JPS5950515A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPS5950515A
JPS5950515A JP16120582A JP16120582A JPS5950515A JP S5950515 A JPS5950515 A JP S5950515A JP 16120582 A JP16120582 A JP 16120582A JP 16120582 A JP16120582 A JP 16120582A JP S5950515 A JPS5950515 A JP S5950515A
Authority
JP
Japan
Prior art keywords
crystal
growth
face
substrate
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16120582A
Other languages
Japanese (ja)
Inventor
Koji Nakagawa
中川 公史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16120582A priority Critical patent/JPS5950515A/en
Publication of JPS5950515A publication Critical patent/JPS5950515A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To melt a polycrystalline film to be recrystallized, and to contrive to enlarge the particle diameter when the semiconductor thin film deposited on a substrate is heated to be melted in a belt type, and to be cooled in one direction by a method wherein a seed crystal is set up as the nuclei of crystal growth. CONSTITUTION:Because the progressing direction of cooling is the direction shown with an arrow mark 10, the farther the part on a crystal face 6, which is the (111) face, is separated from the substrate 1, the lower the temperature is reduced, and the condition to generate the two-dimensional crystal nuclei 7 at the position shown in the figure can be set up. Moreover, because the crystal face 6 is the growth hard face, the condition that crystal growth is not generated along the isothermal face 9 can be also set up. It is favorable to set up the condition of the growth direction as to make the isothermal line drawn by the isothermal face 9 on the crystal face 6 to cut an arrow mark 8 at right angles. Because the two-dimensional nuclei 7 are formed naturally following after the same crystal axial direction with the precedingly crystallized region, the growth part thereof in the arrow mark 8 direction becomes to have the same crystal orientation as the preceding part, and one directional solidification can be attained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は粒径の大きな多結晶半導体t’fe膜の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a polycrystalline semiconductor t'fe film having a large grain size.

〔発明の技術的背景とその問題点] 多結晶半導体層膜であって、半導体厚さ数10μm、広
さ数10〜数100 cJまたはそれ以上程度の試料は
、これが安価に特性良く作成されるなら太陽電池用用途
として期待できる。従来よりこの目的の研究開発は活発
に行われたが、特に特性の上で十分なものが開発されず
技術は未完成に終っている。この理由は、多結晶薄膜を
形成する際の基板材料が多結晶半導体層の結晶性等に影
響を与え粒径の大きな多結晶半導体層を作成し1葬々か
った事にある、この点の改良は種々成されている。その
一つは、基板に気相から固相半導体層を膜状に形成した
後、これを何等かの手段により結晶粒径を増大させよう
とするものである。
[Technical background of the invention and its problems] A sample of a polycrystalline semiconductor layer film with a semiconductor thickness of several tens of μm and a width of several tens to several hundreds of cJ or more can be produced at low cost and with good characteristics. If so, it can be expected to be used for solar cells. Research and development for this purpose has been actively carried out in the past, but the technology has remained incomplete as nothing with sufficient characteristics has been developed. The reason for this is that the substrate material used to form the polycrystalline thin film affects the crystallinity of the polycrystalline semiconductor layer, making it difficult to create a polycrystalline semiconductor layer with large grain sizes. Various improvements have been made. One of them is to form a solid phase semiconductor layer in the form of a film on a substrate from a gas phase, and then increase the crystal grain size of this layer by some means.

第1の改良法は最も単純なものであり、単に熱処理炉中
に試料を挿入する事により多結晶半導体/J膜の粒径の
増大をはかろうとするものである。一般に気(lから固
相へ沈積した多結晶半導体層の粒径は1μ乳程度のもの
であるが、熱処理条件が適当であれば、この方法により
数μ乳〜10μ気程度に粒径は拡大する。しかし、この
程度の粒径では、良好な太陽電池を作成するには程遠く
、この改良法では目的とする水幅まで技術発展は行えな
い。
The first improvement method is the simplest and attempts to increase the grain size of the polycrystalline semiconductor/J film by simply inserting the sample into a heat treatment furnace. Generally, the grain size of the polycrystalline semiconductor layer deposited from the solid phase to the solid phase is about 1 μm, but if the heat treatment conditions are appropriate, this method can increase the grain size to several μm to 10 μm. However, this particle size is far from producing a good solar cell, and this improved method cannot advance the technology to the desired width.

