JPS5950738A - Coils for armature with noninteger number slots - Google Patents

Coils for armature with noninteger number slots

Info

Publication number
JPS5950738A
JPS5950738A JP15959082A JP15959082A JPS5950738A JP S5950738 A JPS5950738 A JP S5950738A JP 15959082 A JP15959082 A JP 15959082A JP 15959082 A JP15959082 A JP 15959082A JP S5950738 A JPS5950738 A JP S5950738A
Authority
JP
Japan
Prior art keywords
coils
coil
phase
winding
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15959082A
Other languages
Japanese (ja)
Inventor
Tadayoshi Tanigawa
谷川 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP15959082A priority Critical patent/JPS5950738A/en
Publication of JPS5950738A publication Critical patent/JPS5950738A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Abstract

PURPOSE:To enable to automate a winding work and to reduce the time of the winding work by eliminating to fill insulators between coils of different phases. CONSTITUTION:Coils u1-u3 are concentrically wound in a phase U, the coils u1, u2 are wound in a simple layer winding and are disposed outside, the coil u3 is wound in a double layer winding contained at both sides in the same slots 9, 14 with coils w9, v6 of other phases, and is disposed at the innermost periphery to form a pair of poles. Then, the leading position is located at the side of the phase U, i.e., the coil of a slot 42 in which the position of the phase V is displaced at 840 deg. of an electric angle with the side of the oil of a slot 7 as a reference, the position of the phase W is further displaced at 840 deg. of an electric angle from the phase V, i.e., at the side of the coil of a slot 32. One end of the coil of the outermost periphery is led to the side of the coil of the slot 7, sequentially wound in the inner periphery, one end of the coil of the innermost periphery, and lead wire led from the side of the coil of the slot 14 is sequentially connected to one end of the coil of the outermost periphery of pairs of rightside adjacent pole and to the side of the coil of the slot 22 in such a manner that the directions of currents become the same. The other phases V, W are similarly connected, but the coils are connected between the poles in the phase W, and the coils are connected in reverse direction between the phases V and W.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は交流回転電機に使用される三相!、磯子巻線に
係り、%CC二鎖春巻線方式不整数構電機子巻線の改良
に関する。 〔発明の技術的背景とその問題点〕 三相交流回転を機では円筒状の電機子鉄心の内周面に複
数個の軸方向溝を設け、これC:電機子巻線を巻装し、
電機子を形成する。その電機子巻線の巻き方I:は型巻
、波巻、鎖巻の3種類があり、回転電機の種類、特性C
二応じて選定される。従来の三相交流回転電機において
は二層型巻方式が多かったが、最近はコイル全数が少な
く、コイル間接続が少なく、コイルの絶縁が容易で、鉄
心の溝に挿入するのが容易などの利点に注目して単層鎖
巻方式の採用が多くなってS+。特にこの傾向はコイル
全数が多くなる多極機について強くなる。 尚1個の溝にコイル辺1個を入れるものを単層巻、2個
重ねて入れるのを二層巻と称する。又、溝数Cついてけ
毎伊毎相当りの溝数が整数の場合と不整数即ち分数にな
るものとがあり、前者を整数溝巻、後者を不整数溝巻又
は分数溝巻と称して共に広く用いられている。不整数溝
巻は概L7て極数の比較的多い回転電機に採用される場
合が多い。この理由は不整数溝巻は並列回路数の選定範
囲は狭いが、極数の整数倍で々い溝数な選定できるので
設計上の自由度が大きいことや、電圧波形を良好にし易
いなどの利点があるためである。不整数溝巻方式におい
て毎極毎相肖り溝数4は一般に整数A、B、Cを用いて
次式で表わされる。即ちf=はとこでA≧2で旦−1の
場合であり、即ち三相   2 であるから具体的C二極数、溝数で言えば4極30溝。 42溝、6極45溝、8極60溝、12極90溝などで
ある。従来の単層鎖巻方式の一例について図面を参照し
て説明すると次の如くである。 第1図は三相6極45溝の場合の電機子巻線の展開接続
図で毎極毎相の溝数?=2+1即ちA=2である。そし
て単層巻と前記し7たが、大部分が単層巻(二なってい
て、部分的例えは第4溝(−おいては二層巻が混用でれ
ているものである。第1図においてrr、v、w、x、
y、zは電機子の口出し線の端子記号、”i −”9 
+ −1”” 91 vPl 〜−9は各相毎のコイル
、(1)〜(ト))の数字は’i、 +e子の構番号を
、それぞれ表わしたものである。 第1図i二おいて■相(実線で表わしたコイル。 5cl−sLg )に着目すると、鎖巻コイルはLlと
1L2゜町とで一極対となり、6極の例であるから3椿
対から成る。−1は1個(=人÷旦=1)のコイルか 
 2 ら成り、隣接するコイル群は塾2とμBから成り2個(
−’−+1=2)であって1極対となる。同様に”4+
”?もそれぞれ1個のコイルから成り、又、これらにそ
れぞれ隣接する町、塾6及びL8.u9は2個のコイル
群から成る。μB、 ”6. ”9け隣り合う相と同じ
溝512層に納められている。 他のV相、W相についても同様である。 一般にU相のコイルの口出しを基準にし、■相は120
°(電気角以下同様)W相は240°の位置から出し、
各コイルはコイル符号の添字の番号順に直列に接続し、
終端はx、y、zとなる。尚溝ピッチの電気角をθとす
ると となる。 第2図は第1図の展開接続図を1×Y(星形)C結線さ
れた例を示す。町〜sL9+’1〜?9. w1〜11
Poけ各相のコイルを表わし、斜線を付して示したもの
は、隣り合う相のコイルと同一溝内!:納められるコイ
ルで、その関係を矢印で表わしである。 同一溝内に納められるコイルは何れも異相のコイルであ
り、各コイル間
[Technical Field of the Invention] The present invention is a three-phase motor used in AC rotating electric machines! , relates to Isogo winding, and relates to improvement of %CC double chain spring winding type irregular number structure armature winding. [Technical background of the invention and its problems] In a three-phase AC rotation machine, a plurality of axial grooves are provided on the inner peripheral surface of a cylindrical armature core, and the armature winding is wound therein.
