとす
るものである。
The present invention takes the above-mentioned points into account, and aims to provide a product that has a simple manufacturing process and low manufacturing cost, and which has properties comparable to those of foamed aluminum.

以下本発明につき説明する。The present invention will be explained below.

本発明に係るアルミニウム基複合材料は、第1図に示す
ようにアルミニウム1中に多数の軽石2を分散せしめて
いる。
The aluminum matrix composite material according to the present invention has a large number of pumice stones 2 dispersed in aluminum 1, as shown in FIG.

軽石2としては平均直径1〜10mmのものが適当であ
る。
A suitable pumice stone 2 has an average diameter of 1 to 10 mm.

これは細かすぎるとマトリックスであるアルミニウム1
との複合化が難かしく、又大きすぎると軽石の混合比率
を増加させることが難かしくなるためである。
If this is too fine, the matrix of aluminum 1
This is because it is difficult to combine with pumice, and if it is too large, it becomes difficult to increase the mixing ratio of pumice.

更にこの軽石2の全体にしめる割合は50〜70容量部
とし、この複合材料の比重が1.8〜2.1が好適であ
る。
Further, it is preferable that the proportion of the pumice stone 2 in the whole is 50 to 70 parts by volume, and that the specific gravity of this composite material is 1.8 to 2.1.

これは軽石2の量が大すぎると複合材料の強度が著しく
低下し、又少なすぎると軽さ及び衝撃吸収性が損われる
ためである。
This is because if the amount of pumice 2 is too large, the strength of the composite material will be significantly reduced, and if it is too small, the lightness and impact absorption properties will be impaired.

このアルミニウム基複合材料は、次のようにして製造さ
れる。
This aluminum matrix composite material is manufactured as follows.

まず第2図に示すように、金型3内に軽石2をあらかじ
め充填して金型3を予熱しておく、この予熱温度は28
0〜320℃が適当である。
First, as shown in Fig. 2, the mold 3 is filled with pumice 2 in advance and the mold 3 is preheated.
A temperature of 0 to 320°C is suitable.

次にこの金型3内に溶融アルミニウム4を加圧浸透させ
て凝固させた。
Next, molten aluminum 4 was infiltrated into the mold 3 under pressure and solidified.

この加圧力は50〜100g/cHfが望ましい。This pressing force is preferably 50 to 100 g/cHf.

これはこれより少ないとアルミニウムが十分浸透せず、
又大きすぎると金型3の強度、操作性に問題があるため
である。
If it is less than this, aluminum will not penetrate sufficiently,
Moreover, if it is too large, there will be problems with the strength and operability of the mold 3.

このようにして得られたアルミニウム基複合材料は、発
泡アルミニウムの空胴に代えて比重の軽い軽石2を充填
した構造であるので比重及び衝撃吸収性が発泡アルミニ
ウムとなんら遜色がない。
The aluminum matrix composite material thus obtained has a structure in which pumice 2 with a light specific gravity is filled in place of the foamed aluminum cavity, so that the specific gravity and shock absorption properties are comparable to those of the foamed aluminum.

しかもこのアルミニウム基複合材料の製造方法は、発泡
アルミニウムと比べてきわめて簡単であり、コストも安
くなるなどの効果がある。
Moreover, the manufacturing method for this aluminum matrix composite material is extremely simple compared to foamed aluminum, and has advantages such as lower cost.

次に本発明の実験例につき説明する。Next, an experimental example of the present invention will be explained.

実験例 1 金型に軽石をあらかじめ充填しておき、その間隙に溶融
アルミニウムを加圧浸透させ130mm X 60mm
X 100mmの角材を製造した。
Experimental example 1 A mold was filled with pumice in advance, and molten aluminum was infiltrated into the gap under pressure to form a mold of 130 mm x 60 mm.
A square piece of 100 mm in diameter was manufactured.

その製造条件を第1表に示す。The manufacturing conditions are shown in Table 1.

なおマトリックスには99.9%Alを用い、金型の予
熱温度は280〜320℃、鋳込温度は820℃、加圧
保持時間は120秒とした。
Note that 99.9% Al was used for the matrix, the preheating temperature of the mold was 280 to 320°C, the casting temperature was 820°C, and the pressurization holding time was 120 seconds.

