JPS6237406Y2 - - Google Patents

Info

Publication number
JPS6237406Y2
JPS6237406Y2 JP1978024981U JP2498178U JPS6237406Y2 JP S6237406 Y2 JPS6237406 Y2 JP S6237406Y2 JP 1978024981 U JP1978024981 U JP 1978024981U JP 2498178 U JP2498178 U JP 2498178U JP S6237406 Y2 JPS6237406 Y2 JP S6237406Y2
Authority
JP
Japan
Prior art keywords
slot
conductors
coil
phase
armature winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978024981U
Other languages
Japanese (ja)
Other versions
JPS54128106U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978024981U priority Critical patent/JPS6237406Y2/ja
Publication of JPS54128106U publication Critical patent/JPS54128106U/ja
Application granted granted Critical
Publication of JPS6237406Y2 publication Critical patent/JPS6237406Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Windings For Motors And Generators (AREA)
  • Synchronous Machinery (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は三相交流回転電機の電機子巻線に係
り、特に一極一相のコイル数が偶数の二層巻コイ
ルにおいて、1スロツト当りの導体数が奇数即ち
上、下コイル辺の各導体数の和が奇数で、かつコ
イルピツチが奇数番目のスロツトに渡ることもで
きるようにした電機子巻線に関する。 従来の三相交流回転電機の二層巻コイルにおい
て一般には1スロツト当りの導体数は偶数であつ
た。しかし実際の設計において、1スロツト当り
の導体数を偶数のみとすると設計の自由度が小と
なる。例えば1スロツト当りの導体数が“10”で
は多すぎる場合、次に選べる数は“8”になり、
今度は少なすぎることになる場合がある。この様
な場合、1スロツト当りの導体数に奇数の採用が
可能なら“10”の次に“9”を選べることにな
り、設計の自由度は前の場合の2倍になり、より
最適な巻線設計が可能となる。次にコイルピツチ
について検討する。第1図は従来の電機子巻線の
一例の展開配列図を示す。この展開配列図はドラ
ム状の電機子鉄心の内周縁に設けたスロツト内に
収めた電機子巻線を横断面し、スロツト番号#1
と#24との間で切断しドラム状を帯状に展開し略
図化したものである。図中〇印はU相コイル、□
印はW相コイル、△印はV相コイルを示し、その
印の中の数字はコイルの巻回数を示す。尚、1つ
のコイルは単位導体を数回巻いて構成する。図に
示す従来の一例ではコイルピツチが偶数番目に渡
る場合は相隣るコイルの導体数、即ち、巻回数を
一つ違いにしたコイルを交互に配置すれば結果と
して上下コイル返導体の和が奇数で即ち第1図に
おいては“4+5=9”で巻線が実現できた。し
かしこのことはコイルピツチが偶数番目に渡る場
合に限定され、奇数番目に渡る場合は不可なので
同様に設計の自由度は小となる。 従つて本考案は1スロツト当りの導体数に偶数
だけでなく奇数も選定でき、かつコイルピツチも
偶数番目に渡る場合だけで無く奇数番目に渡る場
合でも選定できるように大巾に設計の自由度を大
とするよう改良した三相交流回転電機の電機子巻
線を得ることを目的とする。 以下、本考案による回転電機の電機子巻線の一
実施例について、図面を参照しながら詳細に説明
する。一般に一極一相のスロツト数qは三相回転
電機においてはq=Z/3×Pで表わされる。但ちZ1 は全スロツト数、Pは極数とする。本考案は前記
した如く、このqがq=2m(m=1,2,3
…)の場合、即ちqが偶数の場合に適用する。こ
の時、コイルピツチの選定巾は次の如くである。
即ちコイルピツチを#1から#(q−1)番目以
下に選定することは無いのでその次の奇数番目の
最小ピツチは#1から#(q+1)番目に渡る場
合である。最大コイルピツチはコイルピツチ100
%の場合、即ち#1から#(Z/P+1)に渡る場合 である。Z1/P=3qであるので#1から#(3q
+1)と言い換えても良い。従つて#1から
#(jp+1)(但し、j=1,2,3)に渡る場
合について検討すれば良いことになる。第2図は
極数P=4、スロツト数Z1=24、従つて一極一相
のスロツト数q=Z/3P=24/3×4=2で、最
小の奇数 番目のコイル即ちj=1で#(q+1)=#3に
渡る場合の電機子巻線の展開配列図で、図示要領
は前に説明した第1図と同じである。コイルの導
体数つまり巻回数が“1”だけ異なる2種類のコ
イルA,Bを用意する。本実施例では導体数
“4”のものをAコイルとし導体数“5”のもの
をBコイルとする。そしてスロツトを#(jk+
1)から#{j(k+1)q}(但し、k=0,
1,2,…)毎の群に分け、各スロツト群中にお
ける各相の配列は同じにし、かつkが0及び偶数
のときとkが奇数のときでは、各群のコイルA,
Bの配列順序を逆にする。即ち、k=0であるU
相帯の#1スロツトに導体数“4”の上コイル
辺、#2スロツトに導体数“5”の上コイル辺を
挿入したら、次にk=1である−W相帯の#3ス
ロツトに導体数“5”の上コイル辺、#4スロツ
トに導体数“4”の上コイル辺を挿入する。更に
k=2であるV相帯では#5スロツトに導体数
“4”の上コイル辺、#6スロツトに導体数
“5”の上コイル辺を挿入する。以下同様にコイ
ルを配列していくと、各スロツト内上コイル辺の
導体数の配列は,□5,□4,△4,△5…となり

