JPS5974486A - Controller for hot air of burner in cereal drier - Google Patents

Controller for hot air of burner in cereal drier

Info

Publication number
JPS5974486A
JPS5974486A JP18634582A JP18634582A JPS5974486A JP S5974486 A JPS5974486 A JP S5974486A JP 18634582 A JP18634582 A JP 18634582A JP 18634582 A JP18634582 A JP 18634582A JP S5974486 A JPS5974486 A JP S5974486A
Authority
JP
Japan
Prior art keywords
hot air
amount
grain
temperature
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18634582A
Other languages
Japanese (ja)
Inventor
俊彦 立花
小条 「れい」二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP18634582A priority Critical patent/JPS5974486A/en
Publication of JPS5974486A publication Critical patent/JPS5974486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 乾燥機によシ穀粒を乾燥する場合、乾燥速度が速すぎる
と穀粒に胴割れを生じ、遅すぎると乾燥が仕上がるまで
に時間がかかって能率が悪いという弊害を生ずる。
[Detailed description of the invention] When drying grains using a dryer, if the drying speed is too fast, the grains will crack, and if the drying speed is too slow, it will take a long time to finish drying, resulting in poor efficiency. will occur.

との弊害を回避するには、終始適当な一定の乾燥速度で
曽、燥し続けることが必要である。
In order to avoid the negative effects of drying, it is necessary to continue drying at an appropriate constant drying rate throughout.

乾燥速度は穀粒の含水率(%)の単位時間当りの減少値
であるから、ある時間の含水率をa。
Since the drying rate is the decrease in the moisture content (%) of the grain per unit time, the moisture content at a certain time is a.

それより単位時間後の含水率をbとすると、その時点の
乾燥速度P(%/時間)は、p = a −b    
     (1式)いま乾燥速度Pのときに穀粒より蒸
発する水の単位時間当シの重量すなわち除水tQ(Kg
/時間)は、ある時間の穀粒の重量をA(Kg)、それ
より単位時間後の穀粒の重晴をB(Kg)  とすると
、 Q=A−B(2式) ところで水分を除いた穀粒個有の重着は乾燥前後で変り
ないから次式が成立つ。
If the moisture content after unit time is b, then the drying rate P (%/hour) at that point is p = a - b
(Equation 1) When the drying speed is P, the weight of water evaporated from the grain per unit time, that is, the water removed tQ (Kg
/hour), if the weight of the grain at a certain time is A (Kg), and the weight of the grain a unit time after that is B (Kg), then Q=A-B (equation 2) By the way, excluding water Since the unique weight of grains does not change before and after drying, the following equation holds.

A−A−=B−B −(3式) (1式)と(3式)よりbおよびBを求めて(2式)に
代入すると、  −一 00 Q = A (1−i )   (4式)となる。
A-A-=B-B - (Equation 3) Calculating b and B from Equation 1 and Equation 3 and substituting them into Equation 2 gives -100 Q = A (1-i) (4 formula).

一般に籾や麦の適正な乾燥速度Pは0.6から1.2(
57時間)までの範囲内であるが、仮)にP = 0.
8で一定として1000 K gの穀粒全体から毎時間
蒸発する除水量Qを(4式)から求めると、A = 1
000Kgだから a=25(%)のときは、Q=11(Kg/時間)a=
20(%)のときは、Q = 10 (Kg /時間)
a=15(%)のときは、Q=9.3(Kg/時間)と
なる。
Generally, the appropriate drying rate P for paddy and wheat is 0.6 to 1.2 (
57 hours), but tentatively P = 0.
8, the amount of water removed that evaporates every hour from the entire grain of 1000 Kg is determined from (Equation 4), A = 1
000Kg, so when a=25 (%), Q=11 (Kg/hour) a=
When 20 (%), Q = 10 (Kg/hour)
When a=15 (%), Q=9.3 (Kg/hour).

同様にP = 0.1 、0.9および0.7でそれぞ
れ一定とした場合について、含水率に対応する除水量Q
を(4式)より計算し、それぞれの場合の含水率と除水
量Qの関係をグラフに示すと第4図のとおりになる。
Similarly, when P = 0.1, 0.9, and 0.7 are held constant, the water removal amount Q corresponding to the water content is
is calculated using equation (4), and the relationship between the water content and the amount of water removed Q in each case is shown in a graph as shown in Figure 4.