第2の改良法は、熱処理温度を十分に高温にし、多結晶
半導体層を融点以上の温度まで持ち上げて液体[ヒし、
これを再び同相に戻すことによって粒径の拡大をはかろ
うするものである。
The second improved method is to raise the heat treatment temperature to a sufficiently high temperature and raise the polycrystalline semiconductor layer to a temperature above its melting point, so that
The purpose is to increase the particle size by returning this to the same phase again.

この方法の成功不成功の鍵は液相から固相への移行後多
結晶半扉体層が薄膜の形状を保つか否かの点にある。基
板材質が不適切な場合には液体化した半纏体が互に凝集
しいわゆるボール状と々つたまま固体化し薄膜は消失す
る。この欠点を避けるためには基板材料を炭素等シリコ
ン融液との礪れ性が良好なものを選べばよい。このよう
な方法によって粒径は数10μ肌程度に向上するが、こ
れでも良好な太4に池を作成するには不十分である。
The key to the success or failure of this method is whether the polycrystalline half-gate body layer maintains its thin film shape after the transition from the liquid phase to the solid phase. If the substrate material is inappropriate, the liquefied semi-coated bodies will cohere and solidify in a so-called ball shape, and the thin film will disappear. In order to avoid this drawback, the substrate material should be selected from a material such as carbon that has good resistance to erosion with the silicon melt. Although such a method improves the particle size to about several tens of microns, this is still insufficient to create a good diameter 4-sized pond.

第3の改良法は、基板上にシリコンより低融点の金属等
の層を形成し、この上に多結晶半導体層を形成した後、
第2の改良法と同様に処理する方法である。この方法で
は、加熱に際しまず低融点金1萬層が融解し、次いで上
層の多結晶半導体層が融解する。冷却に際しては逆の方
向であり、まず多結晶半導体層が金IX Q上で固体1
ヒし、次いで金属層が固体化−「る。一般に液体と接触
している部分の固体化は固体と(に触している部分の固
体化より多結晶層の粒1蚤は犬永くなる事を利用した方
法である。この改p法の欠点は金属組織学的なものであ
る。例えばシリコンの多結晶半導体層を例にとって説明
すると、上記金属層はA A 、 T iなどより選ば
れ、加熱により、これらはシリコン中に溶解して行き、
一方シリコンも加熱融解することにより金属中に溶解す
る。加熱温度及び層厚にもよるが、実際には両j−は互
に融解して一つの液体j−となる。
The third improved method is to form a layer of metal or the like with a lower melting point than silicon on the substrate, form a polycrystalline semiconductor layer on top of this, and then
This is a method of processing similar to the second improved method. In this method, upon heating, the low melting point gold layer is first melted, and then the upper polycrystalline semiconductor layer is melted. During cooling, the direction is the opposite; first, the polycrystalline semiconductor layer becomes a solid 1 on the gold IXQ.
The metal layer then solidifies.Generally, the solidification of the part that is in contact with the liquid is longer than the solidification of the part that is in contact with the solid. The disadvantage of this modified p method is metallographic.For example, taking a silicon polycrystalline semiconductor layer as an example, the metal layer is selected from A A, Ti, etc. Upon heating, these will dissolve into the silicon,
On the other hand, silicon also dissolves in metal by heating and melting it. Although it depends on the heating temperature and layer thickness, both j- actually melt together to form one liquid j-.

これを冷却して行くと、最初純粋なシリコン層が液上に
析出しかなり大きな粒径の結晶に発達する。そして最終
的に得られるものはシリコンの多結晶の粒界に、シリコ
ンと金1萬の共晶組織が沈積したものとなる。このよう
な膜層は太陽を他用素材として不適切である。実際に太
陽′電池を作成しても、この粒界からの電流リークによ
り良好な特性のものは作成し得ない。
When this is cooled, a layer of pure silicon initially precipitates on top of the liquid and develops into crystals with a fairly large grain size. What is finally obtained is a eutectic structure of silicon and gold deposited at the polycrystalline grain boundaries of silicon. Such a film layer is unsuitable for use as a material for other uses such as the sun. Even if a solar cell is actually produced, one with good characteristics cannot be produced due to current leakage from this grain boundary.

