JPH0472152B2 - - Google Patents

Info

Publication number
JPH0472152B2
JPH0472152B2 JP57233999A JP23399982A JPH0472152B2 JP H0472152 B2 JPH0472152 B2 JP H0472152B2 JP 57233999 A JP57233999 A JP 57233999A JP 23399982 A JP23399982 A JP 23399982A JP H0472152 B2 JPH0472152 B2 JP H0472152B2
Authority
JP
Japan
Prior art keywords
hot air
drying
grain
air
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57233999A
Other languages
Japanese (ja)
Other versions
JPS59125376A (en
Inventor
Toshihiko Tachibana
Reiji Kojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki Agricultural Machinery Mfg Co Ltd
Priority to JP23399982A priority Critical patent/JPS59125376A/en
Publication of JPS59125376A publication Critical patent/JPS59125376A/en
Publication of JPH0472152B2 publication Critical patent/JPH0472152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は穀粒乾燥機におけるバーナの熱風の温
度及び風量を制御する装置に関する。 従来の乾燥機では乾燥開始から終了まで熱風の
温度と風量が一定なので、穀粒が乾燥するに従い
排風の温度が上昇し湿度は低下して熱い乾いた排
風を、乾燥能力を充分に残した状態で大気に放出
することになり、このため穀粒の乾燥速度が次第
に遅くなり熱効率も悪いという欠点があつた。 本発明は、乾燥する穀物量に応じて熱風温度を
一定に設定すると共に、乾燥開始後排風の湿度が
あらかじめ設定したある値になるまでは、実際に
測定した実測除水量が計算上の基準除水量に一致
するように熱風の風量を制御することにより穀粒
の乾燥速度を一定に保ち、排風の湿度があらかじ
め設定した値まで低下したら、熱風の風量を減少
することにより、排風の湿度低下を防ぎ乾燥機の
熱効率を向上することを目的とする。 本発明を図面に示す実施例にもとづいて説明す
ると、1は乾燥機の貯留室で、その底部中央に断
面が逆V字形の山形板2を設け、その左右に対向
して誘導斜板3,3を設置する。山形板2の両側
縁と誘導斜板3,3の下縁にそれぞれ多孔板4を
接続し、その相対する2枚1組の多孔板4により
乾燥室5,5を形成する。 乾燥室5,5の下端の排出口はロータリバルブ
6を介し樋状の流穀室7にのぞませ、その中央の
凹溝に横架する送穀ラセン8の送出端を昇穀機9
の下部取入口に接続する。 昇穀機9の上部には給穀ラセン10を接続し、
その終端を貯留室1の天井板中央に吊り下げる拡
散板11の上方に開口する。 そして乾燥機の正面と背面に相対してバーナ1
2と吸引フアン13を取付け、バーナ12を左右
の乾燥室5,5の内側の熱風室14にのぞませる
と共に、フアン13を乾燥室5,5の外側と乾燥
機の外壁により囲まれた排風室15に接続する。
16は熱風室14のバーナ12と反対側を閉鎖す
る遮板である。 穀粒は昇穀機9と給穀ラセン10を経て拡散板
11により貯留室1内に平均に張込まれ、乾燥室
5を流下する。その際バーナ12の熱風が中央の
熱風室14から左右の乾燥室5に進入し流下中の
穀粒を乾燥して、湿気を含んだ排風が排風室15
を経てフアン13により機外に排気する。 乾燥後の穀粒はロータリバルブ6の回転により
流穀室7に落ち、送穀ラセン8と昇穀機9により
再び貯留室1に戻る。 しかしてこの実施例では乾燥機の熱風室14と
排風室15の内部に温度センサSa,Sbをそれぞ
れ取付け、これにより実際の熱風温度Taと排風
温度Tbを測定する。 そして乾燥機に張込む穀物量Aoを設定する穀
物量設定回路17を設け、これを熱風温度設定回
路18に接続し、穀物量Aが多い場合は熱風温度
を高く、穀物量Aが少ない場合は熱風温度を低く
設定するなど、あらかじめ穀物量Aに応じて決め
て記憶してある熱風温度のデータより熱風温度設
定回路18が最適な熱風温度のデータを呼出すこ
とにより熱風温度を設定する。 19は比較回路で、その入力側に熱風温度設定
回路18と熱風の温度センサSaを接続し、これ
により比較回路19の出力側に接続した電磁弁の
ようなバーナ12の燃料系統に介在した燃料制御
装置20を操作して、実際の熱風温度が設定温度
に等しくなるように燃料の流量を制御してバーナ
12を燃焼する。 次に穀物量設定回路17を基準除水量設定回路
21に接続し、この回路21により、穀物量A、
含水量および所定の乾燥速度の値から基準となる
べき計算上の除水量Qを、後述する(4式)にも
とづいて算出しその算出した値に比例した電圧を
出力する。 まず乾燥速度は穀粒の含水率(%)の単位時間
当りの減少値であるから、ある時間の含水率を
a、それより単位時間後の含水率をbとすると、
その時点の乾燥速度P(%/時間)は、 P=a−b (1式) である。 いま乾燥速度Pのときに穀粒より蒸発する水の
単位時間当りの重量すなわち除水量Q(Kg/時間)
は、ある時間の穀粒の重量をA(Kg)、それより単
位時間後の穀粒の重量をB(Kg)とすると、 Q=A−B (2式) になる。 ところで水分を除いた穀粒個有の重量は乾燥前
