JPS5843416A - Reverse expand afocal illuminating optical system of mirror condensing type - Google Patents

Reverse expand afocal illuminating optical system of mirror condensing type

Info

Publication number
JPS5843416A
JPS5843416A JP56141677A JP14167781A JPS5843416A JP S5843416 A JPS5843416 A JP S5843416A JP 56141677 A JP56141677 A JP 56141677A JP 14167781 A JP14167781 A JP 14167781A JP S5843416 A JPS5843416 A JP S5843416A
Authority
JP
Japan
Prior art keywords
light
optical system
optical axis
condenser lens
afocal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56141677A
Other languages
Japanese (ja)
Other versions
JPH0125046B2 (en
Inventor
Makoto Uehara
誠 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP56141677A priority Critical patent/JPS5843416A/en
Priority to US06/416,029 priority patent/US4498742A/en
Publication of JPS5843416A publication Critical patent/JPS5843416A/en
Publication of JPH0125046B2 publication Critical patent/JPH0125046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens

Abstract

PURPOSE:To obtain a reverse expand afocal illuminating optical system of mirror condensing type having an improved distribution in quantity of light and higher efficiency by making the light from a light source condensed with a reflecting mirror having a quadratic surface to parallel luminous fluxes by means of a condenser lens and passing the same through a circular conical refracting member. CONSTITUTION:In an afocal optical system wherein the vertexes of a circular conical refracting member are made coincident at the optical axis of an illuminating optical system behind a condenser lens, the inequalities (1), (2) are satisfied wherein the half of the vertical angle of said refracting member is defined as theta, refractive index n, central thickness d, radius of vignetting of lens Ds, height of optical axis He, and the quantity of shift DELTAh. The light of the light source provided on one focus O of an elliptical mirror 1 is condensed onto the other focus O' and is converted to parallel luminous fluxes by a condenser lens 2. The parallel luminous fluxes apart from the optical axis are shifted near the optical axis by a circular conical prism 3. Thus the reverse expand focal illuminating optical system having an improved distribution in the quantity of light and higher efficiency is obtained.

Description

【発明の詳細な説明】 本発明は、超高圧水銀ランプのような放電履光□渾の照
明光学系に関する。     ′□従来、この種の光源
は 第1図(a)ミラー集光タイプ (b)し゛ンズ集光タイプ (、)バックミラータイプ のように、ミラー又はレンズを組合せセ□集光させてい
た。ご仁でのミラー集゛光タイプは、光源から放射され
るす′べての光束を集光できるものとして、゛=番効率
の良いものであった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an illumination optical system for a discharge lamp such as an ultra-high pressure mercury lamp. Conventionally, this type of light source has used a combination of mirrors or lenses to condense light, as shown in FIG. The mirror light condensing type used in Gonin was the most efficient as it could condense all the light beams emitted from the light source.

しかし、光軸の・MmK光束は存在せず、角度分布的に
は中心の抜けた照明光束になってしま“う欠点があった
。すなわち、物体に対して透過光として照明し、対゛物
しンズに門いて結偉′する顕微鏡などにこの照明系を用
いると、対物レンズめ入射瞳に対して、中心を通る光・
束□が存在せず一円環状の分布を持ってしまう。
However, there is no .MmK light flux on the optical axis, and the illumination light flux misses the center in terms of angular distribution.In other words, it illuminates the object as transmitted light, When this illumination system is used in a microscope, etc., which is focused on light, the light passing through the center of the objective lens's entrance pupil is
The bundle □ does not exist, resulting in a ring-shaped distribution.

このむと社、多少の収差を含有した実際の対物レンズに
対し、周辺光束のみを使うことになシ、余シ望ましいこ
とではない。
However, it is not desirable to use only the peripheral light flux for an actual objective lens that contains some aberrations.