第4の改良法は、冷却の方法に関するものである。結晶
粒径を大きくするには一方向凝固の思想をとり入れれば
良く、実際に単結晶インゴットを作成するCZ法、FZ
法、ブリッジマン法等全てこの思想に則って行われてい
る。この思想を多結晶半導体薄1換作成の場合に収り入
れるには、半4体層の一部を帯状に融解させ帯と直角方
向に融解;偵域を移動させ、一方向凝固させる。この方
法の欠点は一方向性が基板の存在により失なわれる事に
ある。即ち、基板のU口く別固体が存在すると、これの
表面に結晶核が発生しやすく、その部分から別結晶が発
達し、一方向性凝固の目的は達成されない。
The fourth improvement method relates to the cooling method. In order to increase the crystal grain size, it is sufficient to adopt the idea of unidirectional solidification, and the CZ method and FZ method, which actually create single crystal ingots, are used.
The Bridgman Act, etc., are all based on this idea. In order to apply this idea to the case of producing a polycrystalline semiconductor thin film, a part of the semi-quartet layer is melted in a band shape, melted in a direction perpendicular to the band; the reconnaissance area is moved, and solidification is performed in one direction. The disadvantage of this method is that the unidirectionality is lost due to the presence of the substrate. That is, if a U-shaped solid is present on the substrate, crystal nuclei are likely to occur on the surface of the solid, and other crystals will develop from that portion, making it impossible to achieve the purpose of unidirectional solidification.

〔発明の目的J 本発明は上述した如き従来の欠点に纜み1戎されたもの
であり、特に基板上に存在する多結晶rf4を融解させ
一方向凝固の思想をとり入れて再結晶させて粒径拡大を
図る実用的な方法を提供することを目的とする。
[Purpose of the Invention J The present invention addresses the above-mentioned drawbacks of the conventional technology, and in particular melts the polycrystalline RF4 present on the substrate and recrystallizes it by incorporating the idea of unidirectional solidification to form grains. The purpose is to provide a practical method for expanding the diameter.

〔発明の概要〕[Summary of the invention]

本発明は、基板上に堆積した半導体al莫を帯状に加熱
融解しそれを一方向に冷却させる場合に種子結晶を結晶
発達の核として設定する事を基本とする。ここで帯状と
は、薄膜を面の広がり方向と直角方向から見て概して直
線状に形1戊された細長い部分を指す。そして本発明は
、半導体薄膜を加熱融解させて冷却する際の冷却等温血
を、上記種子結晶の結晶学的方位と関係づけて設定する
事を特徴とする。以下この発明の原理の理解を容易にす
るために第1図に従って説明するっ 第1図において、1は基板、2はこの基板上にCV I
)法によって形成されたシリコン多結晶膜、3は加熱に
よって融解している部分、4は冷却によって再結晶化し
たシリコン多結晶膜部分、5は種子結晶、6は結晶の(
111)面、7は(111)面に発生した結晶の2次元
核、矢印8は2次元核7の発達方向、点線9は冷却等濡
面、矢印10は冷却の進行する方向、1ノは基板1と融
解部3の接平面であろう良く知られているようにシリコ
ン結晶の(111>軸方向は結晶の・唯発達方向であり
、それゆえ、この方向と直角な(1,11)面は平滑な
面として形成されやすい。これは(lii)面内の<−
211>方向が結晶の容易発達方向であることによる。
The present invention is based on setting a seed crystal as a nucleus for crystal growth when semiconductor aluminum deposited on a substrate is heated and melted in a belt shape and cooled in one direction. Here, the term "band-like" refers to an elongated portion that is generally straight-shaped when the thin film is viewed from a direction perpendicular to the direction in which the surface extends. Further, the present invention is characterized in that the cooling isotherm when heating and melting the semiconductor thin film and cooling it is set in relation to the crystallographic orientation of the seed crystal. In order to facilitate understanding of the principle of the present invention, explanation will be given below according to FIG. 1. In FIG. 1, 1 is a substrate, and 2 is a CV I
) method, 3 is the part melted by heating, 4 is the part of the silicon polycrystalline film recrystallized by cooling, 5 is the seed crystal, and 6 is the crystal (
111) plane, 7 is the two-dimensional nucleus of the crystal generated on the (111) plane, arrow 8 is the direction of development of the two-dimensional nucleus 7, dotted line 9 is the cooling surface, arrow 10 is the direction in which cooling progresses, 1 is As is well known, the (111> axis direction of the silicon crystal, which is the tangential plane between the substrate 1 and the melting part 3, is the only growth direction of the crystal, and therefore, the (1,11) direction is perpendicular to this direction. The surface is likely to be formed as a smooth surface.This is due to (lii) <-
This is because the 211> direction is the direction in which crystals easily grow.

