JPS6068506A - Power cable - Google Patents

Power cable

Info

Publication number
JPS6068506A
JPS6068506A JP17657683A JP17657683A JPS6068506A JP S6068506 A JPS6068506 A JP S6068506A JP 17657683 A JP17657683 A JP 17657683A JP 17657683 A JP17657683 A JP 17657683A JP S6068506 A JPS6068506 A JP S6068506A
Authority
JP
Japan
Prior art keywords
density polyethylene
silane
crosslinking
layer
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17657683A
Other languages
Japanese (ja)
Inventor
利夫 丹羽
砂塚 英夫
享 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP17657683A priority Critical patent/JPS6068506A/en
Publication of JPS6068506A publication Critical patent/JPS6068506A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 く江業上の利用分野〉 本発明は、発電所、プラント等で電力供給用として用い
られ、屯気的特性、耐熱性等を向上させた電カケーブル
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electric power cable that is used for power supply in power stations, plants, etc. and has improved air characteristics, heat resistance, etc.

〈従来技術の背景とその間融点〉 従来より、プラスチック電力クーフルの絶縁体層には、
架橋によって耐熱性を改善された架橋低密度ポリエチレ
ンが多く用いられている。高密度ポリエチレン(H,D
PE)id′、低密度ポリエチレン(bDpに)と比較
して、電気衝撃に対して強固で高い絶縁破壊強度を有す
るなど、物性面で優れてイルが、従来、架橋処理を満足
に進めることができなかったため、電カケーブルの絶縁
体層に使用するには問題であった。すなわち、有機過酸
化物を含有させて高密度・ポリエチレンの化学架橋を行
なおうとすると、押出機内部でその押出熱(押出温度は
通常140℃以上)により架橋反応が進行して高密度ポ
リエチレンが除徐に硬化していき、押出被覆が次第忙困
難とな抄、長尺ケーブルを安定的IC製造できなかつ丸
。また、放射線架橋(通常、電子線架橋)で耐熱化を進
める場合では、架橋自体は円滑に行ない得るが、放射線
は絶縁体が肉厚の場合、その内部まで到達できなhので
、肉厚な架橋ケーブルを製造できなかった。
<Background of conventional technology and its melting point> Conventionally, the insulator layer of plastic power couples has
Crosslinked low-density polyethylene, which has improved heat resistance through crosslinking, is often used. High density polyethylene (H, D
Compared to low-density polyethylene (bDp), PE) has excellent physical properties such as being strong against electric shock and having high dielectric breakdown strength, but conventionally, it has not been possible to proceed with crosslinking process satisfactorily. This posed a problem for use in the insulation layer of electric power cables. In other words, when attempting to chemically crosslink high-density polyethylene by incorporating an organic peroxide, the crosslinking reaction progresses inside the extruder due to the extrusion heat (extrusion temperature is usually 140°C or higher), resulting in high-density polyethylene. As the cables gradually harden, extrusion coating becomes increasingly difficult, making it impossible to stably manufacture ICs on long cables. In addition, when increasing heat resistance by radiation crosslinking (usually electron beam crosslinking), the crosslinking itself can be carried out smoothly, but if the insulator is thick, the radiation cannot reach the inside of the insulator. It was not possible to manufacture cross-linked cables.

