JPS594876A - Controller for combustion of burner in cereal drier - Google Patents

Controller for combustion of burner in cereal drier

Info

Publication number
JPS594876A
JPS594876A JP11081882A JP11081882A JPS594876A JP S594876 A JPS594876 A JP S594876A JP 11081882 A JP11081882 A JP 11081882A JP 11081882 A JP11081882 A JP 11081882A JP S594876 A JPS594876 A JP S594876A
Authority
JP
Japan
Prior art keywords
grain
amount
drying
burner
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11081882A
Other languages
Japanese (ja)
Inventor
俊彦 立花
小条 「あ」二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP11081882A priority Critical patent/JPS594876A/en
Publication of JPS594876A publication Critical patent/JPS594876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 従来の穀粒乾燥機では穀粒の量に応じてバーナの熱風温
度を適宜設定しているため外気湿度の違いによる熱風の
除水能力の差、穀物の種類品質による乾燥し易いかどろ
かの差が加味されず、乾燥速度のバラツキが大きく乾燥
に長時間かかっだシ乾燥が速すぎて胴割れを起すことが
あった。
[Detailed description of the invention] In conventional grain dryers, the hot air temperature of the burner is set appropriately depending on the amount of grain, so there is a difference in the water removal ability of the hot air due to differences in outside air humidity, and there is a difference depending on the type and quality of grain. Differences in whether or not it dries easily were not taken into consideration, and the drying speed varied widely, resulting in long drying times and drying being too fast, which sometimes resulted in shell cracking.

この欠点を解消するには穀粒の乾燥速度を一定に保つよ
うにバーナの燃焼を制御する必要がある。
To overcome this drawback, it is necessary to control the combustion of the burner so as to keep the drying rate of the grain constant.

乾燥速度は穀粒の含水率(%)の単位時間当りの減少値
であるから、ある時間の含水率をa。
Since the drying rate is the decrease in the moisture content (%) of the grain per unit time, the moisture content at a certain time is a.

それよ多単位時間後の含水率をbとすると、その時点の
乾燥速度P(57時間)は、p = a −b    
     (1式)いま乾燥速度Pのときに穀粒より蒸
発する水の単位時間当シの重量すなわち除水量Q(Kg
/時間)は、ある時間の穀粒の重量をA(Kg)、それ
よ多単位時間後の穀粒の重量をB(Kg)とすると、 Q=A−B(2式) ところで水分を除いた穀粒個有の重量は乾燥前後で変シ
ないから次式が成立つ。
If the moisture content after many units of time is b, then the drying rate P (57 hours) at that point is p = a - b
(Equation 1) When the drying speed is P, the weight of water evaporated from the grain per unit time, that is, the amount of water removed Q (Kg
/time), if the weight of the grain at a certain time is A (Kg), and the weight of the grain after many units of time is B (Kg), then Q=A-B (equation 2) By the way, excluding water Since the weight of each grain does not change before and after drying, the following formula holds.

(1式)と(3式)よりbおよびBを求めて(2式)に
代入すると、 となる。
If b and B are determined from (Formula 1) and (Formula 3) and substituted into (Formula 2), the following is obtained.

一般に籾や麦の適正な乾燥速度Pは0.6から1.2(
57時間)までの範囲内であるが、仮シにP=0.8で
一定として1000Kgの穀粒全体から毎時間蒸発する
除水量Qを(4式)から求めると、A= 1000Kg
だから a=25(%)のときは、Q=11(Kg/時間)a=
20(%)のときは、Q=10(Kg/時間)a = 
15(%)のときは、Q = 9.3 (Kg/時間)
となる。この含水率aと除水量Qの関係をプロットする
と第4図のグラフになる。
Generally, the appropriate drying rate P for paddy and wheat is 0.6 to 1.2 (
57 hours), but if we assume that P = 0.8 and keep it constant, the amount of water removed Q that evaporates every hour from the entire 1000 kg grain is determined from (Equation 4), A = 1000 kg.
Therefore, when a=25 (%), Q=11 (Kg/hour) a=
When 20 (%), Q = 10 (Kg/hour) a =
When it is 15 (%), Q = 9.3 (Kg/hour)
becomes. When the relationship between the moisture content a and the amount of water removed Q is plotted, the graph shown in FIG. 4 is obtained.

