JPS5949514A - Annular illumination device - Google Patents

Annular illumination device

Info

Publication number
JPS5949514A
JPS5949514A JP16004682A JP16004682A JPS5949514A JP S5949514 A JPS5949514 A JP S5949514A JP 16004682 A JP16004682 A JP 16004682A JP 16004682 A JP16004682 A JP 16004682A JP S5949514 A JPS5949514 A JP S5949514A
Authority
JP
Japan
Prior art keywords
luminous flux
annular
illumination
light source
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16004682A
Other languages
Japanese (ja)
Inventor
Toshifumi Uetake
植竹 敏文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp, Olympus Optical Co Ltd filed Critical Olympus Corp
Priority to JP16004682A priority Critical patent/JPS5949514A/en
Publication of JPS5949514A publication Critical patent/JPS5949514A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/10Condensers affording dark-field illumination

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE:To reduce the luminous flux intercepted by an annular aperture stop to improve the illumination efficiency considerably and make the field of illumination bright to shorten the exposure time, by converting the luminous flux of a light source to annular luminous flux. CONSTITUTION:The laser luminous flux from a light source 1 is converted to an approximately cylindrical luminous flux by a beam expander and is transmitted through a mat glass 3 to be made incoherent slightly, and the occurrence of speckle patterns is prevented, and the focusing capacity is improved. The transmitted light of the glass 3 is made incident from a round end face 4a of an optical fiber 4 and is emitted from an annular or a pair of arc-shaped exit end faces 4b to be converted to an annular luminous flux, and this luminous flux is condensed near an annular aperture stop 6 by an annular condenser lens 5. The luminous flux transmitted through the stop 6 illuminates an object face 8 uniformly without variance by a condenser lens 7. The luminous flux incident to an object lens 9 is focused temporarily and is intercepted by an annular filter 10 in this focus position to prevent the illumination luminous flux from being incident to an observing system.

Description

【発明の詳細な説明】 本発明は、位相差顕微鏡、暗視野顕微鏡等における環状
照明装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an annular illumination device for a phase contrast microscope, a dark field microscope, etc.

従来位相差顕微鏡、暗視野顕微鏡等においては、光源か
らの光を集光レンズで集めて光源像を形成し、この光源
像の位置に環状開口を有する輪帯状開口絞シを配置する
ことによシ、この開口絞シを通過した環状光束を照明光
として用いるようにした環状照明装置が知られている。
Conventional phase-contrast microscopes, dark-field microscopes, etc. collect light from a light source using a condensing lens to form a light source image, and place an annular aperture diaphragm with an annular aperture at the position of this light source image. An annular illumination device is known in which an annular light beam passing through the aperture diaphragm is used as illumination light.

このように構成された照明装置は、光源からの光の僅か
な部分のみが輪帯状開口絞シを通過し得るために、照明
効率が悪く、照野が暗くなってしまう。特に観察光学系
の解像限界に近い物体の像はコントラストが充分でなく
、このような物体の観察は透過率の低いフィルターを使
用することが望ましいが、そのために照野はさらに暗く
なってしまい、写真撮影の場合の露光時間が長くなシ、
不便であった。また、ICパターン精密縮写光学系の場
合にはウェファ上の露光時間が長くなってしまい、作業
効率が低下してしまう。
In a lighting device configured in this manner, only a small portion of the light from the light source can pass through the annular aperture diaphragm, resulting in poor lighting efficiency and a dark illuminated field. In particular, images of objects near the resolution limit of the observation optical system do not have sufficient contrast, and it is desirable to use a filter with low transmittance when observing such objects, but this makes the illumination field even darker. , the exposure time for photography is long,
It was inconvenient. Further, in the case of an IC pattern precision reduction optical system, the exposure time on the wafer becomes long, resulting in a decrease in work efficiency.