後で変りないから次式が成立つ。 A−Aa/100=B−Bb/100 (3式) (1式)と(3式)よりbおよびBを求めて
(2式)に代入すると、 Q=A(1−1−a/100/1−a−P/100)(4式
) となる 基準除水量設定回路21は、この(4式)にも
とづいて基準除水量Qを算出する。 一方、温度センサSa,Sbを実測除水量計算回
路22に接続し、この回路22により熱風温度
Ta、排風温度Tbおよび初期設定した風量Wの値
から実際の除水量qを後述する(8式)にもとづ
いて実測し、その実測した値に比例した電圧を出
力する。 そもそも実測除水量qの値は、穀粒から蒸発し
た水は排風に含まれ機外に排出されるから、熱風
と排風の絶対湿度の差と熱風の単位時間当りの風
量W(Kg)との積より求まる。 絶対湿度は空気1Kg当りに含まれる水のグラム
数であるから、これをキログラム数に換算する
と、実測除水量qについて次式が成り立つ。 q=(排風の絶対湿度Mb−熱風の絶対湿度Ma) ×0.001×W(Kg/時間) (5式) 熱風と排風の絶対湿度差は両者の温度差に比例
するからその比率をkとすると、 k=熱風と排風の絶対湿度差/熱風と排風の温度差(
6式) となる。 そこで乾燥機を実際に運転するとき、通常の熱
風温度は40℃から50℃の間であり、いま仮りに熱
風の絶対湿度が4乃至8(g/Kg)で、排風温度
21℃乃至27℃だとすると、第4図の湿り空気線図
に破線で示すように、そのときの排風温度におけ
る絶対湿度は表1のとおりにそれぞれ求まる。
The present invention relates to a device for controlling the temperature and volume of hot air from a burner in a grain dryer. In conventional dryers, the temperature and volume of hot air remain constant from the start to the end of drying, so as the grain dries, the temperature of the exhaust air increases and the humidity decreases, allowing the hot dry exhaust air to remain dry with sufficient drying capacity. As a result, the drying rate of the grains gradually slows down and the thermal efficiency is also poor. In the present invention, the hot air temperature is set constant according to the amount of grain to be dried, and the actually measured amount of water removed is used as the calculation standard until the humidity of the exhaust air reaches a preset value after drying starts. The drying speed of grains is kept constant by controlling the volume of hot air to match the amount of water removed, and when the humidity of the exhaust air decreases to a preset value, the volume of hot air is reduced to The purpose is to prevent humidity loss and improve the thermal efficiency of dryers. The present invention will be described based on an embodiment shown in the drawings. Reference numeral 1 denotes a storage chamber of a dryer, and a chevron plate 2 having an inverted V-shaped cross section is provided at the center of the bottom of the storage chamber 1. Direction swash plates 3, Install 3. Perforated plates 4 are connected to both side edges of the chevron-shaped plate 2 and the lower edges of the guiding swash plates 3, 3, respectively, and a pair of opposing perforated plates 4 form a drying chamber 5, 5. The discharge ports at the lower ends of the drying chambers 5 and 5 are connected to a gutter-like grain flow chamber 7 through a rotary valve 6, and the output end of a grain feeding helix 8 suspended horizontally in a groove in the center is connected to a grain hoist 9.