このように乾燥速度Pをある一定の値に決めると、除水
量Qは含水率aと穀粒の重量Aから(4式)の計算によ
シ求まる。
When the drying rate P is set to a certain value in this way, the amount of water removed Q can be determined from the moisture content a and the weight A of the grains by calculating (Equation 4).

従って乾燥中の穀粒の含水率aと重量Aを測定し、その
測定値にもとづいて最適な乾燥速度Pになるような除水
量Qを逐次計算で求め、ヤの除水量Qと実際の除水量q
が一致するようにバーナの燃焼を制御すれば、乾燥速度
Pを終始一定の最適値に保持することができる。
Therefore, the moisture content a and weight A of the grains being dried are measured, and based on the measured values, the amount of water removed Q that will give the optimum drying speed P is calculated sequentially. Water amount q
By controlling the combustion of the burner so that the values match, the drying rate P can be maintained at a constant optimum value from beginning to end.

もっとも穀粒の重量Aは乾燥前後で極端には減らないの
で、あらかじめ適当な一定の値に重量Aを設定し、その
一定の値の重量Aと含水率aの測定値にもとづいて除水
tQを計算してもよい。
However, the weight A of the grains does not decrease significantly before and after drying, so the weight A is set to an appropriate constant value in advance, and water removal tQ is performed based on the weight A at that constant value and the measured value of the moisture content a. may be calculated.

あるいは第4図のグラフから明らかなとおシ、除水量Q
をQ=10(Kg/時間)の一定値で初めから終シまで
乾燥しても乾燥速度Pはほぼ0.8(57時間)で一定
で、一般には含水率aが違っても除水量Qは実用上無視
できる程度の微差しか変動しないから、実用的にはあら
かじめ除水量Qの値を一定に設定しておいてもよい。
Or, as is clear from the graph in Figure 4, the amount of water removed Q
Even when drying from the beginning to the end with a constant value of Q = 10 (Kg/hour), the drying rate P remains constant at approximately 0.8 (57 hours), and in general, even if the moisture content a varies, the amount of water removed Q Since this changes only by a slight difference that can be ignored in practical terms, it is practical to set the value of the water removal amount Q to a constant value in advance.

いづれにせよ最適な乾燥速度Pになるような除水量Qを
計算で求め、これに実際の除水量qが一致するようにバ
ーナの燃焼を制御すれば乾燥速度を終始最適値に保持す
ると七ができ穀粒の胴割れも生じない。
In any case, if we calculate the amount of water removed Q that will give the optimum drying rate P, and then control the combustion of the burner so that the actual amount of water removed q matches this, the drying rate can be maintained at the optimum value from beginning to end. No cracking of the finished grain occurs.

本発明はこの知見にもとづいて、計算により求めた除水
iQに実測した除水量qを一致させることにより乾燥速
度Pを一定にすることを目的とする。
Based on this knowledge, the present invention aims to make the drying rate P constant by matching the calculated water removal iQ with the actually measured water removal amount q.

本発明の実施例を図面にもとづいて説明すると、1は乾
燥機の貯留室でその底部中央に断面が逆V字形の山形板
2を設け、その左右に対向して誘導斜板3,3を設置す
る。山形板20両側縁と誘導斜板3,3の下縁にそれぞ
れ多孔板4を接続し、その相対する2枚1組の多孔板4
により乾燥室5,5を形成する。
An embodiment of the present invention will be described based on the drawings. Reference numeral 1 denotes a storage chamber of a dryer. A chevron-shaped plate 2 having an inverted V-shaped cross section is provided at the center of the bottom of the storage chamber 1. Direction swash plates 3, 3 are arranged opposite to each other on the left and right sides of the chevron-shaped plate 2. Install. Perforated plates 4 are connected to both side edges of the chevron plate 20 and the lower edges of the guiding swash plates 3, 3, respectively, and a set of two opposing perforated plates 4 are connected to each other.
drying chambers 5, 5 are formed.

乾燥室5,5の下端の排出口はロータリパルプ6を介し
樋状の流穀室7にのぞませ、その中央の凹溝に横架する
送殻ラセン8の送出端を昇穀機9の下部取入口に接続す
る。
The discharge ports at the lower ends of the drying chambers 5 and 5 are exposed through the rotary pulp 6 into a gutter-like grain flow chamber 7, and the delivery end of the shell helix 8 suspended horizontally in the groove in the center is connected to the grain raising machine 9. Connect to the bottom intake.