本発明は、以上の点に鑑み、充分な明るさをもつ環状照
明装置を提供せんとするものであって、以下図面に示し
た実施例によりこれを説明すれば、第1図は透過結像系
の場合を示しておシ、1はレー   □ザー管等の光源
ミ 2は光源1からの光−束を円筒状光束に変換するビ
ームエクスパンダ−13はレーザー光のコヒーレンスを
減少せしめるだめのマツトガラスで、メツシュを消すた
めに公知の如く光軸に対して垂直方向に微少振動が与え
られる。4は図面において左側の端部が一つの円形端面
4aを有していて且つ右側の端部が輪帯状または対にな
った弧状の射出端面4bを有する光ファイバー、5は光
ファイバー4の射出端面4bからのほぼ平行光束である
環状のレーザー光束を輪帯状開口絞り6の近傍に集光さ
せる輪帯状集光レンズ、7はコンデンサーレンズ、8は
照明すべき物体面、9は対物レンズ、10は輪帯状フィ
ルターである。
In view of the above points, the present invention aims to provide an annular illumination device with sufficient brightness.This will be explained below with reference to embodiments shown in the drawings. 1 is a light source such as a laser tube, 2 is a beam expander that converts the light beam from the light source 1 into a cylindrical light beam, and 13 is a beam expander that reduces the coherence of the laser beam. In order to erase the mesh with matte glass, a minute vibration is applied in a direction perpendicular to the optical axis, as is known in the art. Reference numeral 4 denotes an optical fiber whose left end has one circular end surface 4a in the drawing, and whose right end has an annular or paired arc-shaped exit end surface 4b; 5 indicates an exit end surface 4b of the optical fiber 4; 7 is a condenser lens; 8 is an object surface to be illuminated; 9 is an objective lens; It's a filter.

第1図による本発明実施例は以上のように構成されてい
るから、光源lからのレーザー光束はビームエクスパン
ダ−2によシはぼ平行な円筒状光束に変換されて、マツ
トガラス3を透過することにより少しインコヒーレント
にされて、スペックルパターンの発生が防止され結像性
能が改善される。
Since the embodiment of the present invention shown in FIG. This makes it slightly incoherent, preventing the generation of speckle patterns and improving imaging performance.

−マツトガラス3を透過した円筒状光束は、光ファイバ
ー4の円形端面4aから入射して輪帯状または対になっ
た弧状の射出端面4bから射出することにより、環状光
束に変換され、輪帯状集光レンズ5によって輪帯状開口
絞り6の近傍に集光する。
- The cylindrical light beam transmitted through the matte glass 3 enters the circular end surface 4a of the optical fiber 4 and exits from the annular or paired arc-shaped exit end surface 4b, thereby converting it into an annular light beam, which is converted into an annular condensing lens. 5, the light is focused near the annular aperture stop 6.

該開口絞シを通過した光束はコンデンサーレンズ7によ
シ物体面8を均一にムラなく照明する。尚、物体面8を
通過し対物レンズ9に入射した光束は一旦結像しこの結
を位置に配設された輪帯状フィルター10によシ遮断さ
れ、照明光束が観察系に入射しないようにしである。
The light beam passing through the aperture diaphragm illuminates the object surface 8 uniformly and evenly through the condenser lens 7. Note that the light beam passing through the object plane 8 and entering the objective lens 9 forms an image, and this image is blocked by the annular filter 10 disposed at a certain position to prevent the illumination light beam from entering the observation system. be.

第2図は落射結像系特にICパターン精密縮写光学系の
場合を示しておシ、第1図と同じ部材には同一の符号を
付してその説明は省略する。11はマスクパターンのマ
スター12を光量ロスなしに均一に照明すると共に輪帯
状開口絞!1l16を輪帯状フィルター13上に結像せ
しめる視野レンズ、14はコンデンサーレンズとしても
作用する精密高’M 像縮写レンズで、マスター12を
マスクパターンを形成すべきシリコンウェファ15上に
結像せしめる。
FIG. 2 shows a case of an epi-reflection imaging system, particularly an IC pattern precision reduction optical system, and the same members as in FIG. 11 uniformly illuminates the master 12 of the mask pattern without loss of light quantity, and also has an annular aperture diaphragm! A field lens 14 images the master 12 onto the annular filter 13, and 14 is a precision high-M image reduction lens which also functions as a condenser lens, and images the master 12 onto the silicon wafer 15 on which a mask pattern is to be formed.