Connect to the bottom intake of the A grain feeding helix 10 is connected to the upper part of the grain raising machine 9,
Its terminal end is opened above the diffusion plate 11 suspended from the center of the ceiling plate of the storage chamber 1. Then burner 1 is placed opposite the front and back of the dryer.
2 and a suction fan 13 are installed, and the burner 12 is exposed to the hot air chamber 14 inside the left and right drying chambers 5, 5, and the fan 13 is attached to the outside of the drying chambers 5, 5 and the exhaust area surrounded by the outer wall of the dryer. Connect to the wind chamber 15.
16 is a shield plate that closes off the side of the hot air chamber 14 opposite to the burner 12. The grains pass through a grain hoist 9 and a grain feeding helix 10, are spread evenly into a storage chamber 1 by a diffusion plate 11, and flow down a drying chamber 5. At this time, the hot air from the burner 12 enters the left and right drying chambers 5 from the central hot air chamber 14 and dries the grains flowing down, and the exhausted air containing moisture is sent to the exhaust chamber 15.
The air is then exhausted to the outside of the machine by a fan 13. The dried grains fall into the flow grain chamber 7 by rotation of the rotary valve 6, and are returned to the storage chamber 1 by the grain feeding helix 8 and the grain raising machine 9. However, in this embodiment, temperature sensors Sa and Sb are installed inside the hot air chamber 14 and exhaust air chamber 15 of the dryer, respectively, to measure the actual hot air temperature Ta and exhaust air temperature Tb. A grain amount setting circuit 17 is provided to set the grain amount Ao loaded into the dryer, and this is connected to the hot air temperature setting circuit 18. When the grain amount A is large, the hot air temperature is set high, and when the grain amount A is small, the hot air temperature is set high. The hot air temperature setting circuit 18 sets the hot air temperature by calling the optimum hot air temperature data from the hot air temperature data determined and stored in advance according to the grain amount A, such as by setting the hot air temperature low. Reference numeral 19 denotes a comparator circuit, to which a hot air temperature setting circuit 18 and a hot air temperature sensor Sa are connected to the input side of the comparator circuit. The control device 20 is operated to control the fuel flow rate and burn the burner 12 so that the actual hot air temperature becomes equal to the set temperature. Next, the grain amount setting circuit 17 is connected to the reference water removal amount setting circuit 21, and by this circuit 21, the grain amount A,
A calculated water removal amount Q to be used as a reference is calculated from the values of the water content and a predetermined drying speed based on (Equation 4) described later, and a voltage proportional to the calculated value is output. First, the drying rate is the decrease in the moisture content (%) of grains per unit time, so if the moisture content at a certain time is a, and the moisture content a unit time after that is b, then
The drying rate P (%/hour) at that point is as follows: P=a-b (Equation 1). The weight of water evaporated from the grain per unit time when the drying rate is P, that is, the amount of water removed Q (Kg/hour)
If the weight of the grain at a certain time is A (Kg), and the weight of the grain after a unit time is B (Kg), then Q=A-B (Equation 2). By the way, since the individual weight of the grain excluding water does not change before and after drying, the following equation holds. A-Aa/100=B-Bb/100 (3 equations) Find b and B from (1 equation) and (3 equations) and substitute them into (2 equations), Q=A(1-1-a/100 /1-a-P/100) (Equation 4) The reference water removal amount setting circuit 21 calculates the reference water removal amount Q based on this (Equation 4). On the other hand, the temperature sensors Sa and Sb are connected to the actually measured water removal amount calculation circuit 22, and this circuit 22 calculates the hot air temperature.
