JPS5949465A - Heat pump type absorption cold and hot water machine - Google Patents

Heat pump type absorption cold and hot water machine

Info

Publication number
JPS5949465A
JPS5949465A JP15960582A JP15960582A JPS5949465A JP S5949465 A JPS5949465 A JP S5949465A JP 15960582 A JP15960582 A JP 15960582A JP 15960582 A JP15960582 A JP 15960582A JP S5949465 A JPS5949465 A JP S5949465A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
absorber
condenser
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15960582A
Other languages
Japanese (ja)
Inventor
箕輪 良平
杉本 滋郎
若狭 慶和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15960582A priority Critical patent/JPS5949465A/en
Publication of JPS5949465A publication Critical patent/JPS5949465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は蒸発器、吸収器、再生器、凝縮器、熱交換器お
よびポンプを作動的に連続してなシ、蒸発器に通水する
冷水を低温熱源とt、吸収器と凝陥器に通水する冷却水
を温水とし、熱を外部へ取出すようにしたヒートポンプ
式吸収冷温水機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes an evaporator, an absorber, a regenerator, a condenser, a heat exchanger, and a pump that are not operated in series, and the cold water flowing to the evaporator is connected to a low-temperature heat source. This invention relates to a heat pump type absorption chiller/heater in which hot water is used as the cooling water that flows through an absorber and a condenser, and the heat is extracted to the outside.

従来の一重効用吸収式冷凍機を用いたヒートポンプは、
原理的には一般の冷房用途に用いる吸収式冷凍機となん
ら変るところがない。したがって、通常の暖房に用いる
程度の温水を井水などを低温熱源として取出す場合には
、特別の工夫なくとも50C程度の温水を取出すことは
可能である。
A heat pump using a conventional single-effect absorption refrigerator is
In principle, there is no difference from absorption refrigerators used for general cooling purposes. Therefore, when extracting hot water of a level used for normal heating using well water or the like as a low-temperature heat source, it is possible to extract hot water of about 50C without any special measures.

ところが、500以上の温水を取出す場合、ボイラの給
水予熱などのように、得られる温水温度が高ければ高い
程よい場合およびその他の目的、例えば30〜35C程
度の低温熱源をもとにして、85〜90Cの高温水を取
出したい場合、通常の−1効用サイクルでは、サイクル
中の最高温度点および最高濃度点が実用上の範囲を越え
、サイクルが成立しなくなシ、かつ熱源圧力が高くなシ
すぎて実用上、不適格である。
However, when taking out hot water of 500C or more, the higher the hot water temperature is, the better, such as preheating boiler feed water, and for other purposes, for example, based on a low temperature heat source of about 30 to 35C. If you want to extract high-temperature water at 90C, in a normal -1 efficiency cycle, the highest temperature point and highest concentration point during the cycle will exceed the practical range, and the cycle will not be completed, and the heat source pressure is not high. It is so unsuitable for practical use.

この場合の典型的なサイクル系統を第1図に、デユーリ
ング線図上に示したサイクル線図を第2図にそれぞれ示
す。まず第1図についてサイクルを説明するに、蒸発器
1において低温熱源水2から熱を奪って蒸発した冷媒は
吸収器3に流入し、その管内を流通する冷却水4に熱を
与えて濃溶液に吸収される。冷媒を吸収して稀釈された
稀溶液5は、溶液ポンプ6によシ再生温7に送られ、こ
こで加熱源8によシ濃縮されて濃溶液9と冷媒ガスに分
離される。その濃溶液9は再び再生器3に戻入されて冷
媒ガスを発生する。この冷媒ガスは凝縮器10に流入し
、冷却水4に熱を与えて凝縮。
A typical cycle system in this case is shown in FIG. 1, and a cycle diagram shown on the Dueling diagram is shown in FIG. 2, respectively. First, to explain the cycle with reference to FIG. 1, the refrigerant that is evaporated by taking heat from the low-temperature heat source water 2 in the evaporator 1 flows into the absorber 3, where it gives heat to the cooling water 4 flowing through the pipe and becomes a concentrated solution. be absorbed into. The dilute solution 5 that has absorbed the refrigerant is sent to a regeneration temperature 7 by a solution pump 6, where it is concentrated by a heating source 8 and separated into a concentrated solution 9 and refrigerant gas. The concentrated solution 9 is returned to the regenerator 3 to generate refrigerant gas. This refrigerant gas flows into the condenser 10, gives heat to the cooling water 4, and condenses.