本実施例は以上のように構成されているから、光源1か
らの光は、第1図と同様にビームエクスパンダー2.マ
ツトガラス3.光フアイバ−4I輪帯状集光レンズ5及
び輪帯状開口絞り6を介して、さらに視野レンズ11に
より効率良く而も均一に照明する。従ってマスター12
は精密高解像縮写レンズ14によシリコンウェファ15
上に結像され、照明光束は輪帯状フィルター13により
遮断され、シリコンウェファ15には達しない。
Since this embodiment is configured as described above, the light from the light source 1 is transmitted to the beam expander 2 as in FIG. Matte glass 3. Illumination is efficiently and uniformly carried out through the optical fiber 4I annular condenser lens 5 and annular aperture diaphragm 6, and further by the field lens 11. Therefore master 12
The silicon wafer 15 is connected to the precision high-resolution reduction lens 14.
The illumination light beam is imaged onto the silicon wafer 15 and is blocked by the annular filter 13 so as not to reach the silicon wafer 15 .

ここで精密高解像縮写レンズ14がコンデンサーレンズ
としても作用することもあって、シリコンウェファ15
上には非常に明るい像が結像される。
Here, since the precision high-resolution reduction lens 14 also acts as a condenser lens, the silicon wafer 15
A very bright image is formed above.

第3図乃至第5図は、第2図の光ファイバー4の代シに
使用され得る光学系であって、第3図は一対の同心的に
配設された円錐面鏡から成る光学系21であり、第4図
は同様に配設されたアフォーカル球面鏡から成る光学系
22であり、第5図は一対の同心的に配設されたアフォ
ーカル非球面鏡から成る光学系23で小鏡23a及び大
鏡23bの両方または一方がプレス成型非球面である。
3 to 5 show optical systems that can be used in place of the optical fiber 4 in FIG. 2, and FIG. 3 shows an optical system 21 consisting of a pair of concentrically arranged conical mirrors. 4 shows an optical system 22 consisting of similarly arranged afocal spherical mirrors, and Fig. 5 shows an optical system 23 consisting of a pair of concentrically arranged afocal aspherical mirrors, with small mirrors 23a and Both or one of the large mirrors 23b is a press-molded aspherical surface.

何れの場合もマツトガラス3を透過した円筒状光束が環
状光束に変換せしめられる。
In either case, the cylindrical light beam transmitted through the matte glass 3 is converted into an annular light beam.

第6図はレーザー管等の光源及びビームエクスパンダを
複数組輪帯状に等角度間隔に配置しさらに一つの大きな
マツトガラス3′を備えた輪帯状光源で、第2図の光源
1.ビームエクスパンダ−2゜マツトガラス3.光ファ
イバー4の代りに使用され得、よシ明るい照野が得られ
る。
FIG. 6 shows an annular light source in which a plurality of light sources such as laser tubes and beam expanders are arranged at equal angular intervals in an annular shape, and one large matte glass 3' is provided. Beam expander - 2° matte glass 3. It can be used in place of the optical fiber 4 and provides a brighter illumination field.

第7図は非球面輪帯集光光学系24で、小鏡24a及び
大鏡24bの両方または一方がプレス成型トーリック面
鏡であり、第2図の光ファイバー4及び輪帯状集光レン
ズ5の代りに使用され得る。
FIG. 7 shows an aspheric annular condensing optical system 24, in which both or one of the small mirror 24a and the large mirror 24b is a press-molded toric surface mirror, instead of the optical fiber 4 and the annular condensing lens 5 in FIG. can be used for.

即ち、マツトガラス3を透過した円筒状光束が輪帯状開
口絞シロに集光する環状光束に変換せしめられる。
That is, the cylindrical light beam transmitted through the matte glass 3 is converted into an annular light beam condensed at the annular aperture diaphragm.