Form the armature. There are three types of armature winding: type winding, wave winding, and chain winding.
2. Selected accordingly. Conventional three-phase AC rotating electric machines often used a two-layer type winding system, but recently, the number of coils is small, there are few connections between coils, it is easy to insulate the coils, and it is easy to insert into the groove of the iron core. Focusing on its advantages, the single-layer chain winding method is increasingly being adopted. This tendency is particularly strong for multi-polar machines where the total number of coils increases. In addition, when one coil side is placed in one groove, it is called single-layer winding, and when two coil sides are placed in one groove, it is called double-layer winding. In addition, there are cases in which the number of grooves corresponding to the number of grooves C is an integer number, and cases in which the number of grooves is an integer number, that is, a fraction.The former is called integer groove winding, and the latter is called irregular number groove winding or fractional groove winding. Both are widely used. Irregular number groove winding is often employed in rotating electric machines having a relatively large number of poles, such as L7. The reason for this is that although the selection range for the number of parallel circuits is narrow for irregular number groove winding, it is possible to select a large number of grooves using an integer multiple of the number of poles, so there is a greater degree of freedom in design, and it is easier to improve the voltage waveform. This is because there are advantages. In the irregular number groove winding system, the number of grooves per pole and phase, 4, is generally expressed by the following equation using integers A, B, and C. That is, f= is a case where A≧2 and dan-1, that is, it is a three-phase 2 , so the concrete number of C two poles and the number of grooves is 4 poles and 30 grooves. These include 42 grooves, 6 poles and 45 grooves, 8 poles and 60 grooves, and 12 poles and 90 grooves. An example of a conventional single-layer chain winding system will be described below with reference to the drawings. Figure 1 is an expanded connection diagram of the armature winding for a three-phase, six-pole, 45-groove case.How many grooves are there for each pole and each phase? =2+1, that is, A=2. Although it was described above as a single-layer winding, most of the winding is a single-layer winding (two-layer winding), and a partial example is a fourth groove (-) in which two-layer winding is mixed. In the figure, rr, v, w, x,
y and z are the terminal symbols of the armature lead wires, "i -" 9
+ -1"" 91 vPl to -9 represent the coils for each phase, and the numbers (1) to (g)) represent the structure numbers of 'i' and +e, respectively. If we focus on the ■ phase (coil represented by a solid line, 5cl-sLg) in Figure 1, we can see that the chain-wound coil has one pole pair between Ll and 1L2°, and since it is an example of six poles, there are three camellia pairs. Consists of. -1 is 1 coil (= person ÷ time = 1)
2, and the adjacent coil group consists of Juku 2 and μB, 2 coils (
-'-+1=2), resulting in a single pole pair. Similarly “4+
``?'' each consists of one coil, and the adjacent town, cram school 6, and L8.u9 each consist of two coil groups.μB, ``6. ``The 9th phase is housed in the same groove 512 layer as the adjacent phase.The same goes for the other V and W phases.Generally, based on the U phase coil opening, the
° (same as electrical angle) W phase is taken out from the 240° position,
Each coil is connected in series in the order of the subscript of the coil code,
The terminal ends are x, y, and z. If the electrical angle of the groove pitch is θ, then FIG. 2 shows an example in which the developed connection diagram of FIG. 1 is connected in a 1×Y (star-shaped) C connection. Town~sL9+'1~? 9. w1~11
The coils of each phase are shown with diagonal lines, which are in the same groove as the coil of the adjacent phase! : The coils that can be stored, and their relationships are indicated by arrows. All the coils housed in the same groove are of different phase, and there is a gap between each coil.