液化して蒸発器1に戻される。この蒸発器1では、冷媒
液をポンプ11によシチューブ群上に散布して伝熱効率
を高める。また稀溶液と濃溶液との間に熱交換器12を
設けて、サイクル効率の改善をはかつている。
It is liquefied and returned to the evaporator 1. In this evaporator 1, a pump 11 spreads refrigerant liquid over a group of tubes to improve heat transfer efficiency. Furthermore, a heat exchanger 12 is provided between the dilute solution and the concentrated solution to improve cycle efficiency.

このようなサイクルにおいて、実用上の使用限界をきめ
るものは、第2図における再生器用口温度15.加熱源
圧力16および濃溶液濃度17である。すなわち再生器
用口温度が高くなシすぎると、溶液の腐食性が急激に顕
著になシ、加熱源圧力が高すぎると、供給設備の制約か
ら得られる温水上限温度が制約を受け、ヒートポンプの
本来の目的を十分に達成しえなくなる。また濃溶液濃度
が高すぎると結晶を生ずるので、これらの3点から得ら
れる温水上限温度が決定される。
In such a cycle, what determines the practical limit of use is the regenerator port temperature 15. The heating source pressure is 16 and the concentrated solution concentration is 17. In other words, if the regenerator inlet temperature is too high, the corrosivity of the solution will rapidly become noticeable, and if the heating source pressure is too high, the upper limit temperature of the hot water that can be obtained will be restricted due to constraints on the supply equipment, and the heat pump will not be able to function properly. will not be able to fully achieve its objectives. Furthermore, if the concentration of the concentrated solution is too high, crystals will form, so the upper limit temperature of hot water obtained from these three points is determined.

さらに第2図によれば、低温熱源水の温度が低い程、蒸
発温度13が低下し、また取出したい温水温度が高い程
、凝縮温度14が高温となシ、これらの両温度13.1
4の差が大きい程、最高温度、濃度および加熱源圧力が
高くなることが判る。
Further, according to FIG. 2, the lower the temperature of the low-temperature heat source water, the lower the evaporation temperature 13, and the higher the temperature of the hot water to be extracted, the higher the condensation temperature 14.
It can be seen that the larger the difference in 4, the higher the maximum temperature, concentration, and heating source pressure.

このような普通の−1効用サイクルでは、30〜35C
程度の低温熱源をもとにして85〜90Cの高温水をう
ろことは実用上、不可能である。尚第2図および第4図
において曲線Wは水の飽和線である。
In such a normal -1 utility cycle, 30-35C
It is practically impossible to scale high-temperature water of 85 to 90C based on a low-temperature heat source of about 100℃. Note that in FIGS. 2 and 4, curve W is a water saturation line.

本発明は上記にかんがみ一重効用吸収式サイクルによシ
、低レベルの加熱源で高温(85〜90C)の温水をう
ろことを目的とするもので、蒸発器、°吸収器、再生温
および凝縮器をそれぞれ隔壁を介して少なくとも2分割
し、これらの分割された各機器を組合せて独立した一重
効用吸収サイクルを少なくとも2個構成させ、冷却水(
温水)を第1吸収器→第2吸収器→第2凝縮器→第1凝
縮器の順序に流通させることによシ、前記温水を高温度
に昇温させるようにしたものである。
In view of the above, the present invention is based on a single-effect absorption cycle, and is intended to scale hot water at a high temperature (85-90C) with a low-level heating source, including an evaporator, an absorber, a regeneration temperature and a condensing temperature. Each device is divided into at least two parts via a partition wall, each of these divided devices is combined to form at least two independent single-effect absorption cycles, and cooling water (
The hot water is heated to a high temperature by flowing the hot water in the order of the first absorber, second absorber, second condenser, and first condenser.