このように乾燥速度Pをある一定の値に決めると、除水
量Qは含水率aと穀粒の重量Aから(4式)の計算によ
シ求まる。
When the drying rate P is set to a certain value in this way, the amount of water removed Q can be determined from the moisture content a and the weight A of the grains by calculating (Equation 4).

従って乾燥中の穀粒の含水率aと重量(穀粒量)Aを測
定し、その測定値にもとづいて最適な乾燥速度Pになる
ような除水量Qをそのつど計算で求めることができ、そ
の除水量Qと実際の除水量qが一致するようにバーナの
熱風を制御すれば、乾燥速度Pを終始一定の最適値に保
持することができ、穀粒の胴割れも生じない。
Therefore, it is possible to measure the moisture content a and weight (grain amount) A of the grains during drying, and based on the measured values, calculate the amount of water removed Q that will give the optimum drying speed P. If the hot air from the burner is controlled so that the water removal amount Q matches the actual water removal amount q, the drying speed P can be maintained at a constant optimum value from beginning to end, and grain shell cracking will not occur.

しかして穀粒に熱風を浴せて乾燥する場合、穀粒から蒸
発した水は排風に含まれ機外に排出されるから、実際の
除水量qの値は、熱風と排風の絶対湿度の差と熱風の単
位時間当りの風量W(Kg)との積より求まる。
However, when grains are dried by exposing them to hot air, the water evaporated from the grains is included in the exhaust air and discharged outside the machine, so the actual value of the amount of water removed q is determined by the absolute humidity of the hot air and exhaust air. It can be found from the product of the difference between and the amount of hot air per unit time W (Kg).

絶対湿度は空気IKg当りに含まれる水のグラム数であ
るから、これをキログラム数に換算すると、実際の除水
量qについて次式が成シ立つ。
Since absolute humidity is the number of grams of water contained per kg of air, when this is converted into kilograms, the following equation holds for the actual amount of water removed q.

q=(排風の絶対湿度−熱風の絶対湿度)X O,00
1X W (Kg /時間)   (5式)熱風と排風
の絶対湿度差は両者の温度差に比例するからその比率を
kとすると、 となる。
q = (Absolute humidity of exhaust air - Absolute humidity of hot air) X O, 00
1X W (Kg/hour) (Formula 5) Since the absolute humidity difference between hot air and exhaust air is proportional to the temperature difference between the two, if the ratio is k, then the following equation is obtained.

そこで乾燥機を実際に運転するとき、通常の熱風温度は
40°Cから50テの間であり、いま仮りに熱風の絶対
湿度が4乃至8(g/Kg)で、排風温度21°C乃至
27 LCだとすると、第5図の湿シ空気線図に破線で
示すように、そのときの排風温度における絶対湿度は表
1のとおシにそれぞれ求まる。
Therefore, when actually operating the dryer, the normal hot air temperature is between 40°C and 50°C, and now let's assume that the absolute humidity of the hot air is 4 to 8 (g/Kg) and the exhaust air temperature is 21°C. to 27 LC, the absolute humidity at the exhaust air temperature at that time is determined as shown in Table 1, as shown by the broken line in the humidity air diagram in FIG.

これよりその範囲内でkの値は0.42であることが判
明する。
From this, it turns out that the value of k within that range is 0.42.

従って(5式)と(6式)から q=(熱風の温度−排風の温度)xO,42mxWとな
る。ここでmは乾燥機と穀粒の温度」1列等によシ失う
分を差し引いた効率で、乾燥機の機種や仕様および穀粒
の種類品質などによシ決まる一定の補償係数である。
Therefore, from (Equation 5) and (Equation 6), q=(temperature of hot air−temperature of exhaust air) xO, 42mxW. Here, m is the efficiency obtained by subtracting the temperature of the dryer and the temperature of the grain, which is lost due to one row, etc., and is a constant compensation coefficient determined by the model and specifications of the dryer, the type and quality of the grain, etc.

0.42mは定数だからこれをに1とl〜、また熱風の
温度をTa(’C)、排風の温度をTh(0C)とすれ
ば、(7式)は次のように書き直すことができる。
0.42m is a constant, so if we set this to 1 and l~, and the temperature of the hot air is Ta ('C) and the temperature of the exhaust air is Th (0C), then equation (7) can be rewritten as follows. can.

q=(Ta−Tb)XklXW  (8式)この(8式
)より実際の除水量ql’:t、あらかじめ補償係数m
ないしに1と風゛MWを決めておけば、熱風と排風の温
度TaおよびTbを測定することによりそれらの測定値
から求めることができる。
q=(Ta-Tb)
If the wind MW is determined to be between 1 and 1, the temperature can be determined from the measured values by measuring the temperatures Ta and Tb of the hot air and exhaust air.