ゆえに第1図矢印8はこの方向に選択できるようにする
のがよい。このような基礎認識の上で第1図の説明を行
う1つ冷却の進行方向は矢印10の方向であるから(1
11)面である結晶面6の上では基板1と離れている程
低温となり2次元結晶核7が図示された位置に発生する
条件が設定できる。また結晶面6は雌発達面であるから
結晶の発達は等濡面9に沿わないという条件も設定でき
る。その発達方向は矢印8の<−211>方向であるが
、好ましくは等濡面9が結晶面6上に描く等混線と矢印
8は直交するように条件を設定するのが良い。例えば等
濡面9は紙面に継部方向に延在させ、矢印8方向は紙+
rri方回に方向等である。2次元核7は先行して結晶
化した1偵域と同じ結晶軸方向に自然に習って形成され
るため、これが矢印8方向に発達した部分は先行する部
分と同じ結晶方位を持つこととなり、一方向凝固の目的
は達成される。等7晶面9と結晶の発達方向が上述の如
き関係を持つ1・14す、基板1が融解部3と接する面
1ノ上での核発生の機会は少ないものとなる。
Therefore, it is preferable that the arrow 8 in FIG. 1 be selected in this direction. Figure 1 will be explained based on this basic understanding, since the direction of cooling is in the direction of arrow 10 (1
11) On the crystal plane 6, the farther it is from the substrate 1, the lower the temperature becomes, and conditions can be set so that the two-dimensional crystal nucleus 7 is generated at the position shown in the figure. Furthermore, since the crystal plane 6 is a female growth plane, it is possible to set the condition that the crystal growth does not follow the uniform wetting plane 9. The direction of its development is the <-211> direction of the arrow 8, but it is preferable to set the conditions so that the equimixture line drawn by the isowetting plane 9 on the crystal plane 6 and the arrow 8 are perpendicular to each other. For example, the equal wetting surface 9 is made to extend in the direction of the joint on the paper surface, and the direction of the arrow 8 is the paper +
rri direction etc. Since the two-dimensional nucleus 7 is naturally formed in the same crystal axis direction as the first crystallized area, the part where it develops in the direction of arrow 8 has the same crystal orientation as the preceding part. The purpose of unidirectional solidification is achieved. When the crystal planes 9 and the growth direction of the crystals have the above-mentioned relationship 1.14, there is little chance of nucleation on the surface 1 where the substrate 1 contacts the melted portion 3.

〔発明の効果〕〔Effect of the invention〕

上述の説明で明らかなように、本発明の手段を導入して
はじめて、基板上に堆積した多結晶半導体層1摸を膜面
と平行方向内で方向性を持たせて融解冷却してt4結晶
化するに際し、基板面での結晶核の発生を抑え一方向凝
固の効果が現れ、その結果、従来にない結晶粒径の拡大
が可能となるものである。
As is clear from the above explanation, it is only after introducing the means of the present invention that a sample of a polycrystalline semiconductor layer deposited on a substrate is melted and cooled with directionality in a direction parallel to the film surface to form T4 crystals. When solidifying, the generation of crystal nuclei on the substrate surface is suppressed and the effect of unidirectional solidification appears, and as a result, it becomes possible to enlarge the crystal grain size unprecedentedly.

