JPH01268829A - Manufacture of composite material of fine hollow spheroidal body and metal - Google Patents

Manufacture of composite material of fine hollow spheroidal body and metal

Info

Publication number
JPH01268829A
JPH01268829A JP9616288A JP9616288A JPH01268829A JP H01268829 A JPH01268829 A JP H01268829A JP 9616288 A JP9616288 A JP 9616288A JP 9616288 A JP9616288 A JP 9616288A JP H01268829 A JPH01268829 A JP H01268829A
Authority
JP
Japan
Prior art keywords
composite material
molten metal
fine hollow
micro hollow
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9616288A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kimijima
君島 和浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9616288A priority Critical patent/JPH01268829A/en
Publication of JPH01268829A publication Critical patent/JPH01268829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture the title material which is sound and has excellent lightness, etc., by impregnating a molten metal into the assembled body of inorganic fine hollow sphere having specific shell thickness and solidifying the same under the specific pressure. CONSTITUTION:The molten metal of aluminum alloy, magnesium alloy etc., is impregnated into the assembled body of inorganic fine hollow sphere such as alumina and silica to solidify under the pressure. In the manufacture of the above composite material of the fine hollow spheroidal bodies and the metal, the shell thickness of the above inorganic fine hollow bodies is regulated to 10-30mum. The pressurizing power of the above molten metal is furthermore regulated to 0.1-0.5ton/cm<2>. By this method, the lightweight and sound composite material can be obtd. without the destruction of fine hollow spheroidal bodies and without the generation of internal faults such as a blow hole.

Description

【発明の詳細な説明】 C産業上の利用分野〕 本発明は無機質微小中空球体の集合体に金属溶湯を加圧
下で含浸凝固させる微小中空球棒金1+1複合材料の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION C. Industrial Field of Application The present invention relates to a method for producing a 1+1 composite material of a fine hollow sphere metal bar, in which an aggregate of inorganic fine hollow spheres is impregnated with molten metal under pressure and solidified.

〔従来の技術とその課題〕[Conventional technology and its issues]

アルミナ、シリカ、黒鉛、シラス等の微小中空球体金属
複合材料は、軽量性、耐熱性、防音性、剛性等の特性に
優れているため、ドア材、天井板、床材などの建築材料
或いは航空機、自動車、船舶などの輸送機関の部材など
、巾広い分野において実用化が検討されている。
Micro hollow spherical metal composite materials such as alumina, silica, graphite, and shirasu have excellent properties such as lightness, heat resistance, sound insulation, and rigidity, so they are used as building materials such as door materials, ceiling panels, floor materials, and aircraft. Practical applications are being considered in a wide range of fields, including parts for transportation systems such as automobiles and ships.

微小中空球体金属複合材料の製造方法は、加圧鋳造法、
減圧鋳造法、溶湯および粉末混合法等があるが、生産性
および経済性の点から加圧鋳造法が最も一般的である。
The manufacturing method of micro hollow sphere metal composite material is pressure casting method,
There are vacuum casting methods, molten metal and powder mixing methods, etc., but the pressure casting method is the most common in terms of productivity and economy.

加圧鋳造法はアルミナ、シリカ、黒鉛、シラス等の微小
中空球体を金型内に充填し、一定温度に加熱した後に、
この金型に母材となる金属溶湯を注湯し、加圧を行ない
微小中空球体の集合体中に金属溶湯を含浸凝固させる製
造法である。
In the pressure casting method, microscopic hollow spheres of alumina, silica, graphite, shirasu, etc. are filled into a mold, heated to a certain temperature, and then
This is a manufacturing method in which a molten metal serving as a base material is poured into this mold, and pressure is applied to impregnate and solidify the molten metal into an aggregate of microscopic hollow spheres.