上表中A1〜3. A5.16.6のものは、本発明に
係るアルミニウム基複合材料を得ることができたが、A
4のものは軽石の間隙が狭くなっており、溶湯が完全に
溶浸せず所望する試料が得られなかった。
A1-3 in the above table. With A5.16.6, the aluminum matrix composite material according to the present invention could be obtained, but with A5.16.6, the aluminum matrix composite material according to the present invention could be obtained.
In sample No. 4, the gaps between the pumice stones were narrow, and the molten metal did not completely infiltrate, making it impossible to obtain the desired sample.

またA7のものは軽石が微細球状であるためマトリック
スとの複合化ができなかった。
In addition, in the case of A7, the pumice was microscopic and spherical, so it could not be combined with the matrix.

実験例 2 次に実験例1で得られた試料(A3)を用いて、圧縮試
験、動的圧縮試験、衝撃試験をおこない、その強度及び
衝撃吸収性を調べた。
Experimental Example 2 Next, using the sample (A3) obtained in Experimental Example 1, a compression test, a dynamic compression test, and an impact test were conducted to examine its strength and impact absorption properties.

圧縮試験はJS型オートグラフ(2Qt、島津製作所)
を用いて行なった。
Compression test was performed using JS type autograph (2Qt, Shimadzu Corporation)
This was done using

試験条件は、クロスヘッドスピード20mm/min、
チャートスピード5mm/min、試験片は20mm
X 20mm X 30mmの角形試験片で、加圧上下
両面に潤滑剤としてワセリンを使用した。
The test conditions were: crosshead speed 20mm/min;
Chart speed 5mm/min, test piece 20mm
It was a rectangular test piece measuring 20 mm x 30 mm, and vaseline was used as a lubricant on both the upper and lower surfaces of the pressurized surface.

その荷重−変位線図を第3図に曲線a1で示す。The load-displacement diagram is shown in FIG. 3 by curve a1.

動的圧縮試験は、PK−VK−160型ナツクルジヨイ
ントプレス(155t、 AIDA)を用いて実施した
The dynamic compression test was conducted using a PK-VK-160 type nutkl joint press (155 t, AIDA).

試験条件は、スライドスピード30mm/secを選定
した。
As the test conditions, a slide speed of 30 mm/sec was selected.

その応力−歪線図を第4図に曲線a2で示す。The stress-strain diagram is shown in FIG. 4 by curve a2.

衝撃試験は、シャルピー形衝撃試験機(能力。The impact test was performed using a Charpy type impact tester (capacity.

30kg−m)を用いて実施した。30 kg-m).

試験条件は、振子系の全重量26.150kg、槌の持
上角度138.0° とした。
The test conditions were that the total weight of the pendulum system was 26.150 kg and the lifting angle of the mallet was 138.0°.

試験片は、JISの定めるシャルピー衝撃試験機用5号
試験片(10mm X 10mm X 55mm)を用
いた。
The test piece used was a No. 5 test piece for a Charpy impact tester (10 mm x 10 mm x 55 mm) specified by JIS.

ただしノツチレスとした。However, it was made without Notsuchi.

その吸収エネルギーを測定した結果1〜3 kg −m
の範囲であった。
The result of measuring the absorbed energy was 1 to 3 kg-m.
It was within the range of

比較例 これに対し比重0.16〜0.41の発泡アルミニウム
を作製し、実験例2と同様に衝撃試験をおこなった。
Comparative Example In contrast, foamed aluminum having a specific gravity of 0.16 to 0.41 was prepared, and an impact test was conducted in the same manner as in Experimental Example 2.

その結果衝撃エネルギーの吸収量は、2.56〜4、3
2kg −mの範囲であった。
As a result, the amount of impact energy absorbed is 2.56~4.3
It was in the range of 2 kg-m.

なお、この場合重量比吸収能は50%歪で46.0×1
03〜117.3kg−cm/kgであった。
In this case, the weight specific absorption capacity is 46.0×1 at 50% strain.
It was 03 to 117.3 kg-cm/kg.

第3図及び第4図に示す結果及び衝撃試験の結果から、
本発明に係る複合材料が強度上及び衝撃エネルギーの吸
収性において製造上の容易さを考慮すれば発泡アルミニ
ウムと遜色がないことが認められる。
From the results shown in Figures 3 and 4 and the results of the impact test,
It is recognized that the composite material according to the present invention is comparable to foamed aluminum in terms of strength and impact energy absorption, considering ease of manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る複合材料の概略説明図、第2図は
同複合材料の製造方法を示す説明図、第3図は圧縮強さ
についての荷重−変位線図、第4図は動的圧線強さにつ
いての応力−歪線図である。 1・・・・・・アルミニウム、2・・・・・・軽石、3
・・・・・・金型。
Fig. 1 is a schematic explanatory diagram of the composite material according to the present invention, Fig. 2 is an explanatory diagram showing the manufacturing method of the composite material, Fig. 3 is a load-displacement diagram regarding compressive strength, and Fig. 4 is a dynamic diagram. FIG. 1... Aluminum, 2... Pumice, 3
······Mold.