The actual water removal amount q is measured from the values of Ta, exhaust air temperature Tb, and initially set air volume W based on (Equation 8) described later, and a voltage proportional to the measured value is output. In the first place, the value of the measured water removal amount q is determined by the difference between the absolute humidity of the hot air and the exhaust air and the air volume per unit time W (Kg) of the hot air, since the water evaporated from the grains is included in the exhaust air and discharged outside the machine. It is found by the product of Since absolute humidity is the number of grams of water contained in 1 kg of air, when this is converted into kilograms, the following equation holds true for the measured water removal amount q. q = (Absolute humidity Mb of exhaust air - Absolute humidity Ma of hot air) × 0.001 × W (Kg/hour) (Equation 5) Since the absolute humidity difference between hot air and exhaust air is proportional to the temperature difference between the two, the ratio is k Then, k = absolute humidity difference between hot air and exhaust air/temperature difference between hot air and exhaust air (
Equation 6). Therefore, when actually operating the dryer, the normal hot air temperature is between 40℃ and 50℃, and the absolute humidity of the hot air is 4 to 8 (g/Kg), and the exhaust air temperature is
Assuming that the temperature is between 21°C and 27°C, the absolute humidity at the exhaust air temperature at that time is determined as shown in Table 1, as shown by the broken line in the moisture-air diagram in Figure 4.

【表】 これよりその範囲内でkの値は0.42であること
が判明する。 従つて(5式)と(6式)から q=(熱風の温度−排風の温度)×0.42m×W
(7式) となる。ここでmは乾燥機と穀粒の温度上昇等に
より失う分を差し引いた効率で乾燥機の機種や仕
様および穀粒の種類品質などにより決まる一定の
補償係数である。 0.42mは定数だからこれをk1とし、また熱風
の温度をTa(℃)、排風の温度をTb(℃)とすれ
ば、(7式)は次のように書き直すことができる。 q=(Ta−Tb)×k1×W (8式) 実測除水量計算回路22では、この(8式)に
もとづいて実測除水量qを算出する。 次に上述の基準除水量設定回路21と実測除水
量計算回路22の出力側を比較回路23に接続
し、回路23の出力側を増巾回路24に接続し、
これら回路21乃至24により前期風量設定回路
25を構成する。 26は静圧から風量を測定する風量測定装置
で、その圧力測定部を熱風室14内に取付け、熱
風室内の静圧を熱風の風量Wに変換し出力する。 そして前期風量設定回路25と風量測定装置2
6を比較回路27に接続すると共に、その出力側
を吸引フアン13のモータ29の回転数制御回路
28に接続し、前期風量設定回路25において、
回路21と22の出力が一致するように、すなわ
ち実測除水量qが基準除水量Qに等しくなるよう
に風量Wの値を設定し、この基準の風量Wに対し
回路26による実際の風量が等しくなるように制
御装置28を作動して吸引フアン13のモータ2
9を回転する。 次に外気の絶対湿度Maを測定する湿度センサ
Haを乾燥機外に取付け、これを湿度センサSa,
Sbと共に排風湿度判定回路30に接続する。 ところで外気と熱風は水の出入がなくその絶対
湿度は互いに等しいから、(6式)においてk=
0.42とすると、排風の絶対湿度Mbは Mb=Ma+(Ta−Tb)×0.42m (9式) となる。 排風湿度判定回路30はこの(9式)に従つて
湿度センサHaが検出する外気の絶対湿度Maと温
度センサSa,Sbが検出する熱風温度Taおよび排