このようにして(8式)から求めた実際の除水量qを、
その時々の含水率aおよび穀粒量Aに応じて、(4式)
から求めた除水t Qに一致するように乾燥することに
より乾燥速度Pを一定にする制御装置を、発明者らは以
前に特願昭57−110817号として提案したが、そ
の従来装置は風量Wを一定のまま熱風温度Taのみを加
減制御して除水tfqを基準の除水tQに一致するので
、乾燥する穀粒量A(Kg)が多くそのため基準の除水
量Qが大きいときは、熱風温度Taを高くするととによ
り(8式)における排風温度Tbとの温度差を大きくシ
、逆に乾燥する穀粒tA(Kg)が少なくそのため除水
量Qが小さいときには熱風温度Taを低く設定し希排風
温度Tbとの温度差を小さくする必要があった。
In this way, the actual water removal amount q obtained from (Equation 8) is
Depending on the moisture content a and grain amount A at that time, (4 formula)
The inventors previously proposed in Japanese Patent Application No. 110817/1983 a control device that keeps the drying rate P constant by drying so as to match the water removal tQ calculated from Since the water removal tfq matches the standard water removal tQ by adjusting and controlling only the hot air temperature Ta while keeping W constant, when the amount of grains to be dried A (Kg) is large and the standard water removal amount Q is large, If the hot air temperature Ta is increased, the temperature difference with the exhaust air temperature Tb in (formula 8) will be increased, and conversely, when the amount of water removed Q is small, the hot air temperature Ta is set low. However, it was necessary to reduce the temperature difference between the exhaust air temperature Tb and the rare exhaust air temperature Tb.

この従来装置における穀′#1量A(Kg)と熱風の設
定温度Ta (’C)との関係をグラフに示すと、第6
図の破線のとおりである。
A graph showing the relationship between grain #1 amount A (Kg) and hot air set temperature Ta ('C) in this conventional device shows that
This is shown by the broken line in the figure.

このグラフからも明らかなように、従来装置では乾燥す
る穀粒量Aの多少により熱風温度TaO差が大きく、バ
ーナの燃焼状態を穀粒量Aにより大巾に砕整しなければ
ならないばかシか、少量の穀物を乾燥する場合には、熱
風温度Taを低くして排風温度Tbとの差を小さくする
ので、熱効率(ここで熱効率とは燃料の発熱量と穀物か
ら蒸発する水の蒸発熱との比率をいう)が悪く不経済で
あるという欠点があった。
As is clear from this graph, in the conventional device, the difference in hot air temperature TaO is large depending on the amount of grains A to be dried, and the combustion state of the burner must be adjusted to a large extent depending on the amount of grains A. When drying a small amount of grain, the hot air temperature Ta is lowered to reduce the difference with the exhaust air temperature Tb. The disadvantage was that it was uneconomical and the ratio between

ところでそもそも乾燥速度Pが一定の場合に、穀粒を乾
燥するのに必要なエネルギー量Eは穀粒iAに比例する
と共に、熱風温度Taと風情Wの積によシ決まるから次
式が成り立つO エネルギー量E=に2X穀粒量A  (9式)エネルギ
ー量E=に3x熱風濡度TaX風量W(io式) (k2およびに3は比例定数) これらの式から明らかなとおり、穀粒量Aが多い場合も
、少ない場合も、同一の乾燥速度Pで乾燥するには、穀
粒量Aが多い場合、それに比例してエネルギー量Eも大
きくする必要があり、それには熱風温度Taだけ上昇す
るよりも、熱風温度Taと風量Wの両者を増大したほう
が、熱風温度Ta自体の上昇分が少なくて足シる。同様
に穀粒量Aが少ない場合、それに比例してエネルギー量
Eを小さくする必要があるが、それには熱風温度Taだ
け下降するよりも、風4wも熱風温度Taと一緒に減少
したほうが、熱風温度Ta自体の下降外が少なくて足り
るのである。
By the way, in the first place, when the drying speed P is constant, the amount of energy E required to dry the grains is proportional to the grain iA and is determined by the product of the hot air temperature Ta and the air quality W, so the following equation holds O Energy amount E = 2 x grain amount A (9 equation) Energy amount E = 3 x hot air wetness Ta In order to dry at the same drying speed P regardless of whether A is large or small, if the grain amount A is large, it is necessary to increase the energy amount E in proportion to it, and for this, the hot air temperature Ta must be increased. It is better to increase both the hot air temperature Ta and the air volume W than by increasing the hot air temperature Ta because the amount of increase in the hot air temperature Ta itself is smaller. Similarly, when the grain amount A is small, it is necessary to reduce the energy amount E in proportion to it, but for this purpose, it is better to reduce the amount of air 4w along with the hot air temperature Ta than to reduce the amount of hot air by only the hot air temperature Ta. It is sufficient that the temperature Ta itself does not fall too much.