以下本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図において、la、lbおよび3a、3bはそれぞ
れ隔壁20によシ2分割された蒸発器および吸収器で、
その一方の蒸発器1a、lbは低温熱源水(冷水)の流
通するチューブ22a。
In FIG. 3, la, lb, 3a, and 3b are an evaporator and an absorber divided into two by a partition wall 20, respectively;
One of the evaporators 1a and lb is a tube 22a through which low-temperature heat source water (cold water) flows.

22b群をそれぞれ内蔵し、他方の吸収器3a、   
 ′3bは冷却水(温水)4の流通するチューブ21a
、     ′21b群をそれぞれ内蔵している。7a
、7bおよび10a、10bはそれぞれ隔壁20によシ
2分割された再生器および凝縮器で、その一方の再生器
7a、7bは蒸気などの加熱源8の流通するチューブ2
3a、23b群をそれぞれ内蔵し、他方の凝縮器10a
、10bは冷却水(@水)4の流通するチューブ24a
、24b群をそれぞれ内    □蔵している。
22b group, and the other absorber 3a,
'3b is a tube 21a through which cooling water (hot water) 4 flows.
, '21b group, respectively. 7a
, 7b and 10a, 10b are a regenerator and a condenser, respectively, which are divided into two by a partition wall 20. One of the regenerators 7a, 7b is a tube 2 through which a heating source 8 such as steam flows.
3a and 23b groups, and the other condenser 10a
, 10b is a tube 24a through which cooling water (@water) 4 flows.
, and 24b groups, respectively.

6aは吸収器3a内の稀溶液5aを導管25aおよび熱
交換器12aを介して再生器7aへ送る溶液ポンプで、
その熱交換器12aは前記稀溶液5aと、再生器7aか
ら吸収器3aへ戻入される濃溶液9aとを熱交換させる
作用を行う。6bは吸収器3b内の稀溶液5bを導管2
5bおよび熱交換器12 b f:介して再生器7bへ
送る溶液ポンプで、その熱交換器12L+は前記稀溶液
5bと、再生器71〕から吸収器3bへ戻入される濃溶
液9bと熱交換させる作用を行う。11は蒸発器la、
Ibのチューブ22a、22b群に冷媒をスプレー芒せ
て、蒸発を促進させる冷媒ポンプである。
6a is a solution pump that sends the dilute solution 5a in the absorber 3a to the regenerator 7a via the conduit 25a and the heat exchanger 12a;
The heat exchanger 12a functions to exchange heat between the dilute solution 5a and the concentrated solution 9a returned from the regenerator 7a to the absorber 3a. 6b connects the dilute solution 5b in the absorber 3b to the conduit 2.
5b and heat exchanger 12 b f: a solution pump that sends the solution to the regenerator 7b via which the heat exchanger 12L+ exchanges heat with the dilute solution 5b and the concentrated solution 9b that is returned from the regenerator 71 to the absorber 3b. It performs the action of causing 11 is an evaporator la;
This is a refrigerant pump that sprays refrigerant into the group of tubes 22a and 22b of Ib to promote evaporation.

次に上記のような栴成からなる本実施例の作用につい1
説明する。
Next, we will discuss the operation of this embodiment consisting of the above-mentioned structure.
explain.

隔壁20の両側に設けられた吸収器3aと蒸発器1aお
よび吸収器3bと蒸発器1bの各組はそれぞれ独自に吸
収と蒸発の各作用を行うと共に、温水4と冷水2の温度
に対し、各組の吸収器と蒸発器はそれぞれ独自の吸収温
度と蒸発温度となる。
Each set of absorber 3a and evaporator 1a and absorber 3b and evaporator 1b provided on both sides of partition wall 20 performs respective functions of absorption and evaporation independently, and also controls temperature of hot water 4 and cold water 2. Each set of absorber and evaporator has its own absorption and evaporation temperatures.

換屈すれば、隔壁20の左側では冷水2の温度の高い側
の蒸発器1aと温水4の温度の低い側の吸収器3aが1
組となって蒸発、吸収を行い、隔壁20の右側の吸収器
3bのチューブ21b群より流出する温水4の温度が高
くても、吸収器3aの稀溶液5aは十分に薄くなる。
If flexural bending is performed, on the left side of the partition wall 20, the evaporator 1a on the side where the temperature of the cold water 2 is higher and the absorber 3a on the side where the temperature of the hot water 4 is lower are 1.
Even if the temperature of the hot water 4 flowing out from the group of tubes 21b of the absorber 3b on the right side of the partition wall 20 is high, the dilute solution 5a of the absorber 3a becomes sufficiently dilute.

