JPS5951757B2 - Method for manufacturing an amorphous semiconductor device - Google Patents

Method for manufacturing an amorphous semiconductor device

Info

Publication number
JPS5951757B2
JPS5951757B2 JP54173090A JP17309079A JPS5951757B2 JP S5951757 B2 JPS5951757 B2 JP S5951757B2 JP 54173090 A JP54173090 A JP 54173090A JP 17309079 A JP17309079 A JP 17309079A JP S5951757 B2 JPS5951757 B2 JP S5951757B2
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
substrate
phosphorus
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54173090A
Other languages
Japanese (ja)
Other versions
JPS5694677A (en
Inventor
喜之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP54173090A priority Critical patent/JPS5951757B2/en
Publication of JPS5694677A publication Critical patent/JPS5694677A/en
Publication of JPS5951757B2 publication Critical patent/JPS5951757B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は非晶質シリコン太陽電池のように導電性基板上
にこれとオーム接触する非晶質シリコン層を備えた光電
変換装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a photoelectric conversion device, such as an amorphous silicon solar cell, which includes an amorphous silicon layer on a conductive substrate and in ohmic contact with the amorphous silicon layer.

非晶質シリコンを利用した光電変換装置としては、太陽
電池のほかに、光センサ、画像デバイスなどが検討され
ている。非晶質シリコンは、通常気相成長により得られ
るので、半導体装置に利用するときには、導電性基板の
上に成長せしめられることが多い。第1図はpin形太
陽電池の構造を示し、例えばステンレス鋼などの金属基
板1の上に、モノシランガスをグロー放電により分解し
イオン化されたシリコンを析出させることで約1μmの
厚さの非晶質シリコン層2が形成されている。この非晶
質シリコン層2は、供給モノシランガスの切換によつて
導電形および導電率を変えることで、基板側から順に、
例えば、n形抵抗シリコンのn層2L真性シリコンのi
層22およびp形低抵抗シリコンのp層23の三層構造
とされ、pin構造を形成している。この非晶質シリコ
ン層2の上には、例えばSnO。から成る透明導電層3
を介して、例えばAg−Tiの二層から成る格子状電極
4が設けられている。第2図はショットキー障壁形太陽
電池の構造を示す。pin形と同様に金属基板1の上に
非晶質シリコン層20が堆積されているが、非晶質シリ
コン層20はn層21とi層22の二層からなつており
、その上にPt膜5が被着されて非晶質シリコン層20
との間にショット−障壁を形成している。Pt膜5の上
はpin形と同様に電極4が設けられている。これら2
つの例においてはいずれも基板1の上に最初に低抵抗n
層21がつ<られる。n層21はモノシランガスにホス
フィン(PH、)を混することによつて得られるもので
、ドナーとして燐を含む。このn層は、金属基板との間
に低抵抗のオーム接触を得るためのものである。次につ
くられるi層22は、ドナーやアクセプタを含まない。
太陽電池の特性を決定する一つの要素は、このi層の膜
質である。即ちi層が構造欠陥を多く含むと光電流を生
成する領域(空間電荷層の厚みと拡散長の和)が狭めら
れ、光電変換効率が低下すθる。しかるに、上述のよう
に非晶質シリコンのn層の上に非晶質シリコンのi層を
連続的に成長させた場合、該層には多くの構造欠陥が生
じるため、光電流を生成する領域の厚さが理論的に予測
される値である約0.4μmの1/2程度の約0.2μ
m15となり、高い光電変換効率を得ることが困難であ
る。本発明は光電変換装置製造のために導電性基板の上
に構造欠陥の少ない非晶質シリコン層を成長させかつそ
のシリコン層と基板との間には低抵抗のオーム接触を形
成する方法を提供することを目的とする。
In addition to solar cells, optical sensors and image devices are being considered as photoelectric conversion devices using amorphous silicon. Since amorphous silicon is usually obtained by vapor phase growth, it is often grown on a conductive substrate when used in semiconductor devices. Figure 1 shows the structure of a pin-type solar cell. Monosilane gas is decomposed by glow discharge and ionized silicon is deposited on a metal substrate 1, such as stainless steel, to form an amorphous layer with a thickness of approximately 1 μm. A silicon layer 2 is formed. This amorphous silicon layer 2 is formed in order from the substrate side by changing the conductivity type and conductivity by switching the supplied monosilane gas.
For example, the n-layer 2L of n-type resistive silicon i
It has a three-layer structure including a layer 22 and a p layer 23 of p-type low resistance silicon, forming a pin structure. On this amorphous silicon layer 2, for example, SnO is formed. A transparent conductive layer 3 consisting of
A lattice electrode 4 made of, for example, two layers of Ag-Ti is provided via the lattice electrode 4 . FIG. 2 shows the structure of a Schottky barrier type solar cell. Similar to the pin type, an amorphous silicon layer 20 is deposited on the metal substrate 1, but the amorphous silicon layer 20 consists of two layers, an n layer 21 and an i layer 22, on which a Pt layer is deposited. A film 5 is deposited to form an amorphous silicon layer 20.
A shot barrier is formed between the two. An electrode 4 is provided on the Pt film 5 as in the pin type. These 2
In both examples, a low resistance n
Layer 21 is stretched. The n-layer 21 is obtained by mixing phosphine (PH) with monosilane gas, and contains phosphorus as a donor. This n-layer is for obtaining a low resistance ohmic contact with the metal substrate. The next formed i-layer 22 does not contain donors or acceptors.
One factor that determines the characteristics of a solar cell is the film quality of this i-layer. That is, when the i-layer contains many structural defects, the region in which photocurrent is generated (the sum of the thickness of the space charge layer and the diffusion length) is narrowed, and the photoelectric conversion efficiency decreases. However, when an amorphous silicon i-layer is continuously grown on an amorphous silicon n-layer as described above, many structural defects occur in the layer, resulting in a region that generates photocurrent. The thickness is approximately 0.2 μm, which is about 1/2 of the theoretically predicted value of approximately 0.4 μm.
m15, making it difficult to obtain high photoelectric conversion efficiency. The present invention provides a method for growing an amorphous silicon layer with few structural defects on a conductive substrate for manufacturing a photoelectric conversion device and forming a low resistance ohmic contact between the silicon layer and the substrate. The purpose is to