しかし上記の製造方法においては、母材金属溶湯が微小
中空球体の集合体の含浸する過程で微小中空球体が破壊
するといった問題があった。すなわち溶湯の含浸圧力が
高い場合、微小中空球体が溶湯の静水圧の影響により破
壊し、微小中空球体内部に溶湯が浸透するために軽量性
が失われる。
However, in the above manufacturing method, there was a problem that the micro hollow spheres were destroyed during the process of impregnating the aggregate of the micro hollow spheres with the base metal molten metal. That is, when the impregnation pressure of the molten metal is high, the micro hollow spheres are destroyed by the influence of the hydrostatic pressure of the molten metal, and the molten metal permeates inside the micro hollow spheres, resulting in a loss of lightness.

また微小中空球体の静水圧破壊をおさえるため含浸圧力
を低くした場合は、巣欠陥等の内部欠陥を起こし、健全
な微小中空球体金属複合材料が得られない問題があった
Furthermore, when the impregnation pressure is lowered to suppress hydrostatic fracture of the micro hollow spheres, internal defects such as nest defects occur, making it impossible to obtain a healthy micro hollow sphere metal composite material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上記の問題について種々検討の結果、加圧鋳造
法における微小中空球体の破壊は金属溶湯の加圧力およ
び微小中空球体の殻厚に大きく影響することを見出し、
これらを調整することにより健全な微小中空球体金属複
合材料を得る製造方法を開発したものである。
As a result of various studies on the above-mentioned problems, the present invention has found that the destruction of micro hollow spheres in pressure casting greatly affects the pressing force of the molten metal and the shell thickness of the micro hollow spheres,
By adjusting these, we have developed a manufacturing method to obtain a healthy micro hollow sphere metal composite material.

〔課題を解決するための手段および作用〕本発明は、無
機質微小中空球体の集合体に金属溶湯を加圧下で含浸凝
固させる微小中空球体金属複合材料の製造方法において
、無機質微小中空球体の殻厚を10〜30−とし、金i
溶湯の加圧下を0.1〜0.5 ton / cdとす
ることを特徴とする微小中空球体金属複合材料の製造方
法である。
[Means and effects for solving the problem] The present invention provides a method for manufacturing a micro hollow sphere metal composite material in which an aggregate of inorganic micro hollow spheres is impregnated with molten metal under pressure and solidified. is 10 to 30-, gold i
This is a method for producing a micro hollow sphere metal composite material, characterized in that the pressure of the molten metal is 0.1 to 0.5 ton/cd.

すなわち本発明は、無lIl質微小中空球体の殻厚を1
0〜30μのものを金型に充填し、母材となる金属溶湯
を注湯し、O,I 〜0.5 ton/cdの加圧下で
含浸凝固させることにより、微小中空球体の破壊がなく
、かつ巣欠陥のない健全な微小中空球体金属複合材料が
得られるものである。
That is, in the present invention, the shell thickness of the IIl-free micro hollow spheres is reduced to 1.
By filling a mold with 0 to 30 micron particles, pouring molten metal to serve as the base material, and impregnating and solidifying it under pressure of O,I ~0.5 ton/cd, there is no destruction of the micro hollow spheres. , and a healthy micro hollow sphere metal composite material free of nest defects can be obtained.

しかして微小中空球体の殻厚を10〜30−とじたのは
10−未満では微小中空球体の集合体に金属溶湯を含浸
凝固させるために必要な加圧力を加えると金属溶湯の静
水圧により破壊されるためであり、30μを越えると破
壊は少なくなるが軽量化効果が低減するためである。ま
た加圧力を0.1〜0.5ton/c−としたのは、こ
れ未満では溶湯が微小中空球体の集合体に完全に含浸せ
ず、これを越えた高い加圧力では使用可能な中空球体の
範囲では殻厚に関係なく微小中空球体が破壊するためで
ある。
However, the reason why the shell thickness of the micro hollow spheres is set at 10 to 30 is that if the shell thickness is less than 10 -, if the pressure required to impregnate and solidify the molten metal is applied to the aggregate of the micro hollow spheres, it will break due to the hydrostatic pressure of the molten metal. This is because if the thickness exceeds 30μ, breakage will be reduced, but the weight reduction effect will be reduced. In addition, the pressure is set at 0.1 to 0.5 ton/c- because if the pressure is less than this, the molten metal will not completely impregnate the aggregate of micro hollow spheres, and if the pressure is higher than this, the hollow spheres will be usable. This is because the micro hollow spheres are destroyed in the range of , regardless of the shell thickness.