昇穀機9の上部には給穀ラセン1oを接続し、その終端
を貯留室1の天井板中央に吊シ下げる拡散板11の上方
に開口する。
A grain feeding helix 1o is connected to the upper part of the grain elevating machine 9, and its terminal end is opened above a diffusion plate 11 suspended from the center of the ceiling plate of the storage chamber 1.

そして乾燥機の正面と背面に相対してバーナ12と吸引
ファン13を取付け、バーナ12を左右の乾燥室5,5
の内側の熱風室14にのぞませると共に、ファン13を
乾燥室5,5の外側と乾燥機の外壁によシ囲まれた排風
室15に接続する。16は熱風室14のバーナ12と反
対側を閉鎖する遮板である。
Then, a burner 12 and a suction fan 13 are installed opposite to each other on the front and back sides of the dryer, and the burner 12 is connected to the left and right drying chambers 5 and 5.
The fan 13 is connected to the outside of the drying chambers 5, 5 and to the exhaust chamber 15 surrounded by the outer wall of the dryer. 16 is a shield plate that closes off the side of the hot air chamber 14 opposite to the burner 12.

穀粒は昇穀機9と給穀ラセンlOを経て拡散板11によ
り貯留室1内に平均に張込まれ、乾燥室5を流下する。
The grains are spread evenly into the storage chamber 1 by the diffusion plate 11 through the grain raising machine 9 and the grain feeding helix 10, and flow down the drying chamber 5.

その際バーナ12の熱風が中央の熱風室14から左右の
乾燥室5に進入し流下中の穀粒を乾燥して湿気を含んだ
排風が排風室15を経て7アン13によシ機外に排気す
る。
At this time, the hot air from the burner 12 enters the left and right drying chambers 5 from the central hot air chamber 14, dries the grains flowing down, and the exhausted air containing moisture passes through the exhaust chamber 15 and is sent to the 7-an 13. Exhaust outside.

乾燥後の穀粒はロータリバルブ6の回転によシ流穀室7
に落ち、送穀ラセン8と昇穀機9により再び貯留室1に
戻る。
After drying, the grains flow into the grain chamber 7 through the rotation of the rotary valve 6.
The grain is returned to the storage chamber 1 by the grain feeding helix 8 and the grain raising machine 9.

しかして穀粒から蒸発した水は全て排風に含まれるから
、実際の除水量qは熱風と排風の絶対湿度の差と単位時
間中に乾燥室5を通過する風量F(Kg)の積に等しい
。絶対湿度は空気IKg当りに含まれる水のグラム数で
あるから、これをキログラム数に換算すると次式が成り
立つ。
Since all of the water evaporated from the grains is included in the exhaust air, the actual amount of water removed q is the product of the difference in absolute humidity between the hot air and the exhaust air and the air volume F (Kg) that passes through the drying chamber 5 during unit time. be equivalent to. Absolute humidity is the number of grams of water contained per kilogram of air, so when this is converted into kilograms, the following formula holds true.

q=(排風の絶対湿度−熱風の絶対湿度)x O,00
1x F (Kg/時間)   (5式)熱風と排風の
絶対湿度差は両者の温度差に比例するからその比率をe
とすると となる。
q = (absolute humidity of exhaust air - absolute humidity of hot air) x O, 00
1x F (Kg/hour) (Formula 5) The absolute humidity difference between hot air and exhaust air is proportional to the temperature difference between the two, so the ratio is e.
Then, it becomes .

そこで乾燥機を実際に運転するとき、通常の熱風温度は
40°Cから50°Cの間であり、いま仮りに熱風の絶
対湿度が4乃至8(g7Kg)で、排風温度が27°C
乃至296Cだとすると、第5図の湿シ空気線図に破線
で示すようにそのときの排風温度における絶対湿度は表
1のとおシにそれぞれ求まる。
Therefore, when actually operating the dryer, the normal hot air temperature is between 40°C and 50°C, and now assume that the absolute humidity of the hot air is 4 to 8 (g7Kg) and the exhaust air temperature is 27°C.
If the temperature is between 296C and 296C, the absolute humidity at the exhaust air temperature at that time is determined as shown in Table 1, as shown by the broken line in the humidity diagram in FIG.