この目的は基板上に燐を含有する金属層を被着し、その
上に非晶質シリコンのi層を成長させ、i層の前記金属
層と接する領域に燐を拡散させてn層とすることによつ
て達成される。
The purpose of this is to deposit a metal layer containing phosphorus on a substrate, grow an i-layer of amorphous silicon on it, and diffuse phosphorus into the region of the i-layer in contact with the metal layer to form an n-layer. This is achieved by

燐を含む金属被覆は周知の次亜燐酸ソーダNaH,PO
,を含む浴中での無電解ニツケルめつきによつて容易に
得ることができる。
The metal coating containing phosphorus is the well-known sodium hypophosphite NaH, PO.
, by electroless nickel plating in a bath containing .

以下無電解ニツケルめつきによる本発明の実施例につい
て図を引用して説明する。”ニツケルめつ浴としては、
11の水の中に次の成分を添加した塩基性浴を用いる。
Examples of the present invention using electroless nickel plating will be described below with reference to the drawings. ``As a nickel bath,
A basic bath is used in which the following ingredients are added to 11 water.

NiCl2・ 6H2020gN H4C130g (NH.)。NiCl2・6H2020gN H4C130g (NH.).

HC.H,O,4OgNaH2PO23Og このような組成のめつき液を100℃近くまで加熱し、
NH,OHを適量加えた後、表面平滑なステンレス鋼板
をこのめつき液に浸してめつきする。
H.C. H, O, 4OgNaH2PO23Og A plating solution with this composition was heated to nearly 100℃,
After adding appropriate amounts of NH and OH, a stainless steel plate with a smooth surface is immersed in this plating solution and plated.