上記の無機質微小中空球体としては、アルミナ、シリカ
、黒鉛、シラス、フライアッシュ、けい酸ナトリウム、
ホウ酸塩、ケイ砂、ホウ砂、黒曜岩等が使用でき、金属
溶湯として、アルミニウムおよびアルミニウム合金の他
マグネシウムおよびマグネシウム合金などが用いられる
The above inorganic micro hollow spheres include alumina, silica, graphite, shirasu, fly ash, sodium silicate,
Borates, silica sand, borax, obsidian, etc. can be used, and as the molten metal, aluminum, aluminum alloys, magnesium, magnesium alloys, etc. can be used.

本発明は上記のように微小中空球体の殻厚および金属溶
湯を含浸凝固させるに必要な加圧力を調整することによ
り、微小中空球体の破壊がなく、かつ金属溶湯が微小中
空球体の集合体に完全に含浸して巣欠陥等のない微小中
空球体金属複合材料が得られるものである。
As described above, the present invention eliminates the destruction of the hollow micro spheres and transforms the molten metal into aggregates of the hollow micro spheres by adjusting the shell thickness of the hollow micro spheres and the pressure necessary to impregnate and solidify the molten metal. A micro hollow sphere metal composite material which is completely impregnated and has no nest defects etc. can be obtained.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

第1表に示すシラスバルーンの殻厚の異なる微ノド中空
球体と12%Siを含むアルミニウム合金を使用し、下
記の方法で微小中空球体アルミニウム合金複合材を作製
した。
A micro hollow sphere aluminum alloy composite material was produced by the following method using the micro-nosed hollow spheres of the shirasu balloons shown in Table 1 having different shell thicknesses and an aluminum alloy containing 12% Si.

第 1 表  微小中空球体の性質 先ず内径70履φの金型に微小中空球体を充填し、電気
炉で450°Cに予熱を行ない、次に750°Cに溶解
したアルミニウム合金を金型内に注湯し第2表に示す種
々の加圧条件で含浸凝固を行なった。上記の方法で得ら
れた微小中空球体゛アルミニウム合金複合材の断面を光
学顕微鏡で観察し微小中空球体の破壊および内部欠陥(
巣欠陥)の有無を調べると共に比重の測定を行なった。
Table 1 Properties of Micro Hollow Spheres First, micro hollow spheres were filled into a mold with an inner diameter of 70 mm, preheated to 450°C in an electric furnace, and then an aluminum alloy molten at 750°C was placed inside the mold. Molten metal was poured and impregnated solidification was performed under various pressurizing conditions shown in Table 2. The cross section of the micro hollow spheres (aluminum alloy composite material) obtained by the above method was observed with an optical microscope, and the destruction of the micro hollow spheres and internal defects were detected.
The presence or absence of nest defects was investigated, and the specific gravity was also measured.

これらの結果を第2表および第3表に示した。These results are shown in Tables 2 and 3.

※ 内部欠陥(巣穴1@)  発生 第2表から明らかなように殻厚が薄い微小中空体A、、
A、は加圧力が小さいB、において内部欠陥が生じ、加
圧力82〜B6においては微小中空体の破壊が生じた。
*Internal defect (burrow 1@) Occurrence As is clear from Table 2, micro hollow bodies A with thin shells...
In A, an internal defect occurred in B, where the pressing force was small, and at a pressing force of 82 to B6, destruction of the micro hollow body occurred.

それに伴い第3表に示す比重値に大きな影響を与え、加
圧力82〜B&では比重値が2.6g/c−前後であり
アルミ合金の比重値2.69g/cdと同程度で軽量化
の効果が得られない。
Along with this, it has a large effect on the specific gravity values shown in Table 3, and when the pressing force is 82~B&, the specific gravity value is around 2.6 g/c-, which is about the same as the specific gravity value of aluminum alloy, 2.69 g/cd. No effect is obtained.