尚、第4図、第5図及び第7図の場合には斜線部分の光
束がロスになるが、これは全光量の25係以下であり実
用上差し支えない。まだ、第3図乃至第7図の各光学系
は第1図の実施例に適用し得ることは言うまでもない。
In the cases of FIGS. 4, 5, and 7, the light flux in the shaded area is lost, but this is less than 25 times the total light amount and does not pose a problem in practice. It goes without saying that each of the optical systems shown in FIGS. 3 to 7 can be applied to the embodiment shown in FIG.

以上述べたように本発明によれば、光源からの光束を環
状光束に変換せしめる光学部材を使用することにより、
光源からの光の大部分を環状光束に変換して輪帯状開口
絞りに入射させて照明光として利用し得るようにしだか
ら、輪帯状開口絞りで遮断される光束が非常に減少し、
従って照明効率が著しく向上し、高輝度の光源を使用し
ていることからさらに照野が明るくなシ、写真撮影の際
の露光時間が短縮され、特にICパターン精密縮写光学
系に本発明による環状照明装置を適用した場合、非常に
好ましい結果が得られる等の効果がある。
As described above, according to the present invention, by using an optical member that converts the luminous flux from the light source into an annular luminous flux,
Since most of the light from the light source is converted into an annular luminous flux and made incident on the annular aperture diaphragm so that it can be used as illumination light, the luminous flux blocked by the annular aperture diaphragm is greatly reduced.
Therefore, the illumination efficiency is significantly improved, the illumination field is brighter because a high-intensity light source is used, and the exposure time during photography is shortened. When a lighting device is applied, very favorable results can be obtained.

尚、以上の説明では、光源としてレーザー管を用いてい
るが、これに限らず、超高圧水銀灯、キセノンアークラ
ンプ、キセノンフラッンユ等の高輝度放電管または高輝
度ヨウ素ランプ等を使用することも好ましいが、他の光
源を使用することも可能である。この場合、マツトガラ
ス3,3′は省略される。また第2図の実施例の場合光
フアイバ−4自体によりレーザー光が成る程度インコヒ
ーレントになるので、マツトガラス3が不要となること
もある。さらに、アルゴンレーザー(5145A、48
80λ)を使用する場合、1乃至10Wという高い出力
が得られるため、第6図のように複数個のレーザー管を
使用しなくてもよいが、ヘリウム−ネオンレーザ−(6
328大)を使用することも可能で、この場合1乃至2
00mWの出力が得られる。
In the above explanation, a laser tube is used as the light source, but the light source is not limited to this, and high-intensity discharge tubes such as ultra-high-pressure mercury lamps, xenon arc lamps, xenon flanilles, or high-intensity iodine lamps may also be used. Although preferred, other light sources can also be used. In this case, the matte glasses 3, 3' are omitted. Further, in the embodiment shown in FIG. 2, the optical fiber 4 itself makes the laser beam incoherent to the extent that it becomes incoherent, so the matte glass 3 may be unnecessary. Furthermore, argon laser (5145A, 48
When using a helium-neon laser (80λ), a high output of 1 to 10W can be obtained, so there is no need to use multiple laser tubes as shown in Figure 6.
328 large) can also be used, in this case 1 to 2
An output of 00mW can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による環状照明装置の第一の実施例の光
学系を示す構成図、第2図は第二の実施例を示す第1図
と同様の図、第3図乃至第7図は環状光束を生せしめる
だめの他の実施形態を示す図である。 1°−11L、  2・・・・ビームエキスパンター、
3・・・・マツトガラス、4・・・・光ファイバー、5
・・・・輪帯状集光レンズ、6・・・・輪帯状開口絞り
、7・山コンデンサーレンズ、8・・・・物体面、9・
中対物レンズ、】0113・・・・輪帯状フィルター、
11・・・・視野レンズ、12・・・・マスター、14
・・・・精密高解像m写しンズ、15・・・・シリコン
ウェファ、21.22.23・・・・アフォーカル光学
系、24・・・・非球面輪帯集光光学系。 :#3図 21 3b 16図 オアー図 4b
FIG. 1 is a block diagram showing the optical system of the first embodiment of the annular illumination device according to the present invention, FIG. 2 is a diagram similar to FIG. 1 showing the second embodiment, and FIGS. 3 to 7 FIG. 2 is a diagram showing another embodiment of a reservoir that generates an annular light beam. 1°-11L, 2...beam expander,
3...Matte glass, 4...Optical fiber, 5
... Annular condensing lens, 6... Annular aperture diaphragm, 7. Mountain condenser lens, 8. Object surface, 9.
Middle objective lens, ]0113... annular filter,
11... Field lens, 12... Master, 14
...Precise high-resolution m-reflection lens, 15...Silicon wafer, 21.22.23...Afocal optical system, 24...Aspheric annular focusing optical system. :#3 Figure 21 3b Figure 16 Orr Figure 4b