【:は電位差があるため、溝内コイル辺
間に絶縁物を挿入し、絶縁を強化する必要があった。そ
の電位差【二ついて次に述べる。 同一溝内の異相間コイルの電位差は、Y結線の中性点(
x、y、zの接続部)から遠いコイル間はと高く、云い
かえればU、V、Wの口出しに近いコイルが同一溝を1
納められた場合はど高電位差が生ずる。例えば第1図の
第14の溝に)C納められたコイル塾8と’8+及び第
1図の第19のの溝0旬に納められたコイルP8とυ8
が最大電位差となる。 異相コイル間の電位差をE、電源電圧を■とすると、上
記異相コイル間の電位差は となる。 この場合、同一溝内に二層C二組められる異相コイル”
8+ sL6+ ”(1+ ’8+ ’6+ ’9+ 
−8+ −6+−9はそれぞれその他のコイルの半分か
、ヌは半分に近い巻数になるため、これらのコイルの電
位差も巻数に比例し、他のコイルの半分の電位差として
計算される。その他のコイルC二ついても同様の計算で
算出し、最小の電位差を求めるとE←0.07vとなる
。 このように最小の電位差は電源電圧の0.07倍である
g二もかかわらず、最大の電位差は電源電圧の0.73
倍かかる事になり、前述の様C二同−溝内に異相のコイ
ルが納められる場合は、異相のコイル間に絶縁物を挿入
シフ、コイル間の絶縁を強化する必要が生じてくる。こ
のため、電機子巻線を鉄心溝に巻装する際C二は異相コ
イル間に絶縁物を挿入する作業が必要で、巻線作業の機
械化が困難になり、たとえ機械で挿入しても不安定な絶
縁となり、作業員が手で修正を行なわなければならない
というのが従来の欠点であった。 又、コイルパターンが1極対のコイル群を構成するの5
11個のコイルと、それと逆巻方向の2個のコイル群か
ら成っているため、コイル巻きC1時間を多く必要とす
る欠点があった。これはAが他の正の整数の場合でも同
様である。 〔発明の目的〕 本発明は異相コイル間g二絶縁物を入れないで済ませ、
巻線作業の自動化を可能にすると共に巻線作業時間を低
減し得るようCニした不整数構電機子巻線を提供するこ
とを目的とする。 〔発明の概要〕 本発明においては、複数個の溝を有する電機子鉄心に巻
装され、毎極毎相の溝数?がAを正の整数としてg−=
h+’でありs  (A+1)個のコイルで各相の1極
対を形成し、A個のコイルを単層巻とし1個のコイルを
他相のコイルと同一溝に納める2層巻として配置してな
る3相交流用の不整数構電機子巻線において、単層巻の
A個のコイルの最内周に2層巻の1個のコイルを配置し
7た同心巻として1極対を形成し、所定の1′@L対の
コイルのうち最外周のコイルの一端を1相の口出しとし
、次の相のコイルの口出しを電気角で8400ずらせた
位置の1極対のコイルの最外周のコイルの一端とし、他
のもう一つの相のコイルの口出しを更に電気角で840
°ずらせた位置の1極対のコイルの最外周のコイルの一
端とし、3相の巻線のうち】相のみを他の相とは極対コ
イル間の接続方向が逆になる様に接続し、各相巻終り端
をY結線の中性点として接続することにより、同一溝内
の異相コイル間の電位差を低下させ、そのコイル間に絶
縁物を不要とし、かつ1極対のコイルを同心巻g二する
ことコニより、コイル巻きの時間を低減し得るようにす
るものである。 〔発明の実施例〕 以下、本発明の一実施例について、第3図および第4図
を参照して説明する。第3図は前記した従来の不整数構
電機子巻線と同じく3相6極45溝の場合の展開接続図
である。毎極毎相の溝数f=A+’で、この場合A=2
でg、 = 2 +−!−である。 2                        
   2第4図は第3図をIXYに結線し、位相を加味
して図示したものでそれぞれの符号は従来例と同じであ
る。第3図において、コイルの形状配置は従来例と異な
り、例えばU相では”l+ w2+ ”8のコイルを同
心巻とし、 ul、!2のコイルは単層巻で外側に位置
し、塾8のコイルは他の相のコイルeo、 Paとそれ
ぞれ両辺が同一溝# 9 、 #14に納められた2層
巻となって最内周l二位置して1極対を形成している。 本実施例は61f!jであるから3極対で1相分を形成
している。■相、W相においても同様である0 次5ニ口出し位11dt7相即ち#7溝のコイル辺を基
準としてV相の位置を電気角で840°ずらせた$42
 mのコイル辺とし、W相の位置を更g二■相から電気
角で840°ずらせた位置即ち#32溝のコイル辺から
出す。接続は同心巻の最外周のコイルの一端例えば#7
溝のコイル辺を口出しとし、順次内周のコイルへと巻回
し、最内周のコイルの一端例オば#14溝のコイル辺か
ら出た口出し接続線を順次右隣の極対の最外周のコイル
の一端例えば#22溝のコイル辺へと接続し、電流方向
が同一となる様l二する。■相もU相に準じる。世しW
相についてはコイルの電流方向は他相と同じであるが、
各極対間の接続を他の2相U、Vとは逆方向即ち左回り
に接続する。 第4図C第3図の各相巻終り端X、Y、Zを接続して位
相を加味し、てIXYに結線した図を示したが、この中
でg+線を施したコイルuB 、 u6 、 Kg 。 ’8+ −6w−9+ν8.シロ、υ9け同一溝内に異
相コイルと共に納められるもので、その関係を矢印で示
しである。 次に作用Inついて説明する。 同一溝内に異相コイルが納められる場合の電位差Eけ従
来例と同様Y結線の中心から遠いコイル間#1と高いの
で、本実施例でけコイル払8とコイルv6即ち#14解
内が最大となる。 この電位差Eを求めると、電源電圧をVとした場合、 となる。次iニコイルsLaとtoo 、 1−aと”
9 + ?8とuPg。 νBとμ9.”8とFgについて電位差Eを求めると、
となる。次ロコイル塾6とm1Pa 、 ?6とυ6 
Cついて電位差Eを求めると、 となる。更ζニコイル払6と?0について電位差Eを求
めると、 となる。即ち、電源電圧vに対して最大電位差は約57
チ【二なり、最小電位差は約25%に低減される。従っ
て例えば電源電圧Vが200ボルトの場合、コイル間の
最大電位差Eは、 E = 200 x O,57= 114ボルト又、最
小の電位差Eは E = 200 X 0.25 = 50ボルトとなる
。従って、1司−篩内異相コイル間の絶縁物が不要とな
り、コイル巻回から電機子鉄心の溝内にコイルを納める
捷でを機械により自動化することができる。そして更に
同心巻化により、1極対のコイル群を3個のコイルで連
続に巻回できるため、作業能率が大幅に向上する。 上記はAが2の偶数の場合で説明したが、正の整数であ
ればよく、例えばAが3の奇数の場合でも同様のことが
できる。この場合の展開接続図を第5図に示す。この場
合当然溝数は変化1..631gとなって3相61f1
1の巻線を形成することC二なる。 尚、本発明は上記し、かつ図面に示した実施例のみに限
定されるものではか<、その要旨を変更しない範囲で、
程々変形して実施できることは勿論である。 〔発明の効果〕 以上説明したようC二、本発明C二よれは、不整畝溝電
機子巻線において、同一溝内■1異相コイルが納められ
た場合、それらコイル間の電位差が低くなり、同一溝内
異相コイル間の絶縁物が不要となり、コイル巻回から電
絨子鉄心の溝内Cニコイルを納めるまで機械S二より自
動化することができるとともg二、同心巻化C二より1
極対のコイル群を複数個のコイルで連続≦二巻回出来る
ため、作業能率上からも大幅な向上が可能となる不整畝
溝電機子巻線が得られる。
[: Because there is a potential difference, it was necessary to insert an insulator between the sides of the coil in the groove to strengthen the insulation. The potential difference [two are described below]. The potential difference between coils of different phases in the same groove is the neutral point of the Y connection (
The distance between the coils far from the connection points of x, y, and z is very high.
If it is stored, a high potential difference will occur. For example, the coils 8 and '8+ are stored in the 14th groove in Figure 1, and the coils P8 and υ8 are stored in the 19th groove in Figure 1.
is the maximum potential difference. Assuming that the potential difference between the different phase coils is E and the power supply voltage is (■), the potential difference between the above different phase coils is as follows. In this case, two different phase coils can be assembled in the same groove.
8+ sL6+ ”(1+ '8+ '6+ '9+