加圧力が本発明で規定した0、 1〜0.5 ton 
/ cdをはずれる場合、加圧力の小さいB1ではすべ
ての微小中空体に内部欠陥(巣穴陥)が発生し、加圧力
が大きいB5およびB6では微小中空体の殻厚に関係な
く破壊が生じ軽量化効果が得られない。
The pressing force is 0, 1 to 0.5 ton as defined in the present invention.
/ When the CD is off, internal defects (burrows) occur in all micro hollow bodies in B1, where the pressure is small, and in B5 and B6, where the pressure is large, destruction occurs regardless of the shell thickness of the micro hollow bodies, resulting in light weight. effect cannot be obtained.

−力木発明の規定内である殻厚lO〜30μおよび加圧
力0.1〜0.5 ton/dの範囲にある殻厚A5、
A4、加圧力Bz、Bs、B、の組合せにおいては微小
中空球体の破壊もなく、比重値も1.9 g /c+1
前後であり軽量性に優れた微小中空球体アルミニウム合
金複合材料が得られることが判る。
- a shell thickness A5 in the range of lO to 30μ and a pressing force of 0.1 to 0.5 ton/d, which is within the specifications of the strength tree invention;
A4, with the combination of pressurizing forces Bz, Bs, and B, there was no destruction of the micro hollow spheres, and the specific gravity value was 1.9 g/c+1
It can be seen that a micro hollow sphere aluminum alloy composite material with excellent lightweight properties can be obtained.

(効果) 以上に説明したように本発明は加圧鋳造法による微小中
空球体金属複合材料の製造に際して微小中空球体の殻厚
および含浸凝固時の加圧力を規定することにより軽量性
に優れた微小中空球体金属複合材料が得られるもので工
業上顕著な効果を奏するものである。
(Effects) As explained above, the present invention provides a micro hollow sphere metal composite material with excellent lightweight properties by specifying the shell thickness of the micro hollow spheres and the pressing force during impregnation solidification when producing the micro hollow sphere metal composite material by the pressure casting method. A hollow spherical metal composite material can be obtained, which has a significant industrial effect.

Claims (1)

【特許請求の範囲】[Claims] 無機質微小中空球体の集合体に金属溶湯を加圧下で含浸
凝固させる微小中空球体金属複合材料の製造方法におい
て、無機質微小中空球体の殻厚を10〜30μmとし、
金属溶湯の加圧力を0.1〜0.5ton/cm^2と
することを特徴とする微小中空球体金属複合材料の製造
方法。
In a method for manufacturing a micro hollow sphere metal composite material in which an aggregate of inorganic micro hollow spheres is impregnated with molten metal under pressure and solidified, the shell thickness of the inorganic micro hollow spheres is 10 to 30 μm,
A method for producing a micro hollow sphere metal composite material, characterized in that the pressing force of the molten metal is 0.1 to 0.5 ton/cm^2.
JP9616288A 1988-04-19 1988-04-19 Manufacture of composite material of fine hollow spheroidal body and metal Pending JPH01268829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9616288A JPH01268829A (en) 1988-04-19 1988-04-19 Manufacture of composite material of fine hollow spheroidal body and metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9616288A JPH01268829A (en) 1988-04-19 1988-04-19 Manufacture of composite material of fine hollow spheroidal body and metal

Publications (1)

Publication Number Publication Date
JPH01268829A true JPH01268829A (en) 1989-10-26

Family

ID=14157649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9616288A Pending JPH01268829A (en) 1988-04-19 1988-04-19 Manufacture of composite material of fine hollow spheroidal body and metal

Country Status (1)

