JPS5952493B2 - How to manufacture power cables - Google Patents

How to manufacture power cables

Info

Publication number
JPS5952493B2
JPS5952493B2 JP14716977A JP14716977A JPS5952493B2 JP S5952493 B2 JPS5952493 B2 JP S5952493B2 JP 14716977 A JP14716977 A JP 14716977A JP 14716977 A JP14716977 A JP 14716977A JP S5952493 B2 JPS5952493 B2 JP S5952493B2
Authority
JP
Japan
Prior art keywords
conductor
semiconductive
layer
coating
power cables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14716977A
Other languages
Japanese (ja)
Other versions
JPS5480578A (en
Inventor
忠之 植松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14716977A priority Critical patent/JPS5952493B2/en
Publication of JPS5480578A publication Critical patent/JPS5480578A/en
Publication of JPS5952493B2 publication Critical patent/JPS5952493B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】 この発明は電力ケーブルの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a power cable.

従来一般に使用されている例えば20kv以上のゴムプ
ラスチック電力ケーブルは次のように構成されている。
Rubber-plastic power cables of, for example, 20 kV or more that have been commonly used in the past are constructed as follows.

即ち導体上に、炭素粉末を混和させた半導電性混和物の
押出被覆による内部半導電層、ゴムプラスチック絶縁層
及び上記半導電性混和物の押出被覆による外部半導電層
をこの順に設け、これを加熱加圧水蒸気中で同時加硫し
予めこれら各層に混入された架橋剤により架橋一体化さ
せていた。しかしかかる電力ケーブルの製造方法におい
ては、その加熱架橋時に上記半導電性混和物層及びゴム
プラスチック絶縁層は軟化するのが普通で、これが加圧
状態下に加熱されることにより内部半導電層が導体中に
めり込み、得られる電力ケーブルの電気特性を低下させ
る欠点があつた。
That is, an inner semiconductive layer formed by extrusion coating of a semiconductive mixture containing carbon powder, a rubber plastic insulating layer, and an outer semiconductive layer formed by extrusion coating of the above semiconductive mixture are provided on the conductor in this order. The layers were simultaneously vulcanized in heated and pressurized steam, and the layers were cross-linked and integrated using a cross-linking agent mixed into each layer in advance. However, in the manufacturing method of such power cables, the semiconductive mixture layer and the rubber-plastic insulation layer are usually softened during thermal crosslinking, and when this is heated under pressure, the internal semiconductive layer is softened. It has the disadvantage that it sinks into the conductor, degrading the electrical properties of the resulting power cable.

そしてかかる電力ケーブルの生産効率の向上は常に強く
望まれていることであるが、上記従来の方法ではケーブ
ルサイズによつて決まる一定の架橋時間が必要であり生
産速度の上昇には一定の限界が免がれなかつた。
Although it is always strongly desired to improve the production efficiency of power cables, the conventional methods described above require a certain amount of crosslinking time, which is determined by the cable size, and there is a certain limit to increasing the production speed. I couldn't escape it.

ここに発明者等は、上述の半導電層の導体へのめり込み
は蒸気加熱時の該半導電層の軟化及びこれが外部から加
圧されることにより生ずること、″又通常の蒸気加熱で
はその熱の滲透など熱効率の向上に限界があることから
上記架橋時間の短縮は困難であることなどに着目し鋭意
検討を重ねた結果、上記半導電性混和物中に予め強磁性
体を配合しておいて高周波を照射し、該強磁性体による
う、づ電流損及び磁気ヒステリシス損によつて内部発熱
させ上記半導電性混和物を加橋させることにより上記の
問題が略解消されることを見出しこの発明を完成したの
である。
Here, the inventors believe that the above-mentioned sinking of the semiconducting layer into the conductor is caused by the softening of the semiconducting layer during steam heating and by applying pressure from the outside. After careful consideration, we focused on the fact that it is difficult to shorten the crosslinking time because there are limits to improving thermal efficiency such as permeation, and as a result, we found that a ferromagnetic material was blended in advance into the semiconductive mixture. It has been discovered that the above problem can be substantially solved by irradiating high frequency waves and causing internal heat generation due to the ferromagnetic material's current loss and magnetic hysteresis loss, thereby cross-linking the semiconducting mixture. was completed.