Since -8+ -6+-9 each have half the number of turns of the other coils, and Nu has the number of turns close to half, the potential difference between these coils is also proportional to the number of turns, and is calculated as the half potential difference of the other coils. Even if there are two other coils C, the same calculation is performed and the minimum potential difference is found to be E←0.07v. Although the minimum potential difference is 0.07 times the power supply voltage, the maximum potential difference is 0.73 times the power supply voltage.
If coils of different phases are housed in the C grooves as described above, it will be necessary to insert an insulator between the coils of different phases to strengthen the insulation between the coils. For this reason, when winding the armature winding in the core groove, C2 requires the work of inserting an insulator between the different-phase coils, making it difficult to mechanize the winding work, and even if it is inserted by machine, it will not work. The conventional drawback was that the insulation was not stable and the worker had to make corrections by hand. In addition, the coil pattern constitutes a coil group with one pole pair.
Since it consists of 11 coils and 2 groups of coils wound in the opposite direction, it has the disadvantage that a long coil winding time C1 is required. This also applies when A is another positive integer. [Object of the invention] The present invention eliminates the need to insert two insulators between coils of different phases,
It is an object of the present invention to provide a C-shaped irregular number structure armature winding that enables automation of winding work and reduces winding work time. [Summary of the Invention] In the present invention, the armature core is wound around an armature core having a plurality of grooves, and the number of grooves for each pole and each phase varies. is a positive integer and g−=
h+' and s (A+1) coils form one pole pair for each phase, and A coils are arranged as single-layer windings and one coil is placed in the same groove as the coils of other phases as two-layer windings. In the irregular number structure armature winding for three-phase alternating current, one coil with two-layer winding is arranged on the innermost circumference of A number of single-layer winding coils, and one pole pair is formed as a concentric winding. One end of the outermost coil of a predetermined 1'@L pair of coils is set as the lead of one phase, and the end of the coil of one pole pair is set at a position where the lead of the next phase coil is shifted by 8400 electrical degrees. Take one end of the outer coil, and further set the lead of the other phase coil to 840 in electrical angle.
Connect one end of the outermost coil of one pole pair coil at shifted positions, and connect only the ] phase of the three-phase winding so that the connection direction between the pole pair coils is opposite to the other phases. By connecting the end of each phase winding as the neutral point of the Y-connection, the potential difference between different phase coils in the same groove is reduced, an insulator is not required between the coils, and the coils of one pole pair are concentric. The coil winding time can be reduced by winding the coil. [Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 3 and 4. FIG. 3 is a developed connection diagram in the case of a 3-phase, 6-pole, 45-groove winding, similar to the conventional irregular-number structure armature winding described above. Number of grooves for each pole and each phase f=A+', in this case A=2
So g, = 2 +-! − is. 2
2. FIG. 4 is a diagram of FIG. 3 connected to IXY, taking into account the phase, and the respective symbols are the same as in the conventional example. In Fig. 3, the shape and arrangement of the coils is different from the conventional example; for example, in the U phase, 8 coils with "l+w2+" are concentrically wound, ul,! Coil No. 2 is a single-layer winding located on the outside, and coil No. 8 is a two-layer winding whose both sides are housed in the same grooves #9 and #14 as the coils eo and Pa of other phases, respectively, and is located on the innermost periphery. They are located in two positions to form one pole pair. This example is 61f! j, one phase is formed by three pairs of poles. The same is true for the ■phase and the W phase.
The position of the W phase is shifted from the g2 phase by 840 degrees in electrical angle, that is, the coil side of the #32 groove. Connect to one end of the outermost coil of the concentric winding, for example #7