本発明は、この点に着目して、熱風の風量Wを穀粒量大
に応じて増減することにより、上記従来の欠点を解消す
ることを目的とする。
The present invention focuses on this point and aims to eliminate the above-mentioned conventional drawbacks by increasing/decreasing the amount W of hot air depending on the amount of grains.

すなわち本発明では、第6図の実線に示すように、乾燥
する穀粒量Aが多いときは、(10式)Kおける風ft
Wの値も増大して、それによシ熱風温度Taを従来よシ
低く設定する。
That is, in the present invention, as shown by the solid line in FIG. 6, when the amount A of grains to be dried is large, the wind ft
The value of W also increases, and accordingly the hot air temperature Ta is set lower than before.

また穀粒量Aが少ないときは、風量Wも減少することに
より、熱風温度Taを従来よシ高く設定する。
Moreover, when the grain amount A is small, the air volume W also decreases, so that the hot air temperature Ta is set higher than before.

このように穀粒−tAに応じて熱風温度Taを設定した
ら、七の設定した温度Taになるようにバーナを燃焼さ
せると共に、初期設定した風量WOと熱風と排風の温度
TaおよびTbの測定値とから(8式)により実際の除
水量qを計測し、この除水量qが(4式)による計算で
求めた基準の除水量Qに一致するように、風量Wを制御
するのである。
After setting the hot air temperature Ta according to the grain -tA in this way, burn the burner to reach the set temperature Ta in step 7, and measure the initially set air volume WO and the temperatures Ta and Tb of the hot air and exhaust air. From this value, the actual water removal amount q is measured using (Equation 8), and the air volume W is controlled so that this water removal amount q matches the reference water removal amount Q calculated using (Equation 4).

次に本発明を図面に示す実施例にもとづいて説明する。Next, the present invention will be explained based on embodiments shown in the drawings.

1は乾燥機の貯留室でその底面中央に断面が逆■字形の
山形板2を設け、その左右に対向して誘導斜板3,3を
設置する。山形板2の両側縁と誘導斜板3,3の下縁に
それぞれ多孔板4を接続し、その相対する2枚1組の多
孔板4によシ乾燥室5,5を形成する。
Reference numeral 1 denotes a storage chamber of a dryer, and a chevron-shaped plate 2 having an inverted ■-shaped cross section is provided at the center of the bottom surface of the storage chamber, and guiding swash plates 3, 3 are installed opposite to each other on the left and right sides of the chevron-shaped plate 2. Perforated plates 4 are connected to both side edges of the chevron-shaped plate 2 and the lower edges of the guiding swash plates 3, 3, respectively, and drying chambers 5, 5 are formed by a pair of opposing perforated plates 4.

乾燥室5.5の下端の排出口はロータリバルブ6を介し
樋状の流穀室7にのぞませ、その中央の凹溝に横架する
送穀ラセン8の送出端を昇穀機9の下部取入口に接続す
る。
The discharge port at the lower end of the drying chamber 5.5 is connected to the gutter-like grain flow chamber 7 through the rotary valve 6, and the delivery end of the grain feeding helix 8 suspended horizontally in the concave groove in the center is connected to the grain raising machine 9. Connect to the bottom intake.

昇穀機9の上部には給穀ラセン10を接続し、その終端
を貯留室1の天井板中央に吊シ下げる拡散板11の上方
に開口する。
A grain feeding helix 10 is connected to the upper part of the grain elevating machine 9, and its terminal end is opened above a diffusion plate 11 suspended from the center of the ceiling plate of the storage chamber 1.