それに対応する下コイル辺の導体数の配列は△5,
△4,,,□5,□4…となる。各スロツト内導体
数の和は#1スロツトでは+△5=9、#2スロ
ツトでは+△4=9、#3スロツトでは□5+=
9、以下同様でいずれのスロツト内でも上下コイ
ル辺の導体数の和は9ケが実現できる。尚この場
合、全スロツト数Z1と、一極一相のスロツト数q
との商Z1/qは偶数となることを必要とする。こ
の商が奇数では各スロツト内の導体数の和が同一
にならないからである。前述の実施例ではZ1/q
=24/2=12でこの条件を満足している。 次にj=2の場合、つまりコイルピツチが#1
から#(2q+1)番目の奇数番目のスロツトに
渡る場合(以下これを“の場合”と称する)に
ついて説明する。第3図は第2図と同じ極数4、
全スロツト数24の回転電機の電機子巻線の展開配
列図で、コイルピツチのみ#1から#(2q+
1)にしたものである。前述したj=1と同様に
導体数が1つだけ異なる2種のコイルの各スロツ
ト群内への挿入配列順序は各スロツト群毎にkの
値に応じて交互に逆にする。即ち、k=0のスロ
ツト群であるU相帯の#1スロツトに導体数
“4”の上コイル辺、#2スロツトに導体数
“5”の上コイル辺、次の一W相帯の#3スロツ
トに導体数“4”の上コイル辺、#4スロツトに
導体数“5”の上コイル辺を挿入する。次にk=
1のスロツト群であるV相帯からは順序を逆にす
る即ち#5スロツトには導体数“5”の上コイル
辺、#6スロツトには導体数“4”の上コイル
辺、次のーU相帯の#7スロツトには導体数
“5”の上コイル辺、#8スロツトには導体数
“4”の上コイル辺…と言つた順序にする。この
結果、各スロツトの上コイル辺の導体数の配列は
,□4□5,△5△4,,…となり、それに対