Country Link
JP (1) JPH01268829A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241716A2 (en) * 2001-03-13 2002-09-18 Yazaki Corporation Box-shaped member for automobile
EP1543901A1 (en) * 2003-12-19 2005-06-22 DaimlerChrysler AG Vehicle body or vehicle body part
US7329384B2 (en) 2000-09-29 2008-02-12 Ngk Insulators, Ltd. Porous metal based composite material
CN103589891A (en) * 2013-11-26 2014-02-19 哈尔滨工业大学 Preparation methods of magnesium-based porous composite material containing Al2O3 hollow spheres
CN103614586A (en) * 2013-11-26 2014-03-05 哈尔滨工业大学 Preparation method for Al2O3 hollow sphere/aluminum porous composite material
CN104313381A (en) * 2014-09-25 2015-01-28 王宁伟 Hollow ball foamed aluminum material, preparation method of hollow ball foamed aluminum material and filling spheres used by preparation method
CN112893811A (en) * 2020-07-12 2021-06-04 中科天元(北京)科技发展有限公司 Light heat-insulating sound-absorbing composite material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7329384B2 (en) 2000-09-29 2008-02-12 Ngk Insulators, Ltd. Porous metal based composite material
EP1241716A2 (en) * 2001-03-13 2002-09-18 Yazaki Corporation Box-shaped member for automobile
KR20020073286A (en) * 2001-03-13 2002-09-23 야자키 소교 가부시키가이샤 Box type member for automobile
EP1241716A3 (en) * 2001-03-13 2003-11-12 Yazaki Corporation Box-shaped member for automobile
EP1543901A1 (en) * 2003-12-19 2005-06-22 DaimlerChrysler AG Vehicle body or vehicle body part
CN103589891A (en) * 2013-11-26 2014-02-19 哈尔滨工业大学 Preparation methods of magnesium-based porous composite material containing Al2O3 hollow spheres
CN103614586A (en) * 2013-11-26 2014-03-05 哈尔滨工业大学 Preparation method for Al2O3 hollow sphere/aluminum porous composite material
CN104313381A (en) * 2014-09-25 2015-01-28 王宁伟 Hollow ball foamed aluminum material, preparation method of hollow ball foamed aluminum material and filling spheres used by preparation method
CN112893811A (en) * 2020-07-12 2021-06-04 中科天元(北京)科技发展有限公司 Light heat-insulating sound-absorbing composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
Zhao et al. A novel sintering-dissolution process for manufacturing Al foams
Dieringa Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review
US4713111A (en) Production of aluminum-SiC composite using sodium tetrasborate as an addition agent
Banhart Manufacture, characterisation and application of cellular metals and metal foams
US20080223539A1 (en) Method for making ultra-lightweigh structual metals
Aybarç et al. Effect of Al 2 O 3 particle size on mechanical properties of ultrasonic-assisted stir-casted Al A356 matrix composites
Anbuchezhiyan et al. Development of magnesium matrix syntactic foams processed through powder metallurgy techniques
JPH01268829A (en) Manufacture of composite material of fine hollow spheroidal body and metal
US5221324A (en) Lightweight metal with isolated pores and its production
Rubino et al. An innovative method to produce metal foam using cold gas dynamic spray process assisted by fluidized bed mixing of precursors
Sinha et al. Influence of mold material on the mold stability for foundry use
Ghosh et al. Effect of porosity and alumina content on the mechanical properties of compocast aluminium alloy-alumina particulate composite
Das et al. An innovative process for dispersion of graphene nanoparticles and nickel spheres in A356 alloy using pressure infiltration technique
Su et al. Microstructure and compressive properties of Al/Al2O3 syntactic foams
Pulivarti et al. Effect of mould coatings and pouring temperature on the fluidity of different thin cross-sections of A206 alloy by sand casting
EP0545957B1 (en) Lightweight metal with isolated pores and its production
SE431536B (en) ELFFAST EXOTERMALLY INSULATIVE FORMAL
De Brito et al. Microstructural analysis and tensile properties of squeeze cast Al-7% Mg alloy
US20110300378A1 (en) Discontinuous short fiber preform and fiber-reinforced aluminum billet and methods of manufacturing the same
Goto et al. Deformation behavior of pure copper castings with as-cast surfaces for electrical parts
Jafari et al. Effect of Thickness and Permeability of Ceramic Shell Mould on In Situ Melted AZ91D Investment Casting
CN105073298A (en) Method for the production of core sand and/or molding sand for casting purposes
JPH03138326A (en) Manufacture of aluminum borate whisker reinforced metal matrix composite
JPH01195249A (en) Modification of aluminum-silicon alloy of metal matrix composite
JPS5953338B2 (en) Method for manufacturing aluminum matrix composite material