即ちこの発明は、導体上に、架橋剤及び強磁性フ体を混
和させた半導電性混和物を被覆した後更にその外側に絶
縁層及び外部半導電性被覆材料を被覆し高周波を照射す
ることを特徴とする電力ケーブルの製造方法である。
That is, the present invention involves coating a conductor with a semiconductive mixture containing a crosslinking agent and a ferromagnetic material, and then coating the outside with an insulating layer and an external semiconductive coating material, and then irradiating the conductor with high frequency. A method for manufacturing a power cable, characterized by:

図面はこの発明の一実施態様を示すもので、1Jは導体
、2は内部半導電層、3は絶縁層、及び4は外部半導電
層である。
The drawing shows one embodiment of the invention, in which 1J is a conductor, 2 is an inner semiconducting layer, 3 is an insulating layer, and 4 is an outer semiconducting layer.

この発明において上記内部及び外部半導電層のための樹
脂材料としては、従来の電力ケーブルと同様に主として
ポリエチレン、エチレン共重合j体、塩素化ポリエチレ
ン又はこれらの混合物等のポリオレフィンが用いられ、
必要に応じて、4、4’−チオビス(6−第3ブチルー
3−メチルフェノール)等の酸化防止剤などを加えて用
いらる。
In this invention, the resin material for the inner and outer semiconductive layers is mainly polyolefin such as polyethylene, ethylene copolymer, chlorinated polyethylene, or a mixture thereof, as in conventional power cables,
If necessary, an antioxidant such as 4,4'-thiobis (6-tert-butyl-3-methylphenol) may be added.

そしてこの発明において半導電性混和物とは、やはり公
知のように、例えばポリオレフィン共重合体を含む上に
樹脂組成物100部に対してカーボンブラック10〜7
0部程度混和したものである。次にこの発明で用いられ
る架橋剤としてはジクミルパーオキサイド、2,5−ジ
メチル−2,5−ジ(ターシヤリーブチルパーオキシ)
へキサン、2,5−ビス(ターシヤリ一 −ブチルパー
オキシ)2,5−ジメチル−3−ヘキシン等の有機過酸
化物或はキノンジオキシム、硫黄などであり、これらは
通常のように上記樹脂組成物100部に対して0.5〜
5部などの割合で混合される。この発明で強磁性体とし
てはFe,O,フエライト、COFe2O4フエライト
、NiFe2O,フエライト等のフエライトが使用され
るが、これらは前記樹脂組成物100部に対して5〜5
0部程度、特に好ましくは10〜30部混和するのが良
い。強磁性体の量がこの範囲の量以下では上記半導電性
混和物の速やかな架橋が行われ難<又、これを超える量
では押出被覆性及び加工性が低下しいずれも好ましくな
い。
In this invention, the semiconductive mixture refers to a semiconductive mixture that, as is well known, contains, for example, a polyolefin copolymer and also contains 10 to 7 parts of carbon black per 100 parts of the resin composition.
Approximately 0 parts were mixed. Next, as the crosslinking agent used in this invention, dicumyl peroxide, 2,5-dimethyl-2,5-di(tert-butylperoxy)
Organic peroxides such as hexane, 2,5-bis(tertiary-butylperoxy)2,5-dimethyl-3-hexyne, quinone dioxime, sulfur, etc., are commonly used in the above resins. 0.5 to 100 parts of composition
It is mixed in a proportion such as 5 parts. In this invention, ferrites such as Fe, O, ferrite, COFe2O4 ferrite, NiFe2O, ferrite, etc. are used as the ferromagnetic material, and these are used in an amount of 5 to 5% per 100 parts of the resin composition.
It is good to mix about 0 parts, particularly preferably 10 to 30 parts. If the amount of the ferromagnetic material is less than this range, the semiconducting mixture will not be crosslinked quickly; if the amount exceeds this range, extrusion coating properties and processability will deteriorate, both of which are undesirable.