する下コイル辺の導体数の配列は□5□4,△5△4,

,□4□5…となる。そして、これにより各スロツ
ト内導体数の和は#1スロツトでは+□5=9、
#2スロツトでは+□4=9、#3スロツトは□4
+△5=9、#4スロツトでは□5+△4=9、以下同
様でいずれのスロツト内でも上下コイル辺の導体
数の和は9ケが実現できる。尚、この“の場
合”のコイル納めがバランスする条件としてZ1
2q=偶数となることを必要とする。前記と同様
この商が奇数では各スロツト内の導体数の和が同
一にならないからである。第3図の実施例では
Z1/2q=24/4=6でこの条件を満足してい
る。 次にj=3の場合、つまりコイルピツチが#1
から#3(3q+1)番目のスロツトに渡る場合
(以下これを“の場合”と称する)について説
明する。第4図は前記第2,第3図と同じ回転電
機でただコイルピツチを#1から#(3q+1)
に渡るように変えた電機子巻線の展開配列図であ
る。導体数が1つだけ異なる2種のコイルの各ス
ロツト群内への挿入配列順序は各スロツト群毎に
kの値に応じて交互に逆にする。即ち#1スロツ
トからの上コイル辺の配列順は□4□5△4△5,

□5□4△5△4,…となりそれに対応する下コイル

の導体数の配列順は□5□4△5△4,□4…
□5△4
△5,…となり、各スロツト内導体数の和は9ケと
なる。尚、この“の場合”のコイル納めがバラ
ンスする条件としてZ1/3q=偶数(第4図の例
ではZ1/3q=4)となることを必要とする。一
般にコイルピツチは前記したように100%以下即
ちスロツト番号#1から#(3q+1)番目へ渡
る場合以下であるので#(4q+1)以上へ渡る
場合は考えなくて良い。 以上は極数が4、全スロツト数Z1が24、一極一
相のスロツト数qが2の場合の一実施例を説明し
たが、もちろん上述の条件を満足すれば全ての極
数の回転電機に適用できる。但しコイルピツチ
“〜の場合”巻線バランスの可否が重要な条
件となりその要因はZ1/n・q(但しn=1,
2,3…)にある。10極以下の回転電機について
これらの関係を検討整理した結果を第1表に示
す。表からわかるように“の場合”で極数Pが
P=2(2−1)(但し=1,2,3…)の
場合のみ巻線がバランスしないがその他は全て適
用可能となる。
The present invention relates to the armature winding of a three-phase AC rotating electric machine, and in particular, in a two-layer coil with an even number of coils for one pole and one phase, the number of conductors per slot is an odd number, that is, each conductor on the upper and lower coil sides. This invention relates to an armature winding in which the sum of the numbers is an odd number and the coil pitch can span odd-numbered slots. In a conventional two-layer coil for a three-phase AC rotating electric machine, the number of conductors per slot was generally an even number. However, in actual design, if the number of conductors per slot is only an even number, the degree of freedom in design becomes small. For example, if "10" is too many conductors per slot, the next number to choose is "8".
This time it may turn out to be too little. In such a case, if it is possible to use an odd number of conductors per slot, then "9" can be selected next to "10", and the degree of freedom in design is twice that of the previous case, resulting in a more optimal design. Winding design becomes possible. Next, consider coil pitch. FIG. 1 shows a developed arrangement diagram of an example of a conventional armature winding. This developed arrangement diagram is a cross section of the armature winding housed in the slot provided at the inner peripheral edge of the drum-shaped armature core.
This is a schematic diagram of the drum shape cut between #24 and #24 and expanded into a band shape. The 〇 mark in the figure is the U-phase coil, □
The mark indicates a W-phase coil, the △ mark indicates a V-phase coil, and the number within the mark indicates the number of turns of the coil. Note that one coil is constructed by winding a unit conductor several times. In the conventional example shown in the figure, if the coil pitches are even-numbered, if the number of conductors of adjacent coils, that is, the number of turns is different by one, are arranged alternately, the sum of the return conductors of the upper and lower coils will be an odd number. In other words, in FIG. 1, the winding could be realized with "4+5=9". However, this is limited to the case where the coil pitches span an even numbered pitch, and is not possible when the coil pitch spans an odd numbered pitch, so the degree of freedom in design is similarly reduced. Therefore, the present invention has a wide degree of freedom in design so that not only an even number but also an odd number of conductors can be selected for the number of conductors per slot, and the coil pitch can be selected not only when the number of conductors is even, but also when it is an odd number. The purpose of this invention is to obtain an armature winding for a three-phase alternating current rotating electric machine that has been improved to have a larger size. Hereinafter, an embodiment of an armature winding for a rotating electrical machine according to the present invention will be described in detail with reference to the drawings. Generally, the number of slots q for one pole and one phase is expressed as q=Z 1 /3×P in a three-phase rotating electric machine. However, Z1 is the total number of slots, and P is the number of poles. In the present invention, as mentioned above, this q is q=2m (m=1, 2, 3
), that is, when q is an even number. At this time, the selected width of the coil pitch is as follows.