そこで、本発明者は、高密度ポリエチレンを絶縁体層に
活用すべく鋭意研究し、まず、ビニルトリアルコキシシ
ラン等を高密度ポリエチレンにグラフトぢせたシラング
ラフト化高密度ポリエチレン組成物を導体上に押出被覆
し、次いで水を媒介とするシラン架橋処理を常法に従っ
て進めたところ、当該高密度ポリエチレン組成物のシラ
ン架橋化が可能であることを児い出した。しかしながら
、ケーブルを水中に通して行なう従来常用のシラン架イ
ー町処理方法では、高密度ポリエチレングープルの場合
水の絶縁体層内部への浸透、拡散が緩慢で、絶縁体層内
部lで架橋化が進むのに長時間かかるため、絶縁体層全
体が架橋さ−hfcケーブルを製造するのが実際上困難
である。特に肉厚グープルのミ11合には極めて困難で
ある。そこで、本発明者は、ざらに鋭意研究し、シラン
グラフト化高密度ポリエチレン組成物を、棉体への押出
被覆の後、連続蒸気架橋装置内を通して高温水蒸気中で
シラン架橋処理を、行なえば、肉厚ケーブルの場合であ
っても全体的にシラン架橋されたケーブルを得ることが
できることを見い出した。
Therefore, the present inventor conducted extensive research to utilize high-density polyethylene as an insulator layer, and first, a silane-grafted high-density polyethylene composition in which vinyltrialkoxysilane or the like is grafted onto high-density polyethylene was applied onto a conductor. By extrusion coating and then carrying out water-mediated silane crosslinking treatment according to a conventional method, it was found that silane crosslinking of the high density polyethylene composition was possible. However, in the conventional silane cross-linking treatment method in which the cable is passed through water, in the case of high-density polyethylene, the penetration and diffusion of water into the inside of the insulating layer is slow, and cross-linking occurs inside the insulating layer. It is difficult in practice to produce HFC cables in which the entire insulation layer is crosslinked, as it takes a long time to develop. This is especially difficult for thick gooples. Therefore, the present inventor conducted extensive research and found that if a silane-grafted high-density polyethylene composition was extruded and coated on a cotton body, then passed through a continuous steam crosslinking device and subjected to a silane crosslinking treatment in high-temperature steam. It has been found that even in the case of thick-walled cables it is possible to obtain totally silane-crosslinked cables.

〈発明の目的〉 本発明は、前記の事笑に着目してなされたもので、その
目的とするところは、絶縁破壊強度等のlR性がより一
層向上された耐゛熱性の電カケーブルを提供することに
ある。
<Object of the Invention> The present invention has been made with attention to the above-mentioned problem, and its purpose is to provide a heat-resistant power cable with further improved IR properties such as dielectric breakdown strength. It is about providing.

〈発明の概要〉 本発明に係る電カケーブルは、シラングラフト化高密度
ポリエチレン組成物を導体上に被覆し、次いで高温水蒸
気中でシラン架橋処理を行なって、架橋高密度ポリエチ
レン組成物の絶縁体層を形成してなることを特徴とする
ものである。本電力グープルは、高絶縁性で電気衝撃に
対して強い高密度ポリエチレンを絶縁体層に採用したも
の故、低密度ポリエチレンケーブルの場合と比較して、
絶縁破壊強度がよシ一層強化される。菫た本発明では、
高温水蒸気中(例えば、温度80〜200℃、圧力0.
6〜’ 5 Kg/cm2)でシラン架橋処理を行なっ
たことKより、水の絶縁体層内部への浸透、拡散が速ま
って架橋反応が迅速に進み、肉厚ケーブルでも通常の線
速で架橋化が絶縁体層全層にわたって可能となる。
<Summary of the Invention> The electric power cable according to the present invention coats a conductor with a silane-grafted high-density polyethylene composition, and then performs a silane cross-linking treatment in high-temperature steam to form an insulator of the cross-linked high-density polyethylene composition. It is characterized by forming layers. This electric power cable uses high-density polyethylene for its insulating layer, which has high insulation properties and is strong against electric shock, so compared to low-density polyethylene cables,
Dielectric breakdown strength is further strengthened. In the present invention,
In high-temperature steam (e.g., temperature 80-200°C, pressure 0.
Since the silane crosslinking treatment was carried out at 6~'5 Kg/cm2), the penetration and diffusion of water into the inside of the insulator layer is accelerated, and the crosslinking reaction proceeds quickly, allowing even thick cables to be processed at normal wire speeds. Crosslinking is possible over the entire insulator layer.