そして軟焼、機の正面と背面に相対してバーナ12と吸
引ファン13を取付け、バーナ12を左右の乾燥室5,
5の内側の熱風室14にのぞませると共に、ファン13
を乾燥室5.5の外側と乾燥機の外壁によシ囲オれた排
風室15に接続する。16は熱風室14のバーナ12と
反対側を閉鎖する遮板である。
Then, a burner 12 and a suction fan 13 are installed opposite to each other on the front and back of the soft baking machine, and the burner 12 is connected to the left and right drying chambers 5,
5 into the hot air chamber 14 inside the fan 13.
is connected to the outside of the drying chamber 5.5 and to the exhaust chamber 15 surrounded by the outer wall of the dryer. 16 is a shield plate that closes off the side of the hot air chamber 14 opposite to the burner 12.

穀粒は昇穀機9と給穀ラセン10を経て拡散板11によ
り貯留室1内に平均に張込まれ、乾燥室5を流下する。
The grains pass through a grain hoist 9 and a grain feeding helix 10, are spread evenly into a storage chamber 1 by a diffusion plate 11, and flow down a drying chamber 5.

その際バーナ12の熱風が、中央の熱風室14から左右
の乾燥室5に進入し、流下中の穀粒を乾燥して湿気を含
んだ排風が、排風室15を経てファン13によりp外に
排気する。
At this time, the hot air from the burner 12 enters the left and right drying chambers 5 from the central hot air chamber 14, and the drying chamber 5 dries the grains flowing down. Exhaust outside.

乾燥後の穀粒は、ロータリパルプ6の回転により流穀室
7に落ち、流穀ラセン8と昇穀機9により再び貯留室1
に戻る。
The dried grains fall into the flowing grain chamber 7 by the rotation of the rotary pulp 6, and are returned to the storage chamber 1 by the flowing grain helix 8 and the grain elevator 9.
Return to

しかして本発明では、乾燥機の熱風室14と排風室】5
の内部に温度センサSa、Sbをそれぞれ取付け、これ
Kよシ実際の熱風温度Taと排風温度Tbを測定する。
However, in the present invention, the dryer has a hot air chamber 14 and an exhaust chamber]5.
Temperature sensors Sa and Sb are respectively installed inside the K and measure the actual hot air temperature Ta and exhaust air temperature Tb.

また乾燥機底部の支脚17に抵抗線ひずみ計のような重
量を電気量に変仲するセンサを内蔵し、とのセンサの信
号を受信して乾燥機内の穀粒の重量A(Kg)に比例し
た電圧を出力する穀粒量測定回路19を設ける。
In addition, the support leg 17 at the bottom of the dryer has a built-in sensor, such as a resistance wire strain meter, that converts weight into electrical quantity, and receives the sensor signal and is proportional to the weight A (Kg) of grains in the dryer. A grain amount measuring circuit 19 is provided which outputs the voltage.

穀粒量測定回路19け、貯粒室1の内壁に圧力検知スイ
ッチまたけ光電スイッチ18を上下に数個等間隔に並べ
て構成してもよい。この場合、乾燥が進むに従い穀粒全
体の体積が縮小して上方のスイッチ18が露出し、これ
を穀粒の重量変化に換算して重量A(Kg)に比例した
電圧を出力する。
The grain amount measuring circuit 19 may be constructed by arranging several pressure detection switches and photoelectric switches 18 vertically arranged on the inner wall of the grain storage chamber 1 at equal intervals. In this case, as the drying progresses, the volume of the whole grain decreases and the upper switch 18 is exposed, which is converted into a change in the weight of the grain and a voltage proportional to the weight A (Kg) is output.

次に穀粒量測定回路19を熱風温度設定回路20に接続
し、しかして回路19の出力に応じて回路20により機
内の穀温が一定になるように熱風温度を設定する。
Next, the grain amount measuring circuit 19 is connected to the hot air temperature setting circuit 20, and the hot air temperature is set by the circuit 20 according to the output of the circuit 19 so that the grain temperature inside the machine is constant.

21は比較回路で、その入力側に熱風温度設定回路20
と熱風の温度センサSaを接続し、これにより比較回路
21の出力側に接続した電磁弁のような、バーナ12の
燃料系統に介在した燃料制御装置22を操作して、実際
の熱風温度が設定温度に等しくなるように燃料の流量を
制御してバーナ12を燃焼する。
21 is a comparison circuit, and a hot air temperature setting circuit 20 is connected to its input side.
A hot air temperature sensor Sa is connected to the hot air temperature sensor Sa, and the actual hot air temperature is set by operating the fuel control device 22 interposed in the fuel system of the burner 12, such as a solenoid valve connected to the output side of the comparison circuit 21. The burner 12 burns by controlling the flow rate of fuel so that it is equal to the temperature.