Using the coil side of the groove as an outlet, wind it sequentially to the innermost coil.For example, one end of the innermost coil is connected to the outermost circumference of the pole pair on the right. Connect one end of the coil to the coil side of the #22 groove, for example, so that the current direction is the same. ■The phase also follows the U phase. World W
Regarding the phase, the current direction of the coil is the same as other phases,
The connections between each pole pair are connected in the opposite direction to the other two phases U and V, that is, in a counterclockwise direction. Figure 4C The end ends of each phase winding in Figure 3, X, Y, and Z, are connected to take the phase into account, and are connected to IXY. , Kg. '8+ -6w-9+ν8. At the top, υ9 pieces are housed together with different-phase coils in the same groove, and their relationship is shown by arrows. Next, the effect In will be explained. When different-phase coils are housed in the same groove, the potential difference E is high between the coils #1, which is far from the center of the Y connection, as in the conventional example. becomes. When calculating this potential difference E, when the power supply voltage is V, it becomes as follows. Next i Nikoil sLa and too, 1-a and”
9+? 8 and uPg. νB and μ9. ``When finding the potential difference E between 8 and Fg,
becomes. Next Locoil Juku 6 and m1Pa, ? 6 and υ6
When calculating the potential difference E with respect to C, it becomes as follows. Further ζ Nicoil payment 6? When calculating the potential difference E with respect to 0, it becomes as follows. That is, the maximum potential difference with respect to the power supply voltage v is approximately 57
2, the minimum potential difference is reduced to about 25%. Therefore, for example, if the power supply voltage V is 200 volts, the maximum potential difference E between the coils is E = 200 x O, 57 = 114 volts, and the minimum potential difference E is E = 200 x 0.25 = 50 volts. Therefore, there is no need for an insulator between the coils of different phase in the sieve and the winding of the coils and the cutting of the coils into the grooves of the armature core can be automated by a machine. Further, by concentric winding, a coil group of one pole pair can be continuously wound with three coils, which greatly improves work efficiency. The above description has been made for the case where A is an even number of 2, but it may be any positive integer, and the same thing can be done even when A is an odd number of 3, for example. A developed connection diagram in this case is shown in FIG. In this case, the number of grooves naturally changes 1. .. 631g and 3 phase 61f1
Forming the winding of C1 becomes C2. It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings.
Of course, it can be implemented with some modification. [Effects of the Invention] As explained above, in C2 and C2 of the present invention, when two different-phase coils are housed in the same groove in the irregular ridge-groove armature winding, the potential difference between the coils becomes low, There is no need for insulators between different phase coils in the same groove, and the process from coil winding to placing the C coil in the groove of the electric carpet iron core can be automated using machine S2.
Since the coil group of pole pairs can be continuously wound ≦2 times with a plurality of coils, an irregular ridge-groove armature winding can be obtained that can greatly improve work efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の不整畝溝電機子巻線を示す展開接続図、
第2図H第1図の巻線なIXYに結線した結線図、第3
図は本発明の不整畝溝電機子巻線の一実施例を示す展開
接続図、第4図は第3図の巻線をIXYI=結線した結
線図、第5図は他の実施例を示す展開接続図である。 1〜63・・・溝番号  1L1〜S9・・・U相コイ
ル%Pl−S−g・・・V相コイル ψ1〜ψ9・・・W相コイル
Figure 1 is an expanded connection diagram showing a conventional irregular ridge and groove armature winding.
Figure 2H Wiring diagram connecting the winding IXY in Figure 1, Figure 3
The figure is a developed connection diagram showing one embodiment of the irregular ridge-groove armature winding of the present invention, FIG. 4 is a connection diagram in which the winding shown in FIG. 3 is connected to IXYI, and FIG. 5 is a diagram showing another embodiment. It is a developed connection diagram. 1 to 63...Slot number 1L1 to S9...U phase coil %Pl-S-g...V phase coil ψ1 to ψ9...W phase coil