Claims (1)

【特許請求の範囲】[Claims] 光源と、光源からの光束を円筒状光束に変換する第一の
光学部材と、該円筒状光束を環状光束に変換し集光せし
める第二の光学部材と、環状光束の集光位置の近傍に配
設され前記環状光束に対応した輪帯状開口を有する開口
絞シとを含んでいることを特徴とする、環状照明装置。
a light source, a first optical member that converts the luminous flux from the light source into a cylindrical luminous flux, a second optical member that converts the cylindrical luminous flux into an annular luminous flux and focuses the annular luminous flux; An annular illumination device comprising: an aperture diaphragm disposed and having an annular aperture corresponding to the annular luminous flux.
JP16004682A 1982-09-14 1982-09-14 Annular illumination device Pending JPS5949514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16004682A JPS5949514A (en) 1982-09-14 1982-09-14 Annular illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16004682A JPS5949514A (en) 1982-09-14 1982-09-14 Annular illumination device

Publications (1)

Publication Number Publication Date
JPS5949514A true JPS5949514A (en) 1984-03-22

Family

ID=15706747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16004682A Pending JPS5949514A (en) 1982-09-14 1982-09-14 Annular illumination device

Country Status (1)

Country Link
JP (1) JPS5949514A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191662A (en) * 1984-10-11 1986-05-09 Nippon Telegr & Teleph Corp <Ntt> Projecting and exposing device
JPH03257349A (en) * 1990-03-07 1991-11-15 Res Dev Corp Of Japan Laser dark-field oblique ray microscopic apparatus and motion measuring method
EP0535218A1 (en) * 1991-04-19 1993-04-07 Edge Scientific Instrument Company L.L.C. Illumination system and method for a high definition light microscope
US5323208A (en) * 1992-03-09 1994-06-21 Hitachi, Ltd. Projection exposure apparatus
US6377336B1 (en) 1991-09-11 2002-04-23 Nikon Corporation Projection exposure apparatus
US6665050B2 (en) 1990-11-15 2003-12-16 Nikon Corporation Projection exposure methods using difracted light with increased intensity portions spaced from the optical axis
US6710855B2 (en) 1990-11-15 2004-03-23 Nikon Corporation Projection exposure apparatus and method
JP2005004088A (en) * 2003-06-13 2005-01-06 Nikon Corp Phase-contrast microscope
US6885433B2 (en) 1990-11-15 2005-04-26 Nikon Corporation Projection exposure apparatus and method
US6897942B2 (en) 1990-11-15 2005-05-24 Nikon Corporation Projection exposure apparatus and method
US6967710B2 (en) 1990-11-15 2005-11-22 Nikon Corporation Projection exposure apparatus and method
US7277155B2 (en) 1991-03-05 2007-10-02 Renesas Technology Corp. Exposure apparatus and method
US7656504B1 (en) 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
JP2022178968A (en) * 2021-05-21 2022-12-02 パナソニックIpマネジメント株式会社 phase contrast microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4321353Y1 (en) * 1965-09-18 1968-09-07
JPS52110647A (en) * 1976-03-13 1977-09-16 Le I Tochinoi Mehaniki I Opuch Coherent light illuminator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4321353Y1 (en) * 1965-09-18 1968-09-07
JPS52110647A (en) * 1976-03-13 1977-09-16 Le I Tochinoi Mehaniki I Opuch Coherent light illuminator