したがって、隔壁20の左側に設けられた再生器7aに
流入する稀溶液5aの濃度が低いため、再生器7a内の
濃溶液9aの濃度も低下し、凝縮器10aのチューブ2
4a群から流出する温水4の温度が従来例よシ高くなる
。このため凝縮器10a内の凝縮圧力が上昇しても、濃
溶液9aの飽和濃度が従来例に比べて低くなるので、再
生器7aのチューブ23a群に供給する加熱源8の温度
が低温でも冷媒を再生することができる。
Therefore, since the concentration of the dilute solution 5a flowing into the regenerator 7a provided on the left side of the partition wall 20 is low, the concentration of the concentrated solution 9a in the regenerator 7a also decreases, and the tube 2 of the condenser 10a
The temperature of the hot water 4 flowing out from the group 4a becomes higher than in the conventional case. Therefore, even if the condensation pressure in the condenser 10a increases, the saturation concentration of the concentrated solution 9a will be lower than in the conventional example, so even if the temperature of the heating source 8 supplied to the group of tubes 23a of the regenerator 7a is low, the refrigerant can be played.

一方、隔壁20の右側では冷水2の低温側の蒸発器1b
と温水4の高温側の吸収器3bが1組となって蒸発、吸
収するから、稀溶液5bはその濃度が高くなシ、ポンプ
6bを介して再生器7bへ送られる。再生器7bに対応
する凝縮器10bに内蔵されたチューブ24b群内を流
れる温水4の温度が凝縮器10a側よシ低温であるから
凝縮圧力は低下し、再生器7b内のチューブ23b群内
に流入する加熱源8の温度レベルは再生器7 a Mu
と同程度で十分に加熱・濃縮される。
On the other hand, on the right side of the partition wall 20, the evaporator 1b on the low temperature side of the cold water 2
Since the absorbers 3b on the high temperature side of the hot water 4 work together to evaporate and absorb the dilute solution 5b, the dilute solution 5b, which has a high concentration, is sent to the regenerator 7b via the pump 6b. Since the temperature of hot water 4 flowing through the group of tubes 24b built in the condenser 10b corresponding to the regenerator 7b is lower than that on the condenser 10a side, the condensation pressure decreases, and the temperature of the hot water 4 flowing through the group of tubes 24b built in the condenser 10b corresponding to the regenerator 7b decreases. The temperature level of the heating source 8 flowing into the regenerator 7 a Mu
It can be sufficiently heated and concentrated at the same level.

上述した吸収溶液サイクルを第4図に示すデュIJング
線図について説明するに、42口はそれぞれ蒸発器1a
、lbの蒸発温度、ハ、二はそれぞれ凝縮器10b、1
0aの凝縮温度、a、bはそれぞれ吸収器3a、3bの
吸収液温度、Cは再生器7a、7bの吸収液出口温度を
示す。その吸収液の濃度は矢印Eの方向に行くにしたが
って高くなる。
To explain the above-mentioned absorbing solution cycle with respect to the DJ diagram shown in FIG.
, lb are the evaporation temperatures, C and 2 are the condensers 10b and 1, respectively.
0a is the condensation temperature, a and b are the absorption liquid temperatures of the absorbers 3a and 3b, respectively, and C is the absorption liquid outlet temperature of the regenerators 7a and 7b. The concentration of the absorption liquid increases in the direction of arrow E.