次に貯留室1内に公知の含水率計Gを取付け、これを穀
粒量測定回路19と共に基準除水量設定回路23に接続
し、この回路23により、穀粒量A1含水量a1および
所定の乾燥速度Pの値から、基準となるべき計算上の除
水量Qを(4式)にもとづいて算出し、その算出した値
に比例した電圧を出力する。
Next, a well-known moisture content meter G is installed in the storage chamber 1, and connected to the standard water removal amount setting circuit 23 together with the grain amount measuring circuit 19. From the value of the drying rate P, a calculated water removal amount Q to be a reference is calculated based on (Equation 4), and a voltage proportional to the calculated value is output.

一方、温度センサ3a、Sbを実測除水量計算回路24
に接続し、この回路24により熱風温度Ta、排風温度
Tbおよび初期設定した風量WOの値から、実際の除水
量qを(8式)にもとづいて演算し、その値qに比例し
た電圧を出力する。
On the other hand, the temperature sensors 3a and Sb are connected to the actual water removal amount calculation circuit 24.
This circuit 24 calculates the actual water removal amount q based on the values of the hot air temperature Ta, the exhaust air temperature Tb, and the initially set air volume WO based on (Equation 8), and then calculates a voltage proportional to the value q. Output.

そして回路23と回路24の出力側を比較回路25に接
続し、回路25の出力側を増巾回路26に接続して、回
路23乃至26によう、風量設定回路27を構成し、そ
の出力側を吸引ファン13のモータ29の回転数制御回
路28に接続する。これにより実測した実際の除水量q
が計算により求めた基準の除水量Qに等しくなるように
、吸引ファン13のモータ25の回転数を調整して熱風
の風量Wを制御する。
Then, the output sides of the circuit 23 and the circuit 24 are connected to the comparator circuit 25, and the output side of the circuit 25 is connected to the amplifier circuit 26, and the air volume setting circuit 27 is configured as shown in the circuits 23 to 26. is connected to the rotation speed control circuit 28 of the motor 29 of the suction fan 13. Actual amount of water removed q
The rotational speed of the motor 25 of the suction fan 13 is adjusted so that the amount of water removed is equal to the reference amount of water removed Q determined by calculation, and the amount of hot air W is controlled.

風量Wとモータ29の回転数との関係はあらかじめ実測
し両者の関係を記憶しておく。
The relationship between the air volume W and the rotation speed of the motor 29 is actually measured in advance, and the relationship between the two is stored.

なおこのようにあらかじめ記憶した関係に従って風量W
を調節するかわりに、熱に宰14または排風室15の気
圧から風量を測定し、その測定値と回路27の設定風量
Wとを比較し、両者の偏差を0にするようなフィードバ
ック制御によ多風量を制御してもよい。
In addition, the air volume W is determined according to the pre-stored relationship like this.
Instead of adjusting the air flow rate, the air flow rate is measured from the air pressure in the heat chamber 14 or the air exhaust chamber 15, and the measured value is compared with the set air flow rate W of the circuit 27, and feedback control is performed to reduce the deviation between the two to zero. It is also possible to control the amount of air.

しかして乾燥が進むに従い乾燥機に張込んだ穀粒の含水
率aと全重量Aは次第に減少するが、本発明においては
、熱風温度設定回路2()によシ、穀粒量Aの減少に応
じて熱風温度Taも第6図の実線に示すようにやや低下
し、また基準除水量設定回路23によシ、基準の除水i
Qもその時々の含水率aおよび穀粒量Aに応じて算出さ
れる。
As the drying progresses, the moisture content a and the total weight A of the grains loaded into the dryer gradually decrease. Accordingly, the hot air temperature Ta also decreases slightly as shown by the solid line in FIG.
Q is also calculated according to the moisture content a and the grain amount A at each time.