風温度Tbより排風の絶対湿度Mbを算出する。 そしてこの回路30の出力側を、前期風量設定
回路25の基準除水量設定回路21および実測除
水量計算回路22に接続すると共に、後期風量設
定回路31に接続し、回路31の出力側は比較回
路27に接続する。 しかして後期風量設定回路31において設定風
量Wの上限値Wpおよび下限値Wqをあらかじめ
穀物量Aに応じて第5図のように定め、排風の湿
度が高くその絶対湿度Maが所定値より大きい乾
燥前期は、上述のとおり前期風量設定回路25に
より基準の設定風量Wを決めるが、乾燥後期にな
り排風の絶対湿度Mbが所定値まで低下したら、
それを排風湿度判定回路30により検知して、排
風の絶対湿度Mbが所定値を下回らないように基
準の設定風量Wを後期風量設定回路31により決
める。乾燥後期においても前期と同様に比較回路
27により設定風量Wと実際の風量が等しくなる
ように回転数制御装置28を作動することはいう
までもない。 このように設定風量Wを、乾燥前期では回路2
5により実測除水量qが基準除水量Qに等しくな
るように決め、乾燥後期では回路31により排風
の絶対湿度Mbが所定値を下回らないように決め
る。 一方、熱風温度Taは穀物量Aに応じて一旦設
定したら乾燥が終るまで一定であるから乾燥が進
んで穀粒の含水率aが減少し排風温度Tbが上昇
すると、熱風と排風の温度差すなわち(8式)に
おける(Ta−Tb)は小さくなる。 従つて乾燥前期において、実測除水量qを基準
除水量Qに一致させるには、熱風の設定風量Wを
乾燥が進むに従い増大するように制御する。 また排風の湿度は乾燥の進行に併行して低下す
る傾向にあるから、乾燥後期において、排風の絶
対湿度Mbを所定値よりも下回らないよう維持す
るには、熱風の設定風量Wを上限値Wpより徐々
に下限値Wqまで減少するように制御する。 図面の実施例では湿度センサHaを乾燥機外に
取付け外気の湿度を測定したが、外気と熱風の湿
度は水の出入がないので同じであるから、湿度セ
ンサHaを熱風室14内に設け熱風の湿度を測定
してもよい。湿度センサHaを乾燥機外に設ける
場合にはセンサが熱の影響を受けないため測定精
度が向上し、また湿度センサHaを熱風室内に設
ける場合は、湿度センサHaと熱風の温度センサ
Saを一体化できるためセンサを低コストで製作
できるという利点がある。 なお絶対湿度の代りに相対湿度を用いても発明
の要旨に変りはない。 これを要するに本発明は、バーナ12の熱風温
度を乾燥する穀物量Aに応じて一定に定めると共
に、排風の湿度が所定値より大きい乾燥前期に
は、実測除水量qが穀物量に応じて算出した基準
除水量Qに一致するように熱風風量を制御して乾
燥速度を一定に保ち、排風の湿度が所定値まで低
下する乾燥後期には熱風の風量を減少することを
特徴とする。 従つて本発明によれば、実際上は乾燥時間の大
半を占める乾燥前期において乾燥速度が一定であ
るため胴割れの発生がなく品質良好な穀粒に乾燥
でき、そのうえ排風の湿度が低下する乾燥後期に
おいては、熱風の風量を減少し熱風が乾燥室5を
横断する所要時間を長くし穀粒に長時間接触して
熱風の乾燥能力を充分発揮させるので、熱効率が
良くバーナの燃料消費量を節約できるという効果
を生ずる。
[Table] From this, it turns out that the value of k within that range is 0.42. Therefore, from (Equation 5) and (Equation 6), q = (Temperature of hot air - Temperature of exhaust air) x 0.42m x W
(Equation 7) becomes. Here, m is the efficiency obtained by subtracting the amount lost due to temperature increases between the dryer and the grain, and is a constant compensation coefficient determined by the model and specifications of the dryer, the type and quality of the grain, etc. Since 0.42m is a constant, it is set as k1, and if the temperature of the hot air is Ta (°C) and the temperature of the exhaust air is Tb (°C), equation (7) can be rewritten as follows. q=(Ta-Tb)×k1×W (Formula 8) The actually measured water removal amount calculation circuit 22 calculates the actually measured water removal amount q based on this (Equation 8). Next, the output sides of the reference water removal amount setting circuit 21 and the actual water removal amount calculation circuit 22 described above are connected to the comparison circuit 23, and the output side of the circuit 23 is connected to the width increasing circuit 24.