That is, since the coil pitch is not selected from #1 to #(q-1)th or less, the next odd-numbered minimum pitch is from #1 to #(q+1). Maximum coil pitch is 100 coil pitch.
%, that is, from #1 to #(Z 1 /P+1). Since Z 1 /P=3q, #1 to #(3q
+1). Therefore, it is sufficient to consider cases ranging from #1 to #(jp+1) (where j=1, 2, 3). In Figure 2, the number of poles P = 4, the number of slots Z 1 = 24, therefore the number of slots for one pole and one phase q = Z 1 /3P = 24/3 x 4 = 2, and the smallest odd numbered coil, that is, j This is a developed arrangement diagram of the armature winding when #(q+1)=#3 is reached, and the illustration method is the same as that of FIG. 1 described above. Two types of coils A and B are prepared, the number of conductors of the coils, that is, the number of turns, differing by "1". In this embodiment, the A coil has four conductors, and the B coil has five conductors. And slot #(jk+
1) to #{j(k+1)q} (where k=0,
1, 2, ...), and the arrangement of each phase in each slot group is the same, and when k is 0 and an even number, and when k is an odd number, the coils A,
Reverse the arrangement order of B. That is, U with k=0
After inserting the upper coil side with the number of conductors "4" into the #1 slot of the phase band and the upper coil side with the number of conductors "5" into the #2 slot, then insert the upper coil side with the number of conductors "5" into the #3 slot of the -W phase band where k = 1. Insert the upper coil side with the number of conductors “4” into the #4 slot on the upper coil side with the number of conductors “5”. Furthermore, in the V-phase band where k=2, the upper coil side with the number of conductors "4" is inserted into the #5 slot, and the upper coil side with the number of conductors "5" is inserted into the #6 slot. If the coils are arranged in the same way, the number of conductors on the upper coil side in each slot will be □5, □4, △4, △5, etc.
The corresponding arrangement of the number of conductors on the lower coil side is △5,
△4, , □5, □4... The sum of the number of conductors in each slot is +△5=9 for #1 slot, +△4=9 for #2 slot, and □5+= for #3 slot.
9. Similarly, the total number of conductors on the upper and lower coil sides in any slot can be 9. In this case, the total number of slots Z 1 and the number of slots per pole and phase q
The quotient Z 1 /q is required to be an even number. This is because if this quotient is an odd number, the sum of the numbers of conductors in each slot will not be the same. In the above example Z 1 /q
=24/2=12, which satisfies this condition. Next, when j=2, that is, the coil pitch is #1
The case of passing from #(2q+1)th odd-numbered slot (hereinafter referred to as "the case") will be explained. Figure 3 has the same number of poles as Figure 2, 4,
This is a developed arrangement diagram of the armature winding of a rotating electric machine with a total number of slots of 24.Only the coil pitches are from #1 to #(2q+
1). As in the case of j=1 described above, the order in which two types of coils differing in the number of conductors by one are inserted into each slot group is alternately reversed depending on the value of k for each slot group. That is, the upper coil side with the number of conductors is "4" in the #1 slot of the U phase band which is the slot group of k=0, the upper coil side with the number of conductors "5" in the #2 slot, and the #1 of the next W phase band. Insert the upper coil side with the number of conductors "4" into the #3 slot, and the upper coil side with the number of conductors "5" into the #4 slot. Then k=
From the V-phase band, which is slot group 1, the order is reversed, that is, the #5 slot has the upper coil side with the number of conductors "5", the #6 slot has the upper coil side with the number of conductors "4", and the next slot has the upper coil side with the number of conductors "4". The #7 slot of the U-phase band has the upper coil side with the number of conductors "5", the #8 slot has the upper coil side with the number of conductors "4", and so on. As a result, the arrangement of the number of conductors on the upper coil side of each slot is □4□5, △5△4, ..., and the corresponding arrangement of the number of conductors on the lower coil side is □5□4, △5△ 4,