また対物レンズのN、ム、に対応し”C,R明光のN、
Aを規定する場合、中心を通る光束がないえ、わ、□□
21、□□ヵ;′あつぇ二通常、 照明N、ム、/対物N、ム、冨q とした場合、−はlよシ多少小さな値になるよ5照明N
6ム、を設定すると、対物レンズは深度、解儂とも一番
良くなる・すなわちこの種の照明系では照明光束のN、
Aを限定するために、絞シを光量の多い円、環部に入れ
る必要があシ、有効に使われる光量紘滅る。例えば設定
した#に合致するよう焦点距離の短いコンデンサーレン
ズを使うことも考えられる。しかし実際の光源は点光源
ではなく1、大きさを持っているため、焦点距−が短く
なるとコンデンサーレンズの後で平″″′會、になるべ
き光束が、光軸に対し角度を持つようになシ、やはシ絞
シで遮断されムダになる光量が多くなる。
Also, it corresponds to the objective lens N, M, "C, R bright N,"
When defining A, there is no light flux passing through the center.
21, □□ka;'Atsue 2 Normally, if the illumination is N, mu, /objective N, mu, and q, then - will be a somewhat smaller value than l.5 Illumination N
6mm, the objective lens has the best depth and resolution.In other words, in this type of illumination system, the illumination flux N,
In order to limit A, it is necessary to place the diaphragm in a circle or annulus with a large amount of light, which reduces the amount of light that can be used effectively. For example, it is possible to use a condenser lens with a short focal length to match the set #. However, an actual light source is not a point source but has a size of 1, so when the focal length becomes short, the light beam that should be flat after the condenser lens becomes angular with respect to the optical axis. In other words, a large amount of light is wasted as it is blocked by the diaphragm.

本発明では%j11図(畠)で示される従来の超高圧水
銀ランプのミラー集光タイプという、効、率の良、い集
光法において、欠点であった光量分布を改善しより効率
の高い理想的なミラー−光m−エキスパンドアフォーカ
ル照明光学−系を提供することを目的としている。
The present invention improves the light intensity distribution, which was a drawback, in the conventional ultra-high pressure mercury lamp mirror condensing type, which is a highly efficient and efficient condensing method, as shown in Figure 11 (Hata), and achieves higher efficiency. The objective is to provide an ideal mirror-optical m-expanded focal illumination optical system.

以下本発明を添付図面の1!施例によって詳述する。The present invention is shown in the attached drawings below! This will be explained in detail by way of examples.

第2図は本発明の1つの□実施例を示した光学系で、公
知の如く楕円ミラー1の一方の焦点O上に光源を設ける
と他方功焦点り1′上に集光する。そしてこの光束をコ
ンデンサーレンズ2で平行系にする。本発明の特徴はと
の後方に第1面及び第2mを円錐状に加工したプリズム
3を配設したものである。
FIG. 2 shows an optical system showing one embodiment of the present invention.As is well known, when a light source is provided on one focal point O of an elliptical mirror 1, the light is focused on the other focal point 1'. This luminous flux is then made into a parallel system by a condenser lens 2. The feature of the present invention is that a prism 3 whose first surface and second m are shaped into a conical shape is disposed behind the prism.

第1図(1)のものでは光゛軸近傍′の光束は存在しな
いが、本発→では上記円錐状プリズム3によシ、光軸よ
□′□′j、、、離れた平行光束を、光軸近傍までシフ
トさせ、理想的な光量分布としたものである。
In the case of Fig. 1 (1), there is no light beam near the optical axis, but in the main beam →, the conical prism 3 generates parallel light beams □′□′j, . . . away from the optical axis. , the light intensity is shifted to the vicinity of the optical axis to obtain an ideal light amount distribution.