〈実施例〉 以下、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図に示す電力グープル1において、2は325−の
軟銅撚線の導体、3はカーボンブラック等の充填で半導
電性を有する内部半導電層、4は架橋高密度ポリエチレ
ンの絶縁体層、5は内部半導電層3と同様に半導電性を
有する外部半導電層である。このグープル1は、“まず
、ビニルトリメトキシシラン、ビニルトリエトキシラ咎
の有(残シランを高密度ポリエチレンにグラフトさせ友
絶縁体層用の7ラングラフト化高f&1度ポリエチレン
組成物を調製し、かつカーボンブラック等を添加した内
、外部半導電層用樹脂組成物を調製し、これらの組成物
を導体2上に同時押出被覆して内部半導電層3(層厚1
間)、絶縁体層4(j6厚11am)、外部半尋電/g
j5(層厚1mm)を形成し、次いで蒸気架橋装置内に
通して高温水蒸気(温度160℃、圧力6 Kg/cm
2)中でシラン架橋処理を行なって製造したものである
In the power group 1 shown in FIG. 1, 2 is a conductor made of 325 stranded annealed copper wire, 3 is an internal semiconductive layer filled with carbon black or the like and has semiconductivity, 4 is an insulating layer made of cross-linked high-density polyethylene, 5 is an outer semiconducting layer having semiconductivity like the inner semiconducting layer 3. Group 1 describes the process as follows: “First, a 7-run grafted high f&1 degree polyethylene composition for the insulating layer was prepared by grafting the remaining silane to high-density polyethylene, including vinyltrimethoxysilane and vinyltriethoxysilane. In addition, a resin composition for the outer semiconductive layer was prepared by adding carbon black, etc., and these compositions were coextruded and coated on the conductor 2 to form the inner semiconductive layer 3 (layer thickness 1).
between), insulator layer 4 (j6 thickness 11am), external half conductor/g
j5 (layer thickness: 1 mm), and then passed through a steam crosslinking device to high-temperature steam (temperature: 160°C, pressure: 6 Kg/cm).
2) was produced by performing silane crosslinking treatment.

丑だ、比較例1.2として、導体上に上記実施例と同様
にして内部半導電層、P3縁体、外部半導電層を同時押
出し、シラン架橋させなかった非架橋高密度ポリエチ/
ン組成物、及び化学架橋を行/%4 ′/Jo シtI
+C−a’s rtp l +I 丁R−1/ y I
n虚電力多円しYt*−力ケーブルを実施例と同一サイ
ズ、同一層ノ♀で製造した。
As Comparative Example 1.2, an inner semiconductive layer, a P3 edge body, and an outer semiconductive layer were coextruded on a conductor in the same manner as in the above example, and a non-crosslinked high-density polyethylene film without silane crosslinking was prepared.
composition, and chemical crosslinking/%4'/Jo sitI
+Ca's rtp l +I Ding R-1/y I
A Yt*-force cable with n imaginary power polygon was manufactured with the same size and layer thickness as in the example.

而して、実施例及び比較例1.2のケーブルの絶縁破壊
強度及び耐熱性を知るべく、その目安となる130℃で
のインパルス破壊強度及び140℃の高温下での加熱変
形率を測定したところ、下記の第1表に示す結果となっ
た。
Therefore, in order to know the dielectric breakdown strength and heat resistance of the cables of Example and Comparative Example 1.2, the impulse breakdown strength at 130°C and the heating deformation rate at a high temperature of 140°C were measured. However, the results are shown in Table 1 below.

第享表 [ この表より、本発明の電カケーブルは、絶縁破壊強度が
より一層強化され、耐熱性も向上していることか明らか
となった。
Table 1 [From this table, it is clear that the electric power cable of the present invention has further enhanced dielectric breakdown strength and improved heat resistance.

なお、本発明において、シラン架橋高蜜度ボ+Jエチレ
ンは、上述のように予めグラフト化させたシラングラフ
ト化高密度ポリエチVンを用いる仙、押出機中でシラン
などの必要な添加剤を供給し、高′&一度ポリエチレン
を直接クラフト化させてもよい。
In the present invention, the silane-crosslinked high-density polyethylene is prepared by using the silane-grafted high-density polyethylene that has been grafted in advance as described above, and by supplying necessary additives such as silane in the extruder. However, high-temperature polyethylene may be directly made into kraft.