, □4□5... As a result, the sum of the number of conductors in each slot is +□5=9 for #1 slot.
+□4=9 for #2 slot, □4 for #3 slot
+△5=9, □5+△4=9 for #4 slot, and so on, so that the total number of conductors on the upper and lower coil sides can be 9 in any slot. In addition, as a condition for the coil housing to be balanced in this “case”, Z 1 /
It is necessary that 2q = even number. This is because, as before, if this quotient is an odd number, the sum of the numbers of conductors in each slot will not be the same. In the example of FIG.
This condition is satisfied with Z 1 /2q=24/4=6. Next, when j=3, that is, the coil pitch is #1
The case of passing from #3 (3q+1)th slot (hereinafter referred to as "the case") will be explained. Figure 4 shows the same rotating electric machine as in Figures 2 and 3 above, but the coil pitch is changed from #1 to #(3q+1).
FIG. 3 is a developed arrangement diagram of the armature winding changed so that it spans over . The order in which two types of coils having different numbers of conductors are inserted into each slot group is alternately reversed depending on the value of k for each slot group. That is, the arrangement order of the upper coil side from #1 slot is □4□5△4△5,

□5□4△5△4,..., and the corresponding arrangement order of the number of conductors on the lower coil side is □5□4△5△4, □4...
□5△4
Δ5, . . . , and the total number of conductors in each slot is 9. In addition, as a condition for the coil housing to be balanced in this "case", it is necessary that Z 1 /3q=even number (Z 1 /3q=4 in the example of FIG. 4). Generally, the coil pitch is less than 100% as described above, that is, less than when passing from slot number #1 to #(3q+1), so there is no need to consider when passing from #(4q+1) or more. The above describes an example in which the number of poles is 4, the total number of slots Z1 is 24, and the number of slots q for one pole and one phase is 2. Of course, if the above conditions are satisfied, rotation of all the number of poles Applicable to electrical machinery. However, when the coil pitch is ``...'', the important condition is whether or not the windings are balanced, and the factor is Z 1 /n・q (however, n=1,
2, 3...). Table 1 shows the results of examining and organizing these relationships for rotating electrical machines with 10 poles or less. As can be seen from the table, the windings are not balanced only when the number of poles P is P=2 (2-1) (however, = 1, 2, 3...), but all other cases are applicable.

【表】 以上記載の本考案によれば交流回転電機の二層
巻電機子巻線において1スロツト当りの導体数を
奇数にし、かつコイルピツチも奇数番目に渡るこ
とを可能にするので、電機子巻線の設計の自由度
を増し、経済的な最適設計ができ、特性の良い交
流回転電機が得られる。
[Table] According to the present invention described above, in the two-layer armature winding of an AC rotating electric machine, the number of conductors per slot is made an odd number, and the coil pitch is also made to span odd numbers. The degree of freedom in line design is increased, an economical optimum design can be made, and an AC rotating electric machine with good characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の交流回転電機の電機子巻線の一
例の展開配列図、第2図は本考案による交流回転
電機の電機子巻線の一実施例の展開配列図、第3
図は第2図とコイルピツチのみ異なり他は同じ場
合の展開配列図、第4図はコイルピツチのみ第2
図、第3図と異なり他は同じ場合の展開配列図で
ある。 1,2,3,4…;スロツト番号、〇;U相コ
イル、□;W相コイル、△;V相コイル。
FIG. 1 is a developed arrangement diagram of an example of the armature winding of a conventional AC rotating electrical machine, FIG. 2 is a developed arrangement diagram of an example of the armature winding of an AC rotating electrical machine according to the present invention, and FIG.
The figure is a developed arrangement diagram for the case where only the coil pitch is different from Figure 2, and the other things are the same. Figure 4 is a diagram of the 2nd coil pitch.
This is a developed arrangement diagram in a case where the other things are the same as in FIG. 1, 2, 3, 4...: Slot number, 〇: U-phase coil, □: W-phase coil, △: V-phase coil.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 巻回数を1つ違いにした二種類のコイルA,B
からなり、一極一相のスロツト数qが偶数個の二
相巻電機子巻線において、コイルピツチが#1か
ら#(jq+1)(但し、j=1,2,3)番目に
わたる場合にはスロツトを#(jkq+1)から
#{j(k+1)q}(但し、k=0,1,2,
…)ごとの群に分け、各スロツト群中における各
相の配列は同じにし、かつkが0及び偶数の時と
kが奇数の時では各スロツト群における前記コイ
ルA,Bの配列順序を逆にしたことを特徴とする
三相交流回転機電機子巻線。
Two types of coils A and B with one different number of turns
In a two-phase armature winding with an even number of slots q per pole and one phase, if the coil pitch ranges from #1 to #(jq+1) (where j = 1, 2, 3), the slot from #(jkq+1) to #{j(k+1)q} (where k=0, 1, 2,
), the arrangement of each phase in each slot group is the same, and the arrangement order of the coils A and B in each slot group is reversed when k is 0 and an even number and when k is an odd number. A three-phase AC rotating machine armature winding.
JP1978024981U 1978-02-28 1978-02-28 Expired JPS6237406Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978024981U JPS6237406Y2 (en) 1978-02-28 1978-02-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978024981U JPS6237406Y2 (en) 1978-02-28 1978-02-28