〔発明の実施例〕[Embodiments of the invention]

本発明の上記の原理に従った方法の実施例を第2図を用
いて説明する。第2図において21は厚さl IIUI
の炭素製基板、22はその上にCVI)法により厚さ3
0μmに形成した多結晶シリコン薄膜である。種子結晶
23は単結晶シリコンインゴットより薄板状に切り出し
たもので、矢1ilJ 、? 4方向は紙面内にある<
111>方向を示し、同じく紙面内にあるこれと直角に
ある方向が<−211>方向と々るようにする。押え板
25をその上に東せ種子結晶23を固定する。26は基
板21を東せる台で移動機1黄(図示せず)により矢印
27方回へ駆動されるようになっている。28は下部ヒ
ータで上部ヒータ29よりも幅広く、両ヒータ2B、2
9とも紙面直角方向に沖びており、基板21の紙面直角
方向の全長以上あり、その表面裏面を帯状に加熱する。
An embodiment of the method according to the above principles of the invention will be described with reference to FIG. In Fig. 2, 21 is the thickness l IIUI
22 is a carbon substrate with a thickness of 3 by the CVI) method.
This is a polycrystalline silicon thin film formed to a thickness of 0 μm. The seed crystal 23 is cut into a thin plate from a single crystal silicon ingot. 4 directions are within the paper <
111> direction, and the direction perpendicular to this, which is also within the plane of the paper, extends in the <-211> direction. The seed crystal 23 is fixed on the holding plate 25. Reference numeral 26 denotes a stand for moving the board 21 to the east, and is driven in the direction of the arrow 27 by a mobile device 1 (not shown). 28 is a lower heater which is wider than the upper heater 29, and both heaters 2B, 2
Both 9 extend in the direction perpendicular to the plane of the paper, and have a length longer than the entire length of the substrate 21 in the direction perpendicular to the plane of the paper, and heat the front and back surfaces thereof in a band-like manner.

これら全体はアルゴンガスを充満させた容器(図示せず
)中に収納されている。
The entire structure is housed in a container (not shown) filled with argon gas.

操作に際しては最初台26を図示された位置より左方に
置き、ヒータ2B、29による加熱により種子結晶23
の左方端部を融解させる。
During operation, the stand 26 is first placed to the left of the position shown in the figure, and the seed crystal 23 is heated by the heaters 2B and 29.
Melt the left end of.

この状態で暫時置き、その後移!IIIJ機構を働かせ
て台26を矢印27方回に3酪/分の速度で移動させ、
多結晶薄膜22の左端までを融解冷却する。このような
操作によって作成されたシリコン膜はメ晶を含む粒径の
大きい結晶膜であった。
Leave it in this state for a while, then move on! The IIIJ mechanism is activated to move the table 26 in the 27 directions of the arrow at a speed of 3 mm/min.
The polycrystalline thin film 22 is melted and cooled up to the left end. The silicon film produced by such an operation was a crystalline film containing methic crystals and having large grain sizes.

なお、実施例では、薄膜を加熱融解する手段として帯状
ヒータを用いたが、例えばレーデビームによる加熱融解
を利用しても本発明な実雁することができる。
In the embodiment, a strip heater was used as a means for heating and melting the thin film, but the present invention can also be achieved by using heating and melting using a Lede beam, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明原理の説明図、第2図は本発明実施例の
説明図である。 1・り基板、2・・・多結晶シリコン膜、3・・・加熱
融解部、4・・・再結晶化多結晶シリコン膜、5・・・
種子結晶、6・・・(111)面、7・・・2次元核、
8・・・2次元核発達方向、9・・・冷却等温間、1o
・・・冷却進行方向、21・・・炭素基板、22・・・
多結晶シリコン薄膜、23・・・種子結晶、24 ゛<
111>方向、25・・・押え板、26・・・台、27
・°°移動方向、28.29・・・ヒータ
FIG. 1 is an explanatory diagram of the principle of the present invention, and FIG. 2 is an explanatory diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1. Substrate, 2.. Polycrystalline silicon film, 3.. Heating melting part, 4.. Recrystallized polycrystalline silicon film, 5..
Seed crystal, 6...(111) plane, 7...2-dimensional nucleus,
8... Two-dimensional nuclear development direction, 9... Cooling isotherm, 1o
...Cooling progress direction, 21...Carbon substrate, 22...
Polycrystalline silicon thin film, 23... Seed crystal, 24 ゛<
111> direction, 25... presser plate, 26... stand, 27
・°° movement direction, 28.29...Heater

Claims (2)