These circuits 21 to 24 constitute a first air volume setting circuit 25. Reference numeral 26 denotes an air volume measuring device that measures the air volume from static pressure, and its pressure measuring unit is attached to the hot air chamber 14 to convert the static pressure in the hot air chamber into the air volume W of hot air and output it. And the first stage air volume setting circuit 25 and the air volume measuring device 2
6 is connected to the comparison circuit 27, and its output side is connected to the rotation speed control circuit 28 of the motor 29 of the suction fan 13, and in the first air volume setting circuit 25,
The value of the air volume W is set so that the outputs of the circuits 21 and 22 match, that is, the measured water removal amount q is equal to the reference water removal amount Q, and the actual air volume by the circuit 26 is equal to this reference air volume W. The control device 28 is operated so that the motor 2 of the suction fan 13
Rotate 9. Next, a humidity sensor that measures the absolute humidity Ma of the outside air.
Install Ha outside the dryer and connect it to the humidity sensor Sa,
It is connected to the exhaust air humidity determination circuit 30 together with Sb. By the way, since there is no water in and out of outside air and hot air, and their absolute humidity is equal to each other, in (Equation 6), k =
If it is 0.42, the absolute humidity Mb of the exhaust air is Mb = Ma + (Ta - Tb) x 0.42m (Equation 9). According to this equation (9), the exhaust air humidity determination circuit 30 determines the absolute humidity Mb of the exhaust air from the absolute humidity Ma of the outside air detected by the humidity sensor Ha, the hot air temperature Ta detected by the temperature sensors Sa and Sb, and the exhaust air temperature Tb. Calculate. The output side of this circuit 30 is connected to the reference water removal amount setting circuit 21 and the actual water removal amount calculation circuit 22 of the early air volume setting circuit 25, and is also connected to the latter air volume setting circuit 31, and the output side of the circuit 31 is connected to a comparison circuit. Connect to 27. Therefore, in the latter air volume setting circuit 31, the upper limit value Wp and lower limit value Wq of the set air volume W are determined in advance according to the grain amount A as shown in FIG. In the first half of drying, the standard set air volume W is determined by the first stage air volume setting circuit 25 as described above, but when the absolute humidity Mb of the exhaust air falls to a predetermined value in the second half of drying,
This is detected by the exhaust air humidity determination circuit 30, and the reference set air volume W is determined by the latter air volume setting circuit 31 so that the absolute humidity Mb of the exhaust air does not fall below a predetermined value. It goes without saying that even in the latter half of the drying period, the comparison circuit 27 operates the rotation speed control device 28 so that the set air volume W becomes equal to the actual air volume, as in the first period. In this way, the set air volume W is changed to circuit 2 in the early drying period.