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682598B2 (en) * 1984-10-11 1994-10-19 日本電信電話株式会社 Projection exposure device
JPS6191662A (en) * 1984-10-11 1986-05-09 Nippon Telegr & Teleph Corp <Ntt> Projecting and exposing device
JPH03257349A (en) * 1990-03-07 1991-11-15 Res Dev Corp Of Japan Laser dark-field oblique ray microscopic apparatus and motion measuring method
US7656504B1 (en) 1990-08-21 2010-02-02 Nikon Corporation Projection exposure apparatus with luminous flux distribution
US6967710B2 (en) 1990-11-15 2005-11-22 Nikon Corporation Projection exposure apparatus and method
US6885433B2 (en) 1990-11-15 2005-04-26 Nikon Corporation Projection exposure apparatus and method
US6897942B2 (en) 1990-11-15 2005-05-24 Nikon Corporation Projection exposure apparatus and method
US6710855B2 (en) 1990-11-15 2004-03-23 Nikon Corporation Projection exposure apparatus and method
US6665050B2 (en) 1990-11-15 2003-12-16 Nikon Corporation Projection exposure methods using difracted light with increased intensity portions spaced from the optical axis
US6704092B2 (en) 1990-11-15 2004-03-09 Nikon Corporation Projection exposure method and apparatus that produces an intensity distribution on a plane substantially conjugate to a projection optical system pupil plane
US7604925B2 (en) 1991-03-05 2009-10-20 Renesas Technology Corporation Exposure apparatus and method
US7277155B2 (en) 1991-03-05 2007-10-02 Renesas Technology Corp. Exposure apparatus and method
US7598020B2 (en) 1991-03-05 2009-10-06 Renesas Technology Corporation Exposure apparatus and method
EP0535218A4 (en) * 1991-04-19 1995-10-18
EP0535218A1 (en) * 1991-04-19 1993-04-07 Edge Scientific Instrument Company L.L.C. Illumination system and method for a high definition light microscope
US6864959B2 (en) 1991-09-11 2005-03-08 Nikon Corporation Projection exposure apparatus
US6710854B2 (en) 1991-09-11 2004-03-23 Nikon Corporation Projection exposure apparatus
US6392740B1 (en) 1991-09-11 2002-05-21 Nikon Corporation Projection exposure apparatus
US6377336B1 (en) 1991-09-11 2002-04-23 Nikon Corporation Projection exposure apparatus
US5323208A (en) * 1992-03-09 1994-06-21 Hitachi, Ltd. Projection exposure apparatus
JP2005004088A (en) * 2003-06-13 2005-01-06 Nikon Corp Phase-contrast microscope
JP2022178968A (en) * 2021-05-21 2022-12-02 パナソニックIpマネジメント株式会社 phase contrast microscope

Similar Documents

Publication Publication Date Title
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
US5646715A (en) Illuminating arrangement for an optical system having a reticle masking unit
US5357312A (en) Illuminating system in exposure apparatus for photolithography
JPH0378607B2 (en)
JPH043528B2 (en)
JPS5949514A (en) Annular illumination device
JPH032284B2 (en)
JP2997351B2 (en) Illumination optics
KR950024024A (en) Projection exposure apparatus and device manufacturing method using the same
JP2870790B2 (en) Lighting system for micro reader printer
JP2002198309A (en) Illumination system with less heat load
JPS6341042B2 (en)
JP3067491B2 (en) Projection exposure equipment
JP2696360B2 (en) Illumination optics
JPH08203803A (en) Exposure apparatus
JPH0744141B2 (en) Lighting optics
JPS5843416A (en) Reverse expand afocal illuminating optical system of mirror condensing type
JP3879142B2 (en) Exposure equipment
JP3367569B2 (en) Illumination optical device, exposure device, and transfer method using the exposure device
JPS6380243A (en) Illuminating optical device for exposing device
JP3701694B2 (en) Illumination optics
JPS61251858A (en) Optical lighting system
JPH04256944A (en) Illuminator and projection exposing device
JP2551002B2 (en) Lighting device having elliptical mirror
JPH03180019A (en) Projection aligner