例えば焦点O上の光源がα=β−1!45°として立体
状に均等に光を放射してい、るとすると、第1図(a)
及び第2図の最終的な平行系でのスポットダイヤグラム
はそれぞ、れ・第3図及び第4図のようになる。   
      、本発明の円錐状プリズム3杜本夾施例に
限る仁となく2つのブリズ・ムに分解しても、凸として
の円錐と凹としての円錐があれば同様な・効果を持ち、
このように分けるζをによシ、プリズムを通る光路長が
短かくなれば、透過率の点で有利に、なることは云う迄
もない4更に第5図示のように円錐状プリズム3をフレ
ネルa13′にしても同等の効・果を得ることができる
。、        ・   、淘本発明の前記実施例
では、光源を、理想的な点光源として説明した。即ち、
点光・源よ°シ角度αで出た光線は、楕円ミラー1の内
側絞シ及び、光源の指向性によ、シ最、も光軸に近い光
線として、コンデンサーレンズ2・を通っ九後、第6図
に詳記した如<HOの高さで光軸と平行な光線となる。
For example, if a light source at the focal point O emits light uniformly in three dimensions with α=β-1!45°, then Figure 1(a)
The final parallel system spot diagrams of FIG. 2 and FIG. 2 are as shown in FIGS. 3 and 4, respectively.
, Even if the conical prism of the present invention is decomposed into two brisms instead of a radial one, as long as there is a convex cone and a concave cone, the same effect can be obtained,
It goes without saying that if the optical path length passing through the prism is shortened by dividing ζ in this way, it will be advantageous in terms of transmittance. Even if a13' is used, the same effects and effects can be obtained. In the above embodiments of the present invention, the light source was described as an ideal point light source. That is,
A ray of light emitted from a point light/source at an angle α passes through a condenser lens 2 as a ray closest to the optical axis due to the inner aperture of the elliptical mirror 1 and the directivity of the light source. , the light beam becomes parallel to the optical axis at a height of <HO, as detailed in FIG.

第2図、では、同様の光線は円錐状プリズム3によJ)
、Ho=Δhだけシフトして光軸ど重うている(Hs−
OL。・し赤し一般に光源は有限□な大きさを持ってお
シコンデンサーレンズ3の後で、−円一錨゛状プリズム
3に入る□光量、線は光軸に平・行なものばか夛では表
い。  パ  確4かに点光源の場合には 一ΔhwmHo・、   ・      ・が望ましい
が、光、源が有限の大きさを持っているため   ・・
         □゛杏uo<Δh(2Ha   =
<1) −とすることが望ましい。光軸に平行な光束だ
゛けを考えると、左辺では補正不足、右辺、では′補正
過多になるが、大きさを持った光源では。
In Figure 2, a similar ray is passed through the conical prism 3.
, shifted by Ho=Δh and overlaps the optical axis (Hs-
OL.・In general, the light source has a finite size, and after the condenser lens 3, it enters the anchor-shaped prism 3. The amount of light is parallel to the optical axis. Table. In the case of a point light source, it is desirable to have -ΔhwmHo, . . ., but since the light source has a finite size...
□゛杏uo<Δh(2Ha=
<1) - is desirable. Considering the light flux parallel to the optical axis, the left side will be under-corrected, and the right side will be over-corrected, but for a light source with a large size.

ともに中抜けがなくなシ、照明、光として曳い結果が得
られ石゛。・  □ 即ち、第6図に示すようにΔhとプリズム3の頂角の重
分θ、1折率n:、中心厚dの関る。而して、゛°光颯
を2次曲面ミラーで集光させる場合について考える。例
えば楕円ミラー1では第1焦点面Oに点光源を置くと、
第2焦点O′に集光するので、コンデンサーレンズ3で
7フオーカル系ぺした場合、楕円ミラー1の中央間p部
によシコンデンサーレンズ3の後では第3図示のように
半径Dsの円型ケラレを生じる。i九、放物面ミラー1
では焦点OK点光源を置くと、平行光束(アフオ、−カ
ル系)となシ、やはシ中央開ロ部に対して半径Daの円
層ケラレを生じる。
In both cases, there are no hollow spots, and the results obtained as lighting and light are stone.・□ That is, as shown in FIG. 6, Δh is related to the overlap θ of the apex angle of the prism 3, the refractive index n:, and the center thickness d. Let us now consider the case where the light beam is focused by a quadratic curved mirror. For example, in elliptical mirror 1, if a point light source is placed on the first focal plane O, then
Since the light is condensed at the second focal point O', when the condenser lens 3 forms a 7-focal system, the part between the centers of the elliptical mirror 1 becomes circular with a radius Ds after the condenser lens 3 as shown in the third figure. Causes vignetting. i9, parabolic mirror 1
If a point light source with OK focus is placed, a parallel light beam (affo, -cal system) and a circular layer vignetting of radius Da will occur with respect to the center aperture.