ニツケルめつきしたステンレス鋼板を洗滌した後、第3
図に示すように、このニツケル層11を有する鋼板1を
基板として、その上に従来と同様のグロー放電分解法に
よつて非晶質シリコン層を成長させる。たゞし従来と異
なり、基板1の上にn形低抵抗層は設けないで、直接i
層22、つづいてp形低抵抗のp層23、透明電極層3
、集電電極4を形成する。i層は、例えば0.1〜 I
TOTT.に保つたモノシランガスを、高周波電界(1
3.5MHz)によるグロー放電で分解することによつ
て、0.5μmの厚さに形成する。
After cleaning the nickel-plated stainless steel plate, the third
As shown in the figure, the steel plate 1 having the nickel layer 11 is used as a substrate, and an amorphous silicon layer is grown thereon by the conventional glow discharge decomposition method. However, unlike the conventional method, an n-type low resistance layer is not provided on the substrate 1, and the i
Layer 22, followed by p-type low resistance p layer 23, and transparent electrode layer 3.
, forming the current collecting electrode 4. The i layer is, for example, 0.1 to I
TOTT. The monosilane gas maintained at
3.5 MHz) to a thickness of 0.5 μm.

この上に設けるp層は、ジボラン(GH)を濃度比で1
%混合したモノシランガスの、高周波電界によるグロ.
一放電を用いて分解することにより、約100λの厚さ
に形成する。第3図はPn接合形太陽電池の場合を示し
たが、第4図に示すシヨツトキー障壁形太陽電池の場合
も、同様に、n層を形成しないで、ニツケル層11を有
する基板1の上に、i層う22、Pt膜5および集電電
極4を順次形成する。第3図または第4図に示すi層2
2あるいはp層23の成長は300℃前後で行われるた
め、その間にニツケルめつき層11に含まれている燐が
i層22の破線で区切つた層24に拡散して、基板1と
非晶質シリコン層の間に良好なオーム接触が形成される
。本発明に基づくこのような方法ではi層は基板の上に
直接成長するが、その膜質は従来の方法によるものにく
らべて著しく改善される。
The p-layer provided on this layer contains diborane (GH) at a concentration ratio of 1
% mixed monosilane gas by high frequency electric field.
By decomposing it using one electric discharge, it is formed to a thickness of about 100λ. Although FIG. 3 shows the case of a Pn junction type solar cell, the Schottky barrier type solar cell shown in FIG. , the i-layer 22, the Pt film 5, and the current collecting electrode 4 are formed in this order. i-layer 2 shown in FIG. 3 or 4
2 or the p layer 23 is grown at around 300°C, during which time the phosphorus contained in the nickel plating layer 11 diffuses into the layer 24 separated by the broken line of the i layer 22, causing the substrate 1 and the amorphous layer to grow. A good ohmic contact is formed between the silicon layers. In such a method according to the invention, the i-layer is grown directly on the substrate, and its film quality is significantly improved compared to conventional methods.

これは、従来の方法によn層では異種のドナー原子を含
むため構造欠陥が多く、その上に成長するi層中にもそ
の欠陥が伸びてi層の構造欠陥の原因となつフていたの
に対し、本発明による方法では基板上に直接i層が成長
するので、構造欠陥の少ない膜質のすぐれた非晶質シリ
コン層が得られることによる。上の実施例では、被覆金
属層として、次亜燐酸・ソーダを含むめつき浴を用いて
の無電解ニツケルめつき層を利用したが、蒸発源として
燐を含む金属を使用した蒸着膜も利用することができる
This is because in the conventional method, the N layer contains many structural defects because it contains different types of donor atoms, and these defects extend into the I layer that grows on top of the N layer, causing structural defects in the I layer. In contrast, in the method according to the present invention, since the i-layer is grown directly on the substrate, an amorphous silicon layer with excellent film quality and fewer structural defects can be obtained. In the above example, an electroless nickel plating layer using a plating bath containing hypophosphorous acid and soda was used as the coating metal layer, but a vapor-deposited film using a metal containing phosphorus as an evaporation source could also be used. can do.