〈発明の効果〉 本発明に係る電力クープルは、以上説明したように、絶
縁体層に架橋高密度ポリエチレン組成物を採用したこと
により、従来汎用の架橋低密度ポリエチレングープルに
も増して、絶縁破壊強度停の電気的特性や耐熱性が優れ
ているという効果をイfする。
<Effects of the Invention> As explained above, the power couple according to the present invention employs a cross-linked high-density polyethylene composition for the insulating layer, so that it has better insulation than the conventional general-purpose cross-linked low-density polyethylene composition. It has the effect of having excellent electrical properties and heat resistance with respect to breaking strength.

【図面の簡単な説明】[Brief explanation of drawings]

?、−1図は本発明に係の一笑施例の電力グープルを示
す断面図である。 1 *豐*電カケーブル、2・0導体、4・−・絶縁体
Rづ。 l持h′F出願人 藤倉電線株式会社
? , -1 is a sectional view showing a power group according to an exemplary embodiment of the present invention. 1 *Fung* Electric cable, 2.0 conductor, 4.--insulator Rzu. Owner: Fujikura Electric Wire Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] シランクラット化高密度ポリエチレン組成物を絶縁体と
して導体上に被覆した後、高温水蒸気中で上記絶縁体を
シラン架橋させたことを特徴とする電カケーブル。
An electric power cable characterized in that a conductor is coated with a silane-cruated high-density polyethylene composition as an insulator, and then the insulator is cross-linked with silane in high-temperature steam.
JP17657683A 1983-09-24 1983-09-24 Power cable Pending JPS6068506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17657683A JPS6068506A (en) 1983-09-24 1983-09-24 Power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17657683A JPS6068506A (en) 1983-09-24 1983-09-24 Power cable

Publications (1)

Publication Number Publication Date
JPS6068506A true JPS6068506A (en) 1985-04-19

Family

ID=16015973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17657683A Pending JPS6068506A (en) 1983-09-24 1983-09-24 Power cable

Country Status (1)

Country Link
JP (1) JPS6068506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125632A (en) * 2011-12-14 2013-06-24 Hitachi Cable Ltd Method for manufacturing electric wire coated with silane crosslinked polyethylene, and method for manufacturing cable coated with silane crosslinked polyethylene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574010A (en) * 1978-11-30 1980-06-04 Mitsubishi Petrochemical Co Method of fabricating crosslinked polyethylene resin coated wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574010A (en) * 1978-11-30 1980-06-04 Mitsubishi Petrochemical Co Method of fabricating crosslinked polyethylene resin coated wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125632A (en) * 2011-12-14 2013-06-24 Hitachi Cable Ltd Method for manufacturing electric wire coated with silane crosslinked polyethylene, and method for manufacturing cable coated with silane crosslinked polyethylene

Similar Documents

Publication Publication Date Title
JPS5986110A (en) Crosslinked polyethylene insulated cable
JP2003147134A (en) Semiconductor watertight composition
JPS6068506A (en) Power cable
JPS5951408A (en) Insulated wire
JPH05200863A (en) Heat recoverable article
JP2000164046A (en) Power cable and its laying method
JPS6164013A (en) Method of producing electric cable
JPH0428118A (en) Coaxial cable
JP7136103B2 (en) Power cable manufacturing method
JPH10233125A (en) Cable
JP2001266650A (en) Electric insulating composition and electric cable
JPS62157601A (en) Semiconductive compound
JPS59103214A (en) Method of producing electric wire and cable
JPH0689608A (en) Electric insulator composition and wire/cable
JP3089831B2 (en) Electric wires and cables
JPS59154711A (en) High voltage cable
JPH01267909A (en) Radiation resistant electric wire-cable
JPH08315638A (en) Electric insulation composition, electric wire and cable
JPS5991607A (en) Polyolefin insulated cable
JPS6271115A (en) Manufacturing crosslinked polyolefin-insulated power cable
JPH06111639A (en) Insulated wire and manufacture thereof
JPS62264510A (en) Manufacture of crosslinked polyethylene cable
JPS6288213A (en) Electric cable and manufacture of the same
JPH035004B2 (en)
JPS61232505A (en) Crosslinked polyethylene insulated wire