本発明では円錐状プリズム3の形状、屈折率nとケラレ
半径D$の関係を以下のようにすることが望ましい。即
ち、 −Da≦dtim(!!−−自″′″*ame−θ)≦
2D易・・・(2)2         2     
  nこの範囲で円錐状プリズム3を規定することによ
シ、大きさを持つ木光源に対しても、光□ 量的にも、中抜けの解栖についても実用上は有効よ作m
i5<、btと・:フ・1アき、6゜以上述べた如く本
発明によれば、光軸上から周辺部に亘って理想的な光量
分布の照明系
In the present invention, it is desirable that the shape of the conical prism 3, the relationship between the refractive index n and the vignetting radius D$ be as follows. That is, -Da≦dtim(!!--self″′″*ame-θ)≦
2D easy...(2) 2 2
By specifying the conical prism 3 within this range, it is practically effective in terms of light quantity and hollow removal even for wooden light sources with a certain size.
i5<, bt and...: f・1a, 6° As described above, according to the present invention, an illumination system with an ideal light amount distribution from the optical axis to the peripheral area is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の照明系、 第2図は本発明の照明系、 第3図は従来の照明系の光量分布を示すスポットダイヤ
グラム、 第4図は本発明の照明系の光量分布を示すスポットダイ
ヤグラム、 第5図は本発明の円錐状プリズムの他の実施例、 第6図は本発明の円錐状プリズムの説明−である。 (主要部分の符号の説明) 1、楕円ミラー 2、コンデンサーレンズ 3、円錐状/リズム 、1 ′□□1゜ l。 Y   − オ、i囚
Figure 1 is a conventional illumination system, Figure 2 is an illumination system of the present invention, Figure 3 is a spot diagram showing the light intensity distribution of the conventional illumination system, and Figure 4 is a spot diagram showing the light intensity distribution of the illumination system of the present invention. Diagrams FIG. 5 is another embodiment of the conical prism of the present invention, and FIG. 6 is an explanation of the conical prism of the present invention. (Explanation of symbols of main parts) 1. Elliptical mirror 2, condenser lens 3, conical/rhythm, 1'□□1゜l. Y - O, i prisoner

Claims (1)

【特許請求の範囲】 1、少くとも2次・自画を有する反射鏡とコンデンサー
レンズとを有す為ミラー集光腫・照明光学系に於て、円
錐状屈折部材を、前記コンデンサーレンズの後方で且つ
又照明光学系の光軸にその頂点な略−歇せしめて成るア
フォーカル照明光学系。 2、特許請求の範囲第1項記□載の7フオーカル照明光
学系・において、円錐状屈折部材の頂角の半分−1屈折
率論、中心厚4、ケラレ半fiDs、光軸の高さH・、
シフト量4hとすると・き次の条件(l)、(2)式を
満足した7フオーカル照明光学系。  □
[Claims] 1. In a mirror concentrator/illumination optical system that includes a reflecting mirror having at least a secondary/self-portrait and a condenser lens, a conical refractive member is provided behind the condenser lens. Moreover, the afocal illumination optical system is formed by having its apex approximately aligned with the optical axis of the illumination optical system. 2. In the 7 focal illumination optical system described in claim 1, □, half the apex angle of the conical refractive member - 1 refractive index theory, center thickness 4, vignetting half fiDs, optical axis height H・、
When the shift amount is 4h, a 7-focal illumination optical system satisfies the following conditions (l) and (2). □
JP56141677A 1981-09-10 1981-09-10 Reverse expand afocal illuminating optical system of mirror condensing type Granted JPS5843416A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP56141677A JPS5843416A (en) 1981-09-10 1981-09-10 Reverse expand afocal illuminating optical system of mirror condensing type
US06/416,029 US4498742A (en) 1981-09-10 1982-09-08 Illumination optical arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141677A JPS5843416A (en) 1981-09-10 1981-09-10 Reverse expand afocal illuminating optical system of mirror condensing type