Publications (2)

Publication Number Publication Date
JPS54128106U JPS54128106U (en) 1979-09-06
JPS6237406Y2 true JPS6237406Y2 (en) 1987-09-24

Family

ID=28864478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978024981U Expired JPS6237406Y2 (en) 1978-02-28 1978-02-28

Country Status (1)

Country Link
JP (1) JPS6237406Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5469873B2 (en) * 2008-03-11 2014-04-16 株式会社日立製作所 Rotating electric machine
CN101795026B (en) * 2009-02-02 2012-11-14 株式会社日立制作所 Rotating electrical machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988168A (en) * 1972-12-11 1974-08-23
JPS527124A (en) * 1975-07-07 1977-01-20 Nat Jutaku Kenzai Ceiling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988168A (en) * 1972-12-11 1974-08-23
JPS527124A (en) * 1975-07-07 1977-01-20 Nat Jutaku Kenzai Ceiling

Also Published As

Publication number Publication date
JPS54128106U (en) 1979-09-06

Similar Documents

Publication Publication Date Title
US10320255B2 (en) Wave winding having a low cogging torque, stator and electric machine comprising a wave winding of said type
CN109565203B (en) Electric machine comprising a stator winding with upper and lower end rings
EP1174982A2 (en) Stator for rotary electric machine or linear motor
JP5533913B2 (en) Rotating electric machine stator
US20070040466A1 (en) Electric machine with an induction rotor
GB2070470A (en) Methods of manufacturing stator windings for three-phase generators
US9923426B2 (en) Electric motor having three-layer winding structure
JP2007267570A (en) Armature for rotary electric machine, the rotary electric machine and coil
DE102019112458A1 (en) ROTATING ELECTRIC MACHINE
JP2000324739A (en) Electric rotating machine and connection method of coils of electric rotating machine
JP2005312278A (en) Concentrated winding stator coil of rotary electric machine
JP3485199B2 (en) Stator winding method for multi-phase rotating machine
JPS6237406Y2 (en)
US3413717A (en) Electric motor
US20210305855A1 (en) Rotary electric machine
JPH06261479A (en) Armature winding
JPH0260438A (en) Lap winding method
JP4177462B2 (en) Winding method in two cutting planes for rotating electrical equipment
JPS6412171B2 (en)
JP3494729B2 (en) Three-phase armature winding
JP4265973B2 (en) Rotating electric machine stator
JP5692424B2 (en) Rotating electric machine stator
JP2889361B2 (en) Three-phase armature winding
SU773838A1 (en) Asymmetric lap winding
JPH05161291A (en) Three-phase armature winding