一方、排風温度Tbは乾燥が進むに従い上昇するので、
熱風と排風の温度差すなわち(8式)における(Ta−
Tb)は、乾燥が進むに従い小さくなる。従って本発明
では熱風の風量Wを乾燥が進むに従い増大するように制
御し、(8式)の除水量qの値を除水量Qに等しくする
のである。
On the other hand, the exhaust air temperature Tb increases as the drying progresses, so
The temperature difference between hot air and exhaust air, that is, (Ta-
Tb) decreases as drying progresses. Therefore, in the present invention, the volume W of hot air is controlled so as to increase as the drying progresses, and the value of the water removal amount q in (Equation 8) is made equal to the water removal amount Q.

これを要するに本発明においては、乾燥速度Pを一定と
する除水量Qを、乾燥が進むに従い減少するその時々の
含水率aおよび穀粒量Aの測定値に応じて計算により求
め、この基準の除水量Qと実際の除水f4′qがいつも
一致するようにバーナの熱風の風量を制御するので、乾
燥速度Pが乾燥時間全体を通して常に一定で、その時々
の含水率aと穀粒量Aに適した除水量で乾燥できるため
、胴割れの発生を防止でき、品質良好な穀粒に乾燥でき
、また含水率や穀粒量を設定せずに実際に測定するので
、設定ミスによるトラブルが発生する余地がないという
効果を生ずる。
In short, in the present invention, the amount of water removed Q with a constant drying rate P is calculated according to the measured values of the moisture content a and the grain amount A, which decrease as the drying progresses, and this standard is calculated. Since the amount of hot air from the burner is controlled so that the amount of water removed Q and the actual amount of water removed f4'q always match, the drying speed P is always constant throughout the drying time, and the moisture content a and grain amount A at each time are Since drying can be performed with the amount of water removed that is appropriate for the grain size, it is possible to prevent the occurrence of shell cracking and to dry grains of good quality.Also, since the moisture content and grain amount are actually measured without setting them, troubles due to setting errors can be avoided. The effect is that there is no room for this to occur.

しかも本発明では熱風の風量Wを増減することによって
、実際の除水量qを基準の除水量Qに一致させるので、
穀粒量Aが多い場合と少ない場合とで熱風温度Taの差
が少なく、このためバーナ12の調整中が小さくて足り
るばかりでなく、少量の穀粒を乾燥する場合に熱風温度
Taを高くすることによ多風量Wを小さくできるので、
熱風が乾燥室5を通過する速度が遅く従って熱風と穀粒
との接触時間が長くなシ、このため熱風と排風の温度差
(Ta −Tb )が従来に比べて大きくなって、熱風
のエネルギーが効率よく穀粒からの水の蒸発熱に転移し
て熱効率の良い乾燥ができ、燃料費を節約できるという
効果を生ずる。
Moreover, in the present invention, the actual amount of water removed q is made to match the standard amount of water removed Q by increasing or decreasing the amount of hot air W.
There is little difference in the hot air temperature Ta when the grain amount A is large and when it is small, so not only is it sufficient to keep the burner 12 small during adjustment, but also the hot air temperature Ta is raised when drying a small amount of grains. Especially since the large air volume W can be reduced,
The speed at which the hot air passes through the drying chamber 5 is slow, so the contact time between the hot air and the grains is long, and as a result, the temperature difference (Ta - Tb) between the hot air and the exhaust air becomes larger than before, and the hot air Energy is efficiently transferred to the heat of evaporation of water from the grains, resulting in efficient drying and fuel cost savings.

穀粒量Aが少ない場合も、従来にくらべて熱風温度Ta
は低いので、穀温の上昇をおさえ穀粒の胴割れを防ぐこ
とができるという効果を生ずる。
Even when the grain amount A is small, the hot air temperature Ta is lower than before.
Since the temperature is low, this has the effect of suppressing the rise in grain temperature and preventing grain shell cracking.