表  1 これよりその範囲内でeの値は0.42であることが判
明する。
Table 1 From this, it turns out that the value of e within that range is 0.42.

従って(5式)と(6式)から q=(熱JtoFm度−排風の温度I X 0.42m
XF(7式) と々る。ここでmは乾燥機と穀粒の温度上昇等によシ失
う分を差し引いた効率で乾燥機の機種や仕様および穀粒
の種類品質などによシ決まる一定の補償係数である。
Therefore, from (Equation 5) and (Equation 6), q = (Heat JtoFm degrees - Exhaust air temperature I X 0.42m
XF (Type 7) Totoru. Here, m is the efficiency obtained by subtracting the amount lost due to temperature rise between the dryer and the grain, and is a constant compensation coefficient determined by the model and specifications of the dryer, the type and quality of the grain, etc.

しかして本発明では乾燥機の熱風室14と排風室15の
内部に温度センサSa、Sbをそれぞれ取付けると共に
、熱風室14内にダーイヤフラム圧力計のような圧力セ
ンサ17を設置し、これらのセンサSa  、  Sb
および17を、(7式)に従って実際の除水44.qを
算出する演算回路Eに接続する。
Therefore, in the present invention, temperature sensors Sa and Sb are installed inside the hot air chamber 14 and exhaust air chamber 15 of the dryer, respectively, and a pressure sensor 17 such as a diaphragm pressure gauge is installed inside the hot air chamber 14. Sa, Sb
and 17, and the actual water removal 44. according to (7). Connect to the arithmetic circuit E that calculates q.

ここで熱風室14の気圧の絶対値K(mmHg)と乾燥
室5を通過する風量F(Kg)は、第5図のとおシはぼ
比例し、圧力センサ17は気圧の絶対値Kを風量Fに換
算しこれを電圧に変換して出力する。
Here, the absolute value K (mmHg) of the atmospheric pressure in the hot air chamber 14 and the air volume F (Kg) passing through the drying chamber 5 are approximately proportional to the same as shown in FIG. This is converted into F and then converted into voltage and output.

圧力センサ17の代シに、第6図に示すような刊風室1
5の天井から回動自在に垂下する抵抗板18に風を吹き
付けて傾け、その傾斜角よシ風量Fを検知する装置を用
いてもよい。
In place of the pressure sensor 17, a magazine chamber 1 as shown in FIG.
It is also possible to use a device that blows wind onto the resistance plate 18 rotatably hanging down from the ceiling of No. 5, tilts it, and detects the angle of inclination and the amount of air F.

一般に乾燥初期は穀粒の通風抵抗が小さく風−縞、Fは
大きいが、乾燥が進むに従い穀粒が萎縮して通風抵抗が
増大し風量Fは減少する。
Generally, in the early stage of drying, the grain has low ventilation resistance and the wind-stripes, F is large, but as drying progresses, the grain shrinks, the ventilation resistance increases, and the air flow rate F decreases.

通常の場合、乾燥末期には乾燥初期の風量のIO乃至1
5%減になる。また乾燥すべき穀粒の品種によっても風
量Fは異なる。
Normally, at the end of the drying period, the air volume at the beginning of the drying is IO or 1
It will be reduced by 5%. The air volume F also differs depending on the variety of grains to be dried.

このように種々の条件で変化する風量Fの実際の値を圧
力センサ17によυ測定し、その出力を温度センサj9
a 、 Sbの出力と共に演算回路Eに入力し、(−7
式)に従って除水量。
The actual value of the airflow F, which changes under various conditions, is measured by the pressure sensor 17, and its output is sent to the temperature sensor j9.
a, is input to the arithmetic circuit E together with the output of Sb, and (-7
Water removal amount according to formula).

qの実測値を算出する。Calculate the actual value of q.

一方、乾燥機底部の支脚19に、重量を電気量に変換す
る抵抗線ひずみ計のようなセンサを内蔵し、とのセンサ
の信号を受信して乾燥機内の穀粒の重fi:A(Kg)
に比例した電圧を出力する穀粒量測定回路Wを設ける。
On the other hand, the support leg 19 at the bottom of the dryer has a built-in sensor such as a resistance wire strain meter that converts weight into electrical quantity, and receives the sensor signal to determine the weight of grain in the dryer fi: A (Kg )
A grain amount measuring circuit W that outputs a voltage proportional to is provided.