【特許請求の範囲】[Claims] (1)  基板上に半導体層膜を唯積し、この薄膜上に
、陳子結晶を設置して、この種子結晶部の半導体薄膜を
加熱融解させ、この融解部を移動させながら冷却再結晶
1ヒさせる方法であって、niJ記加熱融解部の冷却等
濡面を、前記基板面に坐直な方向に関して基板から遠い
方がより低温となるように、傾斜させることを特徴とす
る半導体層1漢の製造方法。
(1) A semiconductor layer film is deposited on a substrate, a china crystal is placed on this thin film, the semiconductor thin film in the seed crystal part is heated and melted, and the melted part is moved while cooling and recrystallization 1. A semiconductor layer 1 which is characterized in that the cooling, etc.-wet surface of the heating melting part is inclined such that the temperature is lower in the direction perpendicular to the substrate surface in the direction farther from the substrate. How to make Han.
(2)  明記冷却等温面は、前記種子結晶の雌発達方
向と梱直な面と一敗させないようにした特許請求の範囲
第1項記載の半導体薄膜の製造方法。 (31tiil記冷却等温面が前記種子結晶の帷発達方
向に框直な面上に描く等温線方向は、種子結晶の唯発達
方向に串直な面内にある容易発達方向に直角となるよう
にした特許請求の範囲第1項記載の半導体薄膜の製造方
法。
(2) The method for manufacturing a semiconductor thin film according to claim 1, wherein the specified cooling isothermal surface is arranged so as to be in line with the female growth direction of the seed crystal and the surface that is straight. (31tiil) The direction of the isothermal line drawn by the cooling isothermal surface on the plane perpendicular to the direction of growth of the seed crystal is perpendicular to the direction of easy growth, which is in the plane perpendicular to the direction of growth of the seed crystal. A method for manufacturing a semiconductor thin film according to claim 1.
JP16120582A 1982-09-16 1982-09-16 Manufacture of semiconductor thin film Pending JPS5950515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16120582A JPS5950515A (en) 1982-09-16 1982-09-16 Manufacture of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16120582A JPS5950515A (en) 1982-09-16 1982-09-16 Manufacture of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS5950515A true JPS5950515A (en) 1984-03-23

Family

ID=15730588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16120582A Pending JPS5950515A (en) 1982-09-16 1982-09-16 Manufacture of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS5950515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112227A (en) * 1988-10-21 1990-04-24 Masakuni Suzuki Manufacture of semiconductor crystal layer
JP2003324188A (en) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing large-area single-crystal silicon substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112227A (en) * 1988-10-21 1990-04-24 Masakuni Suzuki Manufacture of semiconductor crystal layer
JP2003324188A (en) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd Method for manufacturing large-area single-crystal silicon substrate

Similar Documents

Publication Publication Date Title
Smith et al. Silicon-on-insulator by graphoepitaxy and zone-melting recrystallization of patterned films
US4382838A (en) Novel silicon crystals and process for their preparation
JP3616785B2 (en) Manufacturing method of solar cell
JP4054873B2 (en) Method for producing Si-based crystal
CA1142840A (en) Seed and method and epitaxial solidification
JPS5950515A (en) Manufacture of semiconductor thin film
Croker et al. The cellular growth of Bi-Pb2Bi eutectic
Dutartre In situ observation of lamp zone melting of Si films on patterned SiO2
Honeycombe The growth of metal single crystals
JPH089520B2 (en) Method of manufacturing thin film single crystal
Sang et al. Liquid phase epitaxial growth of lead crystals on copper
JP3855059B2 (en) Method for producing Ge-based crystal
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
CN112095148B (en) Topological quantum single crystal Cu3TeO6Preparation method of (1)
JPH0476926B2 (en)
Bunton et al. The chemical and thermal etching of antimony
Clawson Crystal morphology of melt grown InSb films
US4632723A (en) Orientation filtering for crystalline films
JPS59102891A (en) Preparation of silicon single crystal
JP2739547B2 (en) Method for producing lithium borate single crystal
JP3978494B2 (en) Method for producing Si thin film
JPS55140792A (en) Manufacture of 3-5 group compound semiconductor single crystal
WO2011135884A1 (en) Device for producing polycrystalline si ingot, polycrystalline si ingot, and polycrystalline si wafer
Kramer et al. Phase determinations and crystal growth of Pb2KNb5O15 (PKN)
Köster The influence of the specimen surface on thermally induced structural changes