また本発明では実際の除水JL qを熱風と排風の絶対
湿度差からではなく温度差から求めるので、高価な湿度
計は必要々く安価な温度センサによシ高精度の計測がで
きるという効果も奏する。
In addition, in the present invention, the actual water removal JLq is determined from the temperature difference rather than from the absolute humidity difference between the hot air and the exhaust air, so an expensive hygrometer is no longer necessary and an inexpensive temperature sensor can be used for highly accurate measurement. It is also effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した穀粒乾燥機の縦断正面図、第
2図はその横断平面図、第3図はその制御系統のブロッ
ク図、第4図は、1゜001(gの穀粒を乾燥速度P(
57時間)一定で乾燥した場合の除水量Qと含水率との
関係を、乾燥速度Pをパラメータにして示すグラフ。 第5図は湿り空気線図で熱風と排風の温度と絶対湿度の
関係を示す。第6図は乾燥速度P=一定の場合における
乾燥すべき穀粒量A(Kg)と熱風の設定温度Ta (
’C)との関係を示すグラフで、破線は従来装置のもの
を示し、実線は本発明装置のものを示す。 代理人  牧   哲 部(ほか2名)第1図 第2図
Fig. 1 is a longitudinal sectional front view of a grain dryer embodying the present invention, Fig. 2 is a cross-sectional plan view thereof, Fig. 3 is a block diagram of its control system, and Fig. 4 is a grain dryer of 1°001 (g). Drying speed P(
57 hours) A graph showing the relationship between the amount of water removed Q and the water content when drying at a constant rate using the drying rate P as a parameter. Figure 5 is a psychrometric diagram showing the relationship between temperature and absolute humidity of hot air and exhaust air. Figure 6 shows the amount of grain A (Kg) to be dried and the hot air set temperature Ta (
In the graph showing the relationship with 'C), the broken line shows that of the conventional device, and the solid line shows that of the device of the present invention. Agent Tetsube Maki (and 2 others) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 乾燥する穀粒量に応じて設定した熱風温度になるように
バーナを燃焼制御すると共に、熱風と排風の温度差およ
び初期設定した熱風風量から実測した除水量qが、その
時々の含水率と穀粒量の各測定値に応じて計算により求
めた基準の除水量Qに一致する゛ようにバーナの熱風の
風量を制御し、もって乾燥速度を一定に保つことを特徴
とする穀粒乾燥機におけるバーナの熱風制御装置。
The combustion of the burner is controlled so that the hot air temperature is set according to the amount of grain to be dried, and the water removal amount q, which is actually measured from the temperature difference between the hot air and exhaust air and the initially set amount of hot air, is calculated based on the moisture content at that time. A grain dryer characterized by controlling the volume of hot air from a burner so as to match a standard amount of water removed Q calculated according to each measurement value of grain amount, thereby keeping the drying speed constant. Burner hot air control device.
JP18634582A 1982-10-22 1982-10-22 Controller for hot air of burner in cereal drier Pending JPS5974486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18634582A JPS5974486A (en) 1982-10-22 1982-10-22 Controller for hot air of burner in cereal drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18634582A JPS5974486A (en) 1982-10-22 1982-10-22 Controller for hot air of burner in cereal drier

Publications (1)

Publication Number Publication Date
JPS5974486A true JPS5974486A (en) 1984-04-26

Family

ID=16186726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18634582A Pending JPS5974486A (en) 1982-10-22 1982-10-22 Controller for hot air of burner in cereal drier

Country Status (1)

Country Link
JP (1) JPS5974486A (en)

Similar Documents

Publication Publication Date Title
JPS5974486A (en) Controller for hot air of burner in cereal drier
JPS6333073B2 (en)
JPS5963479A (en) Controller for hot air of burner in cereal drier
JPS5969684A (en) Controller for hot air of burner in cereal drier
JPS58214776A (en) Controller for combustion of burner in cereal drier
JPH0472152B2 (en)
JPS594878A (en) Controller for combustion of burner in cereal drier
JPS594876A (en) Controller for combustion of burner in cereal drier
JPS5971976A (en) Controller for hot air of burner in cereal drier
JPS59119174A (en) Controller for combustion of burner in cereal grain drier
JPS5960173A (en) Controller for hot air of burner in cereal grain drier
JPH01163591A (en) Dead time compensator in cereal drier
JPS59125377A (en) Controller for hot air of burner in cereal grain drier
JPS591981A (en) Controller for combustion of burner in cereal drier
JPS63182557A (en) Grain water content data processor for grain drier
JPS594877A (en) Controller for combustion of burner in cereal drier
JPH01230982A (en) Grain drying machine
JPS63194181A (en) Drying controller for cereal drier
JPS618589A (en) Controller for temperature of hot air in circulation type cereal grain drier
JPS63282476A (en) Drying controller for cereal drier
JPH0536713B2 (en)
JPS5960174A (en) Controller for hot air of burner in cereal grain drier
JPS5934270B2 (en) Burner combustion control device in grain dryer
JPS636381A (en) Cereal drier controller
JPH01230981A (en) Grain drying machine