Claims (1)

【特許請求の範囲】[Claims] 複数個の溝を有する電機子鉄心1二巻装され、毎極毎相
の溝数fがAを正の整数として1p = A+’であり
、(A+1)個のコイルで各相の1極対を形成し、A個
のコイルを単層巻とし1個のコイルを他相のコイルと同
一溝に納める2層巻として配置(,5てなる3相交流用
の不整数m電機予巻線番−おいて、単相巻のA個のコイ
ルの最内周1:2層巻の1個のコイルを配置した同心巻
として1極対を形成しを電気角で840°ずらせた位置
の1極対のコイルの最外周のコイルの一端とし、他のも
う一つの相のコイルの口出しを艷に電気角で840°ず
らせた位置の1極対のコイルの最外周のコイルの一端と
し、3相の巻線のうち1相のみを他の相とは極対コイル
間の接続方向が逆1:なる様に接続し、各相巻終り端を
Y結線の中性点として接続し、たことを特徴とする不整
数tI#電機子巻線。
The armature core has 12 windings each having a plurality of grooves, the number of grooves f for each pole and each phase is 1p = A+', where A is a positive integer, and one pole pair for each phase is formed by (A+1) coils. A number of coils are arranged as single-layer windings and one coil is placed in the same groove as the coils of other phases as two-layer windings. -, the innermost periphery of A coils with single-phase winding: one pole pair is formed as a concentric winding with one coil of two-layer winding arranged, and one pole is shifted by 840 degrees in electrical angle. One end of the outermost coil of a pair of coils, and one end of the outermost coil of a one-pole pair of coils at a position 840 degrees electrical angle apart from the opening of the other phase coil. Connect only one phase of the windings in such a way that the connection direction between the pole and coil is reversed from the other phases, and connect the end of each phase winding as the neutral point of the Y connection. Features an irregular number tI# armature winding.
JP15959082A 1982-09-16 1982-09-16 Coils for armature with noninteger number slots Pending JPS5950738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15959082A JPS5950738A (en) 1982-09-16 1982-09-16 Coils for armature with noninteger number slots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15959082A JPS5950738A (en) 1982-09-16 1982-09-16 Coils for armature with noninteger number slots