また基板として、例えばガラス板のような絶縁板を用い
その上に蒸着によつて燐を含有する金属層を,設けて太
陽電池の陰極となる導電層とし、その上に直接i層を成
長させることもできる。本発明により燐を含む金属層の
上に成長させる非晶質シリコン層は、上述のようにドナ
ーまたはアクセプタを含まないi層であるが、膜質に悪
影響を与えない程度の低濃度で燐を添加されていても差
支えない。
In addition, an insulating plate such as a glass plate is used as a substrate, and a metal layer containing phosphorus is deposited on it by vapor deposition to serve as a conductive layer that becomes the cathode of the solar cell, and the i-layer is grown directly on top of it. You can also do that. The amorphous silicon layer grown on the metal layer containing phosphorus according to the present invention is an i-layer that does not contain donors or acceptors as described above, but phosphorus is added at a low concentration that does not adversely affect the film quality. There is no problem even if it is.

それによつて基板との間のオーム接触性がより確実にな
る。勿論そのような低濃度の燐のみでは、金属被覆から
拡散する燐が無ければ、オーム接触が得られないことは
明らかである。本発明による方法は、例えば無電解ニツ
ケルめつきによつて簡単に基板上に燐を含む金属被覆を
設けることによつて、欠陥密度の少ない非晶質シリコン
層を得るものであり、このような非晶質シリコン層を用
いて特性の良好な光電変換装置を製造することができる
This makes the ohmic contact with the substrate more reliable. Of course, it is clear that with only such a low concentration of phosphorus, ohmic contact cannot be obtained without phosphorus diffusing from the metallization. The method according to the invention obtains an amorphous silicon layer with a low defect density by simply providing a phosphorous-containing metal coating on a substrate, for example by electroless nickel plating. A photoelectric conversion device with good characteristics can be manufactured using an amorphous silicon layer.

一例として、第3図に示す構造の本発明を適用した非晶
質シリコン太陽電池を作製し、模擬太陽光下でその変換
効率を測定したところ、平均6%であつた。これに対し
高濃度で燐を添加したn形非晶質シリコンをまず形成し
、その上にi層、p層を順に形成した従来構造の太陽電
池の変換効率は約4%であつた。即ち、本発明の適用に
より、変換効率が約50%向上することが確認された。
本発明は、以上実施例をあげて説明した太陽電池の他に
、光センサあるいは画像デバイスのような光電変換装置
にも応用可能である。
As an example, an amorphous silicon solar cell to which the present invention is applied having the structure shown in FIG. 3 was manufactured, and its conversion efficiency was measured under simulated sunlight, and the average conversion efficiency was 6%. On the other hand, the conversion efficiency of a solar cell with a conventional structure in which n-type amorphous silicon doped with phosphorus at a high concentration was first formed, and then an i-layer and a p-layer were sequentially formed thereon was about 4%. That is, it was confirmed that the conversion efficiency was improved by about 50% by applying the present invention.
The present invention can be applied to photoelectric conversion devices such as optical sensors or image devices, in addition to the solar cells described above with reference to the embodiments.

【図面の簡単な説明】 第1図,第2図はそれぞれPin形およびシヨツトキ一
障壁形太陽電池の従来例を示す断面図、第3図,第4図
はそれぞれPin形およびシヨツトキ一障壁形太陽電池
における本発明の実施例を示す断面図である。 1・・・・・・基板、11・・・・・・無電解ニツケル
めつき層、22・・・・・・真性非晶質シリコン層、2
3・・・・・・P形非晶質シリコン層。
[Brief Description of the Drawings] Figures 1 and 2 are cross-sectional views showing conventional examples of pin-type and shot-barrier solar cells, respectively, and Figures 3 and 4 are cross-sectional views of pin-type and shot-barrier solar cells, respectively. 1 is a cross-sectional view showing an embodiment of the present invention in a battery. DESCRIPTION OF SYMBOLS 1...Substrate, 11...Electroless nickel plating layer, 22...Intrinsic amorphous silicon layer, 2
3...P-type amorphous silicon layer.