Publications (2)

Publication Number Publication Date
JPS5843416A true JPS5843416A (en) 1983-03-14
JPH0125046B2 JPH0125046B2 (en) 1989-05-16

Family

ID=15297627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141677A Granted JPS5843416A (en) 1981-09-10 1981-09-10 Reverse expand afocal illuminating optical system of mirror condensing type

Country Status (1)

Country Link
JP (1) JPS5843416A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265014A (en) * 1985-07-23 1987-03-24 フュージョン・システムズ・コーポレーション Optical system for projecting uneven light source on image plane
EP0231029A2 (en) * 1986-01-31 1987-08-05 Dainippon Screen Mfg. Co., Ltd. Optical system
JPS6382408A (en) * 1986-09-19 1988-04-13 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Lighting apparatus for overhead projector
EP0299475A2 (en) * 1987-07-17 1989-01-18 Dainippon Screen Mfg. Co., Ltd. Optical system for effecting increased irradiance in peripheral area of object
JPH02250016A (en) * 1989-03-23 1990-10-05 Mitsutoyo Corp Vertical dark field illuminating device
US5345292A (en) * 1992-03-31 1994-09-06 Canon Kabushiki Kaisha Illumination device for projection exposure apparatus
JP2012191148A (en) * 2011-03-14 2012-10-04 Ricoh Co Ltd Surface-emitting laser module, optical scanning device, and image forming device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265014A (en) * 1985-07-23 1987-03-24 フュージョン・システムズ・コーポレーション Optical system for projecting uneven light source on image plane
EP0231029A2 (en) * 1986-01-31 1987-08-05 Dainippon Screen Mfg. Co., Ltd. Optical system
JPS6382408A (en) * 1986-09-19 1988-04-13 ミネソタ マイニング アンド マニユフアクチユアリング カンパニ− Lighting apparatus for overhead projector
EP0299475A2 (en) * 1987-07-17 1989-01-18 Dainippon Screen Mfg. Co., Ltd. Optical system for effecting increased irradiance in peripheral area of object
JPH02250016A (en) * 1989-03-23 1990-10-05 Mitsutoyo Corp Vertical dark field illuminating device
US5345292A (en) * 1992-03-31 1994-09-06 Canon Kabushiki Kaisha Illumination device for projection exposure apparatus
US5726740A (en) * 1992-03-31 1998-03-10 Canon Kabushiki Kaisha Projection exposure apparatus having illumination device with ring-like or spot-like light source
JP2012191148A (en) * 2011-03-14 2012-10-04 Ricoh Co Ltd Surface-emitting laser module, optical scanning device, and image forming device

Also Published As

Publication number Publication date
JPH0125046B2 (en) 1989-05-16

Similar Documents

Publication Publication Date Title
US4637691A (en) Mirror converging-type illumination optical system
US5966250A (en) Method and light collection system for producing uniform arc image size
JPH032284B2 (en)
EP0603583B1 (en) Image projection apparatus
JPH02503131A (en) One-piece collimator
KR980013366A (en) Fresnel Lens Sheet for Rear Projection Screen
US5046838A (en) Illumination system for use in image projection apparatus
JPS5843416A (en) Reverse expand afocal illuminating optical system of mirror condensing type
US5092672A (en) Condenser lens system for overhead projector
JPH0514243Y2 (en)
JPS5949514A (en) Annular illumination device
US1333304A (en) Condensing system for optical projecting apparatus
US4098549A (en) Eye bottom camera
US1946088A (en) Condensing lens system for motion picture projection
JP3440023B2 (en) Lighting equipment
KR100427134B1 (en) Device for dispersing light in video frames
JP2000122178A5 (en)
JP2000122178A (en) Illuminator
JPH0643922Y2 (en) Fresnel lens for spotlight
JPS60225817A (en) Large aperture epidark objective lens
JPS6227702B2 (en)
JP3909703B2 (en) Collimator lens
JPH06118379A (en) Light source unit for projection
KR0118688Y1 (en) Projector lighting system
JPH0968667A (en) Illumination optical system