そして貯粒宰1に取付けた公知の含水率計Wと穀粒量測
定回路Wを基準除水量計算回路NK接続し、この回路N
により除水量Qを(4式)に従って引算する。
Then, the well-known moisture content meter W attached to the grain storage device 1 and the grain amount measuring circuit W are connected to the reference water removal amount calculation circuit NK, and this circuit N
The amount of water removed Q is subtracted according to equation (4).

次に回路Nと回路Eの出力側を比較器Cに接続し、さら
にその出力側をバーナ12の燃料バルブVに接続する。
Next, the output sides of the circuits N and E are connected to a comparator C, and the output sides thereof are further connected to the fuel valve V of the burner 12.

そして実際の除水量qを基準となるべき計算上の除水量
Qと比較し、qがQよシ大きい場合にはパルプVを絞シ
、逆に小さい場合はバルブ■を開はバーナ12の燃焼を
自動的に制御する。
Then, the actual amount of water removed q is compared with the calculated amount of water removed Q that should be the standard. If q is larger than Q, the pulp V is squeezed, and if it is smaller, the valve ■ is opened and the burner 12 is combusted. control automatically.

なお前述したように穀粒の重量Aを測定することなく、
あらかじめ適当な一定の値に設定し、その一定の値の重
量Aと含水率aの測定値にもとづいて除水量、Qを計算
する場合には、穀粒量測定回路Wの代シに可変抵抗によ
り重量Aを設定する穀粒量設定回路を接続する。
As mentioned above, without measuring the weight A of the grains,
When calculating the amount of water removed, Q, based on the measured values of weight A and moisture content a, which are set to an appropriate constant value in advance, a variable resistor is used in place of the grain amount measuring circuit W. A grain amount setting circuit for setting the weight A is connected.

まだ除水量Qを穀粒の含水率aや重量Aの測定値から計
算するのではなく、設定しておく場合には、穀粒量測定
回路Wおよび含水率計Gを廃止し、基準除水量計算回路
Nの代シに可変抵抗により除水量Qを設定する基準除水
量設定回路を接続すればよい。
If you still want to set the water removal amount Q instead of calculating it from the measured values of grain moisture content a and weight A, discontinue the grain amount measurement circuit W and moisture content meter G and use the standard water removal amount. In place of the calculation circuit N, a reference water removal amount setting circuit for setting the water removal amount Q using a variable resistor may be connected.

これを要するに本発明においては、乾燥機内を吹く熱風
と排風の温度のみならず、その風量F(Kg)を圧力上
ンサ17や抵抗板18のような風量測定装置によシ実測
し、その測定値より実際の除水−J&qを算出するので
、乾燥の進行程度が初期か末期かあるいは穀粒の品種や
夾雑物の混入率などによ多風量Fが変動してもそれに応
じてその時々の実際の除水量qを正しく算出でき、これ
と別途穀粒量や含水率から計算によシ求めた除水量Qが
いつも一致するように燃焼制御することにより、常に一
定の最適な乾燥速度で安定して乾燥することができ、胴
割れもなく品質良好な穀粒に乾燥できるという効果を生
ずる。
In short, in the present invention, not only the temperature of the hot air and exhaust air blowing inside the dryer, but also the air volume F (Kg) is actually measured using an air volume measuring device such as a pressure sensor 17 or a resistance plate 18. Since the actual water removal - J&Q is calculated from the measured value, even if the high air volume F changes depending on whether the degree of drying is early or late, the type of grain, the rate of contamination, etc. By controlling the combustion so that the actual amount of water removed q can be calculated correctly, and the amount of water removed Q calculated separately from the grain amount and moisture content always matches, the drying rate is always kept at a constant and optimal drying rate. It has the effect of being able to dry stably and producing grains of good quality without shell cracking.