Claims (1)

【特許請求の範囲】[Claims] 1 予熱した型内に平均直径1〜10mmの軽石を充填
した後、溶融アルミニウムを軽石の間隙に加圧力50〜
100kg/cm2で加圧浸透させて凝固せしめること
を特徴とするアルミニウム基複合材料の製造方法。
1 After filling a preheated mold with pumice stones with an average diameter of 1 to 10 mm, apply molten aluminum to the gaps between the pumice stones with a pressure of 50 to
A method for producing an aluminum matrix composite material, which comprises solidifying it by infiltrating it under pressure at 100 kg/cm2.
JP11850080A 1980-08-29 1980-08-29 Method for manufacturing aluminum matrix composite material Expired JPS5953338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11850080A JPS5953338B2 (en) 1980-08-29 1980-08-29 Method for manufacturing aluminum matrix composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11850080A JPS5953338B2 (en) 1980-08-29 1980-08-29 Method for manufacturing aluminum matrix composite material

Publications (2)

Publication Number Publication Date
JPS5743952A JPS5743952A (en) 1982-03-12
JPS5953338B2 true JPS5953338B2 (en) 1984-12-24

Family

ID=14738201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11850080A Expired JPS5953338B2 (en) 1980-08-29 1980-08-29 Method for manufacturing aluminum matrix composite material

Country Status (1)

Country Link
JP (1) JPS5953338B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209691A (en) * 1986-02-18 1987-09-14 富士通株式会社 Medium carrier
DE4011948A1 (en) * 1990-04-12 1991-10-17 Alcan Gmbh COMPOSITE CASTING PROCESS
US5259442A (en) * 1992-07-14 1993-11-09 Specialty Metallurgical Products Method of adding alloying materials and metallurgical additives to ingots and composite ingot
CN105134872A (en) * 2015-06-19 2015-12-09 苏州亚思科精密数控有限公司 Damping device for large machine tool

Also Published As

Publication number Publication date
JPS5743952A (en) 1982-03-12

Similar Documents

Publication Publication Date Title
US4713111A (en) Production of aluminum-SiC composite using sodium tetrasborate as an addition agent
BR8301524A (en) PREPARATION PROCESS FOR A FINE COMPOSITION OF GRANULATED METAL
JP4344141B2 (en) Metal foam manufacturing
CN112680645B (en) Rare earth Sm-containing self-foaming porous magnesium alloy and preparation method thereof
CN112680643B (en) Rare earth Y-containing self-foaming porous magnesium alloy and preparation method thereof
US5221324A (en) Lightweight metal with isolated pores and its production
JPS5953338B2 (en) Method for manufacturing aluminum matrix composite material
WO1992003582A1 (en) Lightweight metal with isolated pores and its production
KR100216483B1 (en) Method for manufacturing porosity metal
CA2129038A1 (en) Method for preparing cast composite materials having an aluminum-magnesium matrix alloy
JPH01127631A (en) Production of foamed metal
JPH01268829A (en) Manufacture of composite material of fine hollow spheroidal body and metal
US1944183A (en) Alloy
US5193605A (en) Techniques for preparation of ingot metallurgical discontinuous composites
CN104313436A (en) High-hardness wear-resistant magnesium alloy workpiece and preparation method thereof
JPH01283330A (en) Manufacture of aluminum-based composite member
CA2020335A1 (en) Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
JP3044519B2 (en) Cast body and casting method
JPH01195249A (en) Modification of aluminum-silicon alloy of metal matrix composite
US3969159A (en) Casting powder
JPS5948855B2 (en) Manufacturing method of aluminum matrix composite material
JPS5834104A (en) Production of composite material of light metal matrix reinforced with fiber
CA2046814C (en) Lightweight metal with isolated pores and its production
Suzuki et al. Article of Aluminium Alloy Locally Having a Composite Portion
CN109666773A (en) The method for generating spherical graphite without using nodulizer