吸収器3aの稀溶液5aは蒸発温度イ、吸収液温度aか
らA点で示され、また吸収器3bの稀溶液5bは同様に
C点で示される。これにより前者の稀溶液5aは後者の
稀溶液5bより一見して大幅に薄くなっていることが理
解される。この薄い稀溶液5aを再生器7aへ送るため
、凝縮器10aの温水温度が高温となって凝縮温度がノ
・になったとしても、濃溶液9aの温度はB点に対する
C点にとソまる。したがって再生器7aに内蔵されたチ
ューブ23a群へ供給される加熱源8は、濃溶液9aの
温度よυ数度高温のdであれば、溶液を十分に加熱・濃
縮できることが判る。
The dilute solution 5a in the absorber 3a is indicated by point A from the evaporation temperature a and the absorption liquid temperature a, and the dilute solution 5b in the absorber 3b is similarly indicated by point C. It can be understood from this that the former dilute solution 5a is apparently much thinner than the latter dilute solution 5b. In order to send this thin dilute solution 5a to the regenerator 7a, even if the temperature of the hot water in the condenser 10a becomes high and the condensation temperature becomes -, the temperature of the concentrated solution 9a remains at point C relative to point B. . Therefore, it can be seen that the solution can be sufficiently heated and concentrated if the heating source 8 supplied to the group of tubes 23a built in the regenerator 7a is a few degrees higher than the temperature of the concentrated solution 9a.

一方、吸収器3bの稀溶液5bを示すC点は、吸収器3
aの稀溶液5aを示すA点より濃度が旨くなっているこ
とが判る。この高濃度の稀溶液5bを再生器7bへ送る
ため、凝縮器10bのチューブ24b群を流れる温水温
度は凝縮器10a側よシ低くなるから、凝縮器10bの
凝縮温度は二となる。このため濃溶液9bの温度はD点
に対するC点にとソまるから、加熱源8は再生器9a側
の加熱源と同温度のdで十分であることが判る。
On the other hand, point C indicating the dilute solution 5b in the absorber 3b is
It can be seen that the concentration is better than point A, which indicates the dilute solution 5a of a. In order to send this highly concentrated dilute solution 5b to the regenerator 7b, the temperature of the hot water flowing through the group of tubes 24b of the condenser 10b becomes lower on the condenser 10a side, so the condensation temperature of the condenser 10b becomes 2. For this reason, the temperature of the concentrated solution 9b becomes equal to point C relative to point D, so it is understood that it is sufficient for the heating source 8 to have the same temperature d as that of the heating source on the regenerator 9a side.

また、吸収器3aと再生器7aおよび吸収器3bと再生
器7bで形成する吸収溶液サイクルの濃度幅を小さく、
すると、A点とB点およびC点とD点が接近することに
なり、C点の濃度は低下するからよシ一層高い温水温度
まで扱えることが判る。
In addition, the concentration width of the absorption solution cycle formed by the absorber 3a and the regenerator 7a and the absorber 3b and the regenerator 7b is reduced,
Then, points A and B and points C and D will approach each other, and the concentration at point C will decrease, so it can be seen that even higher hot water temperatures can be handled.

第5図に示す第2実施例は、冷水2を矢印に示すように
蒸発器1bに内蔵されたチューブ22b群に導入させた
後、蒸発器1aに内蔵されたチューブ22a群に導入さ
せるようにした点が第3図に示す第1実施例と異なシ、
その他の構造は同一であるから説明を省略する。このよ
う万策2実施例は冷水2の入口温度が高温で、かつ流@
が少ない場合に好適である。また温水4の温度できまる
溶液6H[に対し、吸収器3a、3bの溶液濃度の関係
が最適となるように、チューブ21a、21b群と温水
流量を設定すると、全体の溶液濃度は低下するため、加
熱源8の温度を低下させることができる利点がある。
In the second embodiment shown in FIG. 5, cold water 2 is introduced into a group of tubes 22b built in the evaporator 1b as shown by the arrow, and then introduced into a group of tubes 22a built in the evaporator 1a. This is different from the first embodiment shown in FIG.
Since the other structures are the same, their explanation will be omitted. In this example, the inlet temperature of the cold water 2 is high and the flow @
It is suitable when there is little. In addition, if the tubes 21a and 21b groups and the hot water flow rate are set so that the relationship between the solution concentrations in the absorbers 3a and 3b is optimal for the solution 6H determined by the temperature of the hot water 4, the overall solution concentration will decrease. , there is an advantage that the temperature of the heating source 8 can be lowered.