Claims (1)

【特許請求の範囲】 1 基板上に順に、少なくとも非晶質シリコンのn層と
i層とを積層した構造を有する光電変換装置の製造方法
において、前記基板に燐を含有する金属層を被着し、該
金属層上に非晶質シリコンのi層を成長させ、i層の前
記金属層と接する領域に燐を拡散させてn層とすること
を特徴とする光電変換装置の製造方法。 2 特許請求の範囲第1項記載の方法において、燐を含
有する金属層が次亜燐酸ソーダを含むめつき浴による無
電解ニッケルめつき層であることを特徴とする光電変換
装置の製造方法。
[Scope of Claims] 1. A method for manufacturing a photoelectric conversion device having a structure in which at least an n-layer and an i-layer of amorphous silicon are sequentially stacked on a substrate, the method comprising depositing a metal layer containing phosphorus on the substrate. A method for manufacturing a photoelectric conversion device, characterized in that an i-layer of amorphous silicon is grown on the metal layer, and phosphorus is diffused into a region of the i-layer in contact with the metal layer to form an n-layer. 2. A method for manufacturing a photoelectric conversion device according to claim 1, wherein the phosphorus-containing metal layer is an electroless nickel plating layer using a plating bath containing sodium hypophosphite.
JP54173090A 1979-12-27 1979-12-27 Method for manufacturing an amorphous semiconductor device Expired JPS5951757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54173090A JPS5951757B2 (en) 1979-12-27 1979-12-27 Method for manufacturing an amorphous semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54173090A JPS5951757B2 (en) 1979-12-27 1979-12-27 Method for manufacturing an amorphous semiconductor device

Publications (2)

Publication Number Publication Date
JPS5694677A JPS5694677A (en) 1981-07-31
JPS5951757B2 true JPS5951757B2 (en) 1984-12-15

Family

ID=15954005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54173090A Expired JPS5951757B2 (en) 1979-12-27 1979-12-27 Method for manufacturing an amorphous semiconductor device

Country Status (1)

Country Link
JP (1) JPS5951757B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955012A (en) * 1982-09-24 1984-03-29 Mitsubishi Chem Ind Ltd Amorphus silicon semiconductor substrate
US4639543A (en) * 1985-02-04 1987-01-27 Richard J. Birch Semiconductor devices having a metallic glass substrate
JPS6281057A (en) * 1985-10-04 1987-04-14 Hosiden Electronics Co Ltd Transparent conductive film
US4798808A (en) * 1986-03-11 1989-01-17 Atlantic Richfield Company Photoconductive device coontaining electroless metal deposited conductive layer
US5085711A (en) * 1989-02-20 1992-02-04 Sanyo Electric Co., Ltd. Photovoltaic device

Also Published As

Publication number Publication date
JPS5694677A (en) 1981-07-31

Similar Documents

Publication Publication Date Title
KR860001163B1 (en) Thin solar cell
US9525098B2 (en) Solar cell and method of manufacturing the same
US4612411A (en) Thin film solar cell with ZnO window layer
US20190198706A1 (en) Heterojunction Solar Cell and Fabrication Method Thereof
US4459163A (en) Amorphous semiconductor method
AU2021404856B2 (en) High-efficiency silicon heterojunction solar cell and manufacturing method thereof
TW201513380A (en) A high efficiency stacked solar cell
AU4795600A (en) An aluminum alloy back junction solar cell and a process for fabricatin thereof
SG191044A1 (en) Solar cell and solar-cell module
AU622622B2 (en) Functional znse1-xtex:h deposited film
CN114864729B (en) Silicon-based heterojunction solar cell and preparation method thereof
CN113113502A (en) Heterojunction solar cell and preparation method
CN113130671A (en) Silicon heterojunction solar cell and preparation method thereof
KR20120047200A (en) Metallic contacts for photovoltaic devices and low temperature fabrication processes thereof
US4396793A (en) Compensated amorphous silicon solar cell
CN218788382U (en) High-efficiency heterojunction solar cell
CN110634968A (en) Monocrystalline silicon heterojunction solar cell based on non-grid line and non-doped contact
US4342879A (en) Thin film photovoltaic device
CN114335228A (en) Heterojunction solar cell, preparation method thereof and power generation device
TWI543387B (en) Photoelectric conversion device and manufacturing method thereof
CN116053348A (en) Heterojunction solar cell and preparation method thereof
JP2012023350A (en) Method of producing photoelectric conversion device
KR20040042209A (en) Silicon solar battery of thin film type
CN113451445A (en) Solar cell and manufacturing method thereof
JPS5951757B2 (en) Method for manufacturing an amorphous semiconductor device