導体に対して上記各層の被覆を行なつた後、10〜1
000KHzの高周波を照射するのであるが、具体的に
はコイルを筒体にまきつけ、それを高周波発振器に接続
し、その筒体中にケーブルを通過させつつ外部からの加
熱と同時に高周波照射するなどの方法により行ない、又
この範囲内でケーブル構造、線速、半導電層の組成、又
は厚さ等により適宜上記照射量を変えることもできる。
この発明は以上の如く、予め架橋剤を混入した半導電性
混和物に強磁性体を混入し、導体上に被覆して半導電層
を形成し、更に絶縁層及び外部半導電層を被覆し、高周
波を照射して上記強磁性体の存在による内部発熱で架橋
させるようにしたものである。
After coating the conductor with each of the above layers, 10 to 1
000KHz of high frequency is irradiated, but specifically, a coil is wound around a cylinder, it is connected to a high frequency oscillator, and a cable is passed through the cylinder, and high frequency is irradiated at the same time as heating from the outside. The above-mentioned irradiation amount can be changed as appropriate within this range depending on the cable structure, wire speed, composition or thickness of the semiconducting layer, etc.
As described above, this invention mixes a ferromagnetic material into a semiconductive mixture that has been mixed with a crosslinking agent in advance, coats it on a conductor to form a semiconductive layer, and further coats an insulating layer and an external semiconductive layer. , the crosslinking is caused by internal heat generation due to the presence of the ferromagnetic material by irradiation with high frequency waves.

したがつて該内部半導電層が速やかに架橋されるので生
産効率は向上し、又何等加圧条件に加えられることがな
いので導体への内部半導電層のめり込みによる電力ケー
ブルの特性低下が生じないなど工業上の効果は極めて大
きい。
Therefore, since the internal semiconducting layer is quickly crosslinked, production efficiency is improved, and since no pressurizing conditions are applied, there is no deterioration in the characteristics of the power cable due to sinking of the internal semiconducting layer into the conductor. The industrial effects are extremely large.

以下実施例によりこの発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例1〜3及び比較例 導体(銅導体150mm2)上に表1の組成(重量部)
の半導電性混和物を0.25mm厚にて押出被覆し、更
にポリエチレン印本ユニカー社、9025)を絶縁層と
して2.3mm厚、及び外部導電層(0.25mm厚)
を形成し、直ちにこれを加硫管中で180℃に加熱しな
がら10KHzで5分間高周波誘導加熱を行ない架橋さ
せ6kvの150sqCVケーブルを得た。
The composition of Table 1 (parts by weight) was applied to the conductors of Examples 1 to 3 and comparative examples (copper conductor 150 mm2).
Extrusion coated with a semi-conductive mixture of 0.25 mm thick, an insulating layer of 2.3 mm thick polyethylene Inumoto Unicar Co., Ltd., 9025), and an outer conductive layer (0.25 mm thick).
This was immediately heated to 180° C. in a vulcanized tube and subjected to high-frequency induction heating at 10 KHz for 5 minutes to crosslink it to obtain a 6 kV 150 sq CV cable.

得られた電力ケーブルに関して上述した導体への内部半
導電層のめり込みの有無を調べ、又架橋度を調べるなど
の評価を行ない結果を表2に示す。
The resulting power cable was evaluated to see if the internal semiconducting layer had sunk into the conductor as described above, and to check the degree of crosslinking, and the results are shown in Table 2.