Publications (1)

Publication Number Publication Date
JPS5950738A true JPS5950738A (en) 1984-03-23

Family

ID=15697025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15959082A Pending JPS5950738A (en) 1982-09-16 1982-09-16 Coils for armature with noninteger number slots

Country Status (1)

Country Link
JP (1) JPS5950738A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469012A (en) * 1987-09-10 1989-03-15 Kyushu Nippon Electric Semiconductor manufacturing apparatus
CN112165197A (en) * 2020-08-28 2021-01-01 哈尔滨电气动力装备有限公司 Double-layer lap winding structure of single-winding double-speed motor for nuclear power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469012A (en) * 1987-09-10 1989-03-15 Kyushu Nippon Electric Semiconductor manufacturing apparatus
CN112165197A (en) * 2020-08-28 2021-01-01 哈尔滨电气动力装备有限公司 Double-layer lap winding structure of single-winding double-speed motor for nuclear power system

Similar Documents

Publication Publication Date Title
US10320255B2 (en) Wave winding having a low cogging torque, stator and electric machine comprising a wave winding of said type
US9923426B2 (en) Electric motor having three-layer winding structure
US6114790A (en) Sixteen and thirty two slot three phase induction motor winding
JP2021093906A (en) Stator with pin for electric machine
US20230127155A1 (en) Stator having coil structure of distributed winding, and three-phase ac electric motor comprising said stator
CN110383638A (en) Stator for electric rotating machine
Dudley et al. Connecting induction motors
JPS5950738A (en) Coils for armature with noninteger number slots
US3413717A (en) Electric motor
JP4177462B2 (en) Winding method in two cutting planes for rotating electrical equipment
JP2803254B2 (en) Wiring method of rotating machine winding
JPH06261479A (en) Armature winding
JPS5986445A (en) 3-phase armature winding
JPH0427783B2 (en)
JPS5935544A (en) Irregular number slot armature coil
CN212085913U (en) Motor stator and motor
KR860001099B1 (en) A.c generator
JPS5953050A (en) Polyphase armature coil
CN212033859U (en) Motor stator and motor
JPS6237406Y2 (en)
JP2637103B2 (en) Armature winding
JP2000060092A (en) Multipolar generator
JPS6412171B2 (en)
JPH06113498A (en) Motor
JPH07227070A (en) Single-phase induction motor