第6図に示す第3実施例は、第3図に示す第1実施例の
蒸発器1a、lb間の隔壁20を排除して一つの蒸発器
1に形成した点が第1実施例と異なシ、その他の構造は
第1実施例と同一であるから説明を省略する。このよう
な第3夾施例は冷水した場合について説明したが、これ
に限定されることなく、n分割した場合にも同様な効果
をうろことはもちろんである。
The third embodiment shown in FIG. 6 differs from the first embodiment in that the partition wall 20 between the evaporators 1a and 1b of the first embodiment shown in FIG. 3 is removed and a single evaporator 1 is formed. Since the other structures are the same as those of the first embodiment, their explanation will be omitted. Although the third embodiment has been described with reference to the case where cold water is used, the invention is not limited to this, and it goes without saying that the same effect can be obtained when the water is divided into n parts.

以上説明したように本発明によれば、冷却水(温水)の
温度幅すなわち第1吸収器入口と第n凝縮器の出口との
温度差が大きいほど顕著な効果を発揮させることができ
る。また冷水(低温熱源水)の温度幅が大きいときには
、高IM側の蒸発器と低温側の吸収器とを組合せること
により、溶液濃度をさらに低下させることができる。さ
らに温水の温度幅が太きいときには、各機器を多段に分
割することにより、温水温度をより一層に高温nで昇温
させ、省エネルギ効果の向上をはかることができる。
As explained above, according to the present invention, the larger the temperature range of the cooling water (hot water), that is, the temperature difference between the inlet of the first absorber and the outlet of the n-th condenser, the more remarkable the effect can be exhibited. Furthermore, when the temperature range of cold water (low-temperature heat source water) is wide, the solution concentration can be further reduced by combining an evaporator on the high IM side and an absorber on the low temperature side. Furthermore, when the temperature range of the hot water is wide, by dividing each device into multiple stages, the hot water temperature can be raised to an even higher temperature n, and the energy saving effect can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来のヒートポンプ式吸収冷温水
機の系統図およびデユーリング線図、第3図、第5図お
よび第6図は本発明のヒートポンプ式吸収冷温水機の実
施例を示す系統図、第4図は第3図の吸収溶液サイクル
のデユーリング線図である。 la、1b°”第1.第2蒸発器、2・・・冷水、3a
。 3b・・・第1.第2吸収器、4・・・冷却水、7a。 7 b ・・・第1.第2再生器、10a、1Ob−第
1゜扁 1  図 ′¥3 z 図 1汚 第4図 軍 5 図 n
Figures 1 and 2 show a system diagram and Dueling diagram of a conventional heat pump type absorption chiller/heater, and Figures 3, 5, and 6 show an embodiment of the heat pump type absorption chiller/heater of the present invention. The system diagram, FIG. 4, is a Düring diagram of the absorption solution cycle of FIG. la, 1b°" 1st. 2nd evaporator, 2...cold water, 3a
. 3b... 1st. Second absorber, 4...Cooling water, 7a. 7 b... 1st. 2nd regenerator, 10a, 1Ob - 1st degree flat 1 Figure '¥3 z Figure 1 dirty Figure 4 army 5 Figure n

Claims (1)