上表の結果によれば本発明品は比較例に比べ丙部導電層
の架橋度が著しく向上し、導体への上記めり込みは全く
なく、電気持性が著しく向上していることが明らかであ
る。そして上記引例は線速7m/分で行つたが同一条件
にてこれを1.5倍にしたところ、比較例はゲル分率が
30%に低下し上記めり込みが一層増加し以上を保ちめ
り込みは認められず上記速度向上が可能であることが明
らかであつた。
According to the results in the table above, it is clear that the crosslinking degree of the conductive layer in the upper part of the product of the present invention is significantly improved compared to the comparative example, there is no sinking into the conductor at all, and the electrical holding property is significantly improved. . The above cited example was carried out at a line speed of 7 m/min, but when this was increased by 1.5 times under the same conditions, in the comparative example, the gel fraction decreased to 30% and the above-mentioned indentation increased further, and the above-mentioned indentation was maintained. It was clear that the speed improvement described above was possible.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の電力ケーブルの横断面図である。 1・・・導体、2・・・内部半導電層、3・・・絶縁層
、4・・・外部半導電層。
The drawing is a cross-sectional view of the power cable of the invention. DESCRIPTION OF SYMBOLS 1... Conductor, 2... Inner semiconducting layer, 3... Insulating layer, 4... Outer semiconducting layer.

Claims (1)

【特許請求の範囲】[Claims] 1 導体上に、架橋剤及び強磁性体を混和させた半導電
性混和物を被覆した後更にその外側に絶縁層及び外部半
導電性被覆材料を被覆し高周波を照射することを特徴と
した電力ケーブルの製造方法。
1. A power source characterized by coating a conductor with a semiconductive mixture containing a crosslinking agent and a ferromagnetic material, and then coating the outside with an insulating layer and an external semiconductive coating material, and then irradiating the conductor with high frequency waves. Cable manufacturing method.
JP14716977A 1977-12-09 1977-12-09 How to manufacture power cables Expired JPS5952493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14716977A JPS5952493B2 (en) 1977-12-09 1977-12-09 How to manufacture power cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14716977A JPS5952493B2 (en) 1977-12-09 1977-12-09 How to manufacture power cables

Publications (2)

Publication Number Publication Date
JPS5480578A JPS5480578A (en) 1979-06-27
JPS5952493B2 true JPS5952493B2 (en) 1984-12-20

Family

ID=15424135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14716977A Expired JPS5952493B2 (en) 1977-12-09 1977-12-09 How to manufacture power cables

Country Status (1)

Country Link
JP (1) JPS5952493B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078990A (en) * 2019-04-01 2019-08-02 青岛科技大学 A kind of magnetic coupling high voltage direct current cable semiconductive shielding layer and preparation method thereof

Also Published As

Publication number Publication date
JPS5480578A (en) 1979-06-27

Similar Documents

Publication Publication Date Title
SE430187B (en) LAMINATED ELECTRIC INSULATING MATERIAL, SET FOR MANUFACTURING AND USE
JPS5952493B2 (en) How to manufacture power cables
JPH0528838A (en) Insulated electric wire
JPH0149612B2 (en)
JPH08111121A (en) Electric insulating composition and electric wire/cable
JPS631683B2 (en)
JP3543985B2 (en) X-ray cable manufacturing method
JP3418214B2 (en) Insulated wire for coil
JPS61114410A (en) Manufacture of insulated wire
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JPS6346929B2 (en)
JPS58212007A (en) Semiconductive composition for power cable
JPS60253118A (en) Method of producing water bridging wire and cable
JPS60254520A (en) Method of producing water crosslinked rubber plastic coated wire and cable
JPS6356650B2 (en)
JPH01105407A (en) Bridged polyethylene insulated cable and manufacture thereof
JPS6068506A (en) Power cable
JPH0113167B2 (en)
JPS61230211A (en) Manufacture of insulation wire
JPH08199013A (en) Semiconductive resin composition and crosslinked polyethylene insulated power cable
JPS59112507A (en) Method of producing power cable
JPH06111639A (en) Insulated wire and manufacture thereof
JPH05166418A (en) Power cable
JPH06295621A (en) Electric insulation composite and electric wire/cable
JPS6139688B2 (en)