また本発明では実際の除水量qを熱風と排風の絶対湿度
差からではなく温度差から求めるので、高価な湿度計は
必要なく安価な温度センサにより高精度の計測ができる
という効果も奏する。
Furthermore, in the present invention, the actual amount of water removed q is determined from the temperature difference rather than the absolute humidity difference between the hot air and the exhaust air, so an expensive hygrometer is not necessary and high-precision measurement can be performed using an inexpensive temperature sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施しだ穀゛粒乾燥機の縦断正面図、
第2図はその横断平面図、第3図はその制御系統のブロ
ック図、第4図は1000Kgの穀粒を乾燥速度P =
 0.8 (37時間)一定で乾燥した場合の除水量Q
と含水率との関係を示すグラフ、第5図は乾燥室を通過
する風量F(Kg)と熱風室の気圧K(mmHg)との
関係を示すグラフ、第6図は風景測定装置の別の実施例
の断面図、第7図は湿シ空気線図で熱風と排風の温度と
絶対湿度の関係を破線で示す。 代理人  牧   哲 部(はか2名)弔2図
FIG. 1 is a longitudinal sectional front view of a grain dryer embodying the present invention;
Figure 2 is a cross-sectional plan view, Figure 3 is a block diagram of its control system, and Figure 4 is the drying speed P = 1000 kg of grain.
0.8 (37 hours) Water removal amount Q when drying constant
Figure 5 is a graph showing the relationship between the air flow rate F (Kg) passing through the drying chamber and the air pressure K (mmHg) in the hot air chamber, and Figure 6 is a graph showing the relationship between The cross-sectional view of the embodiment, FIG. 7, is a humidity diagram showing the relationship between the temperature of hot air and exhaust air and the absolute humidity with broken lines. Agent: Tetsu Maki (2 people) Funeral map 2

Claims (1)

【特許請求の範囲】[Claims] 乾燥すべき穀物量に応じて算出した除水量Qと、乾燥機
の熱風と排風の温度差およびその風量から計測した除水
量qを比較し両者を一致するようにバーナを燃焼させて
乾燥速度を一定に保つことを特徴とする穀粒乾燥機にお
けるバーナの・、燃焼制御装置。
The amount of water removed, Q, calculated according to the amount of grain to be dried, is compared with the amount of water removed, q, measured from the temperature difference between the hot air and exhaust air of the dryer and the air volume, and the drying speed is determined by burning the burner so that both agree. A combustion control device for a burner in a grain dryer, which is characterized by keeping the temperature constant.
JP11081882A 1982-06-29 1982-06-29 Controller for combustion of burner in cereal drier Pending JPS594876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081882A JPS594876A (en) 1982-06-29 1982-06-29 Controller for combustion of burner in cereal drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081882A JPS594876A (en) 1982-06-29 1982-06-29 Controller for combustion of burner in cereal drier

Publications (1)

Publication Number Publication Date
JPS594876A true JPS594876A (en) 1984-01-11

Family

ID=14545431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081882A Pending JPS594876A (en) 1982-06-29 1982-06-29 Controller for combustion of burner in cereal drier

Country Status (1)

Country Link
JP (1) JPS594876A (en)

Similar Documents

Publication Publication Date Title
JPS594876A (en) Controller for combustion of burner in cereal drier
JPS594878A (en) Controller for combustion of burner in cereal drier
JPS59119174A (en) Controller for combustion of burner in cereal grain drier
JPS591981A (en) Controller for combustion of burner in cereal drier
JPS5963479A (en) Controller for hot air of burner in cereal drier
JPS58214776A (en) Controller for combustion of burner in cereal drier
JPH0472152B2 (en)
JPS594877A (en) Controller for combustion of burner in cereal drier
JPS5969684A (en) Controller for hot air of burner in cereal drier
JPS5974486A (en) Controller for hot air of burner in cereal drier
JPS6333073B2 (en)
JPS5960173A (en) Controller for hot air of burner in cereal grain drier
JPS59125377A (en) Controller for hot air of burner in cereal grain drier
JPS5971976A (en) Controller for hot air of burner in cereal drier
JPS588980A (en) Method of controlling drying of circulation type cereal drier
JPH0536713B2 (en)
JPH0672743B2 (en) Combustion pause device in grain dryer
JPS63306387A (en) Drying air-quantity controller for cereal drier
JPS6218219B2 (en)
JPS63194181A (en) Drying controller for cereal drier
JPS62268983A (en) Drying controller for cereal grain drier
JPS5820871Y2 (en) Hot air temperature setting device in dryer
JPS63290387A (en) Hot-air temperature detector for cereal drier
JPS63263382A (en) Drying controller for cereal drier
JPS6373083A (en) Drying controller for cereal grain drier