【特許請求の範囲】 1、蒸発器、吸収器、再生器、凝縮器、熱交換器および
ポンプを作動的に連結してなり、蒸発器に通水する冷水
を低温熱源とし、吸収器と凝縮器に通水する冷却水を温
水とし、熱を外部へ取出すようにしたヒートポンプ式吸
収冷温機において、前記蒸発器、吸収器、再生器および
凝縮器をそれぞれ隔壁を介して少なくとも2分割し、こ
れらの分割された各機器を組合せて独立した吸収溶液サ
イクルを少なくとも2個構成させ、前記冷水を温度の高
い方から第1蒸発器。 第2蒸発器の順序に通水し、前記冷却水を温度の低い方
から第1吸収器、第2吸収器の順序に通水した後に、第
2凝縮器を経て第1凝縮器から最も加熱された冷却水を
流出するように構成したことを特徴とするヒートポンプ
式吸収冷温機。 2、低温熱源の冷水を、最高温度の冷却水を通   i
水する吸収器に対応する蒸発器に流通し、最低温度の冷
却水を通水する吸収器に対応する蒸発器から最低温度の
冷水を流出させるように構成したことを特徴とする特許
請求の範囲第1項記載のヒートポンプ式吸収冷温水機。 3、前記蒸発器の隔壁を除去して第1蒸発器と第2蒸発
器を一つの蒸発器に構成したことを特徴とする特許請求
の範囲第1項または第2項記載のヒートポンプ式吸収冷
温水機。 4、同一区分の蒸発器に複数の温度段階にある冷水を通
水し、蒸発圧力が、その区間の吸収液濃度と、冷却水温
度に対して最も望ましい関係となるように構成したこと
を特徴とする特許請求の範囲第1項ないし第3項のうち
の任意の一項記載のヒートポンプ式吸収冷温水機。
[Claims] 1. An evaporator, an absorber, a regenerator, a condenser, a heat exchanger, and a pump are operatively connected, and the cold water flowing through the evaporator is used as a low-temperature heat source, and the absorber and condenser are connected together. In a heat pump type absorption chiller/heater in which the cooling water flowing through the vessel is hot water and the heat is extracted to the outside, the evaporator, absorber, regenerator, and condenser are each divided into at least two parts via a partition, and these The divided devices are combined to form at least two independent absorption solution cycles, and the cold water is transferred from the one with the highest temperature to the first evaporator. The cooling water is passed through the second evaporator in order, and the cooling water is passed in order from the lowest temperature to the first absorber and then the second absorber, and then passes through the second condenser and starts from the first condenser to the highest temperature. A heat pump type absorption chiller/heater characterized by being configured so that the cooled water flows out. 2. Pass the cold water from the low temperature heat source through the highest temperature cooling water i
Claims characterized in that the cold water at the lowest temperature is configured to flow into the evaporator corresponding to the absorber through which the cold water flows and the lowest temperature cold water flows out from the evaporator corresponding to the absorber through which the lowest temperature cooling water flows. The heat pump type absorption chiller/heater according to item 1. 3. The heat pump absorption cooling system according to claim 1 or 2, wherein the first evaporator and the second evaporator are configured as one evaporator by removing the partition wall of the evaporator. Water machine. 4. Cold water at multiple temperature levels is passed through the evaporators in the same section, and the evaporation pressure is configured to have the most desirable relationship with the absorption liquid concentration in that section and the cooling water temperature. A heat pump type absorption chiller/heater according to any one of claims 1 to 3.
JP15960582A 1982-09-16 1982-09-16 Heat pump type absorption cold and hot water machine Pending JPS5949465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15960582A JPS5949465A (en) 1982-09-16 1982-09-16 Heat pump type absorption cold and hot water machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15960582A JPS5949465A (en) 1982-09-16 1982-09-16 Heat pump type absorption cold and hot water machine

Publications (1)

Publication Number Publication Date
JPS5949465A true JPS5949465A (en) 1984-03-22

Family

ID=15697357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15960582A Pending JPS5949465A (en) 1982-09-16 1982-09-16 Heat pump type absorption cold and hot water machine

Country Status (1)

Country Link
JP (1) JPS5949465A (en)

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
US3831397A (en) Multi-stage absorption refrigeration system
JPS61110852A (en) Absorption heat pump/refrigeration system
JPH0219385B2 (en)
US4553409A (en) Multiple regeneration multiple absorption type heat pump
JPS61110853A (en) Absorption heat pump/refrigeration system
JP2000171119A (en) Triple-effect absorption refrigerating machine
JPS5949465A (en) Heat pump type absorption cold and hot water machine
JP2000154946A (en) Triple effect absorption refrigeration machine
JPS58219371A (en) Double effect absorption type heat pump
JPH07198222A (en) Heat pump including reverse rectifying part
SU879202A1 (en) Bromium-litium absorption unit for producing heat and refrigeration
JP2018096673A (en) Absorption type heat exchanging system
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JPS6122225B2 (en)
JPH05256535A (en) Sorption heat pump system
JPH0354377Y2 (en)
JPH0350373Y2 (en)
JPH0783530A (en) Water and lithium bromide absorption refrigerator
JPS6113148B2 (en)
JPS6148064B2 (en)
JPH0198863A (en) Absorption refrigerator
JP2000018753A (en) Absorption refrigerating machine
JPS5913666B2 (en) heat pump system
JPS59225266A (en) Multiple effect multistage absorption heat pump