5, the measured water removal amount q is determined to be equal to the reference water removal amount Q, and in the latter stage of drying, the absolute humidity Mb of the exhaust air is determined by the circuit 31 so that it does not fall below a predetermined value. On the other hand, once the hot air temperature Ta is set according to the amount of grain A, it remains constant until the drying is completed. The difference, ie (Ta-Tb) in (Equation 8), becomes smaller. Therefore, in the first half of drying, in order to make the measured water removal amount q match the reference water removal amount Q, the set air volume W of hot air is controlled to increase as the drying progresses. In addition, the humidity of the exhaust air tends to decrease as the drying progresses, so in order to maintain the absolute humidity Mb of the exhaust air so that it does not fall below a predetermined value in the late drying stage, the set air volume W of the hot air must be set at the upper limit. It is controlled to gradually decrease from the value Wp to the lower limit value Wq. In the embodiment shown in the drawings, the humidity sensor Ha is installed outside the dryer to measure the humidity of the outside air, but since the humidity of the outside air and the hot air are the same since no water enters or exits, the humidity sensor Ha is installed inside the hot air chamber 14 to measure the humidity of the hot air. You may also measure the humidity. If the humidity sensor Ha is installed outside the dryer, the measurement accuracy will be improved because the sensor is not affected by heat, and if the humidity sensor Ha is installed inside the hot air chamber, the humidity sensor Ha and the hot air temperature sensor will be
It has the advantage that the sensor can be manufactured at low cost because Sa can be integrated. Note that the gist of the invention does not change even if relative humidity is used instead of absolute humidity. In short, in the present invention, the hot air temperature of the burner 12 is set constant according to the amount of grain to be dried, and in the early drying period when the humidity of the exhaust air is greater than a predetermined value, the actually measured water removal amount q is set according to the amount of grains. The drying speed is kept constant by controlling the hot air volume to match the calculated reference water removal amount Q, and the hot air volume is reduced in the late drying period when the humidity of the exhaust air decreases to a predetermined value. Therefore, according to the present invention, since the drying rate is constant in the first stage of drying, which actually accounts for most of the drying time, grains of good quality can be dried without shell cracking, and the humidity of the exhaust air is reduced. In the latter stage of drying, the amount of hot air is reduced and the time it takes for the hot air to cross the drying chamber 5 is increased, allowing it to contact the grains for a long time and fully utilize its drying ability, resulting in high thermal efficiency and reduced burner fuel consumption. This has the effect of saving money.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施した穀粒乾燥機の従断正
面図、第2図はその横断平面図、第3図はその制
御系統のブロツク図、第4図は湿り空気線図で熱
風と排風の温度と絶対湿度の関係を示す。第5図
は本発明の乾燥後期における熱風の設定風量の上
限値Wpおよび下限値Wqと穀物量Aとの関係を
示すグラフである。
Fig. 1 is a sectional front view of a grain dryer embodying the present invention, Fig. 2 is a cross-sectional plan view thereof, Fig. 3 is a block diagram of its control system, and Fig. 4 is a hygrodynamic diagram showing the relationship between hot air and hot air. Shows the relationship between exhaust air temperature and absolute humidity. FIG. 5 is a graph showing the relationship between the upper limit value Wp and lower limit value Wq of the set air volume of hot air and the amount of grain A in the latter stage of drying according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 乾燥する穀物量に応じて設定した熱風温度に
なるようにバーナを燃焼制御すると共に、排風の
湿度が所定値より大きい乾燥前期には、実測除水
量が、予め穀物量、含水率および乾燥速度より算
出しておいた基準除水量に一致するように熱風風
量を制御して乾燥速度を一定に保ち、排風の湿度
が所定値まで低下する乾燥後期には熱風の風量を
減少することを特徴とする穀粒乾燥機におけるバ
ーナの熱風制御装置。
1 Burner combustion is controlled so that the hot air temperature is set according to the amount of grain to be dried, and in the early drying period when the humidity of the exhaust air is higher than a predetermined value, the actual amount of water removed is determined in advance based on the amount of grain, moisture content and drying. The drying speed is kept constant by controlling the hot air volume to match the standard water removal amount calculated from the speed, and the hot air volume is reduced in the late drying period when the humidity of the exhaust air decreases to a predetermined value. Features: Hot air control device for burner in grain dryer.
JP23399982A 1982-12-31 1982-12-31 Controller for hot air of burner in cereal grain drier Granted JPS59125376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23399982A JPS59125376A (en) 1982-12-31 1982-12-31 Controller for hot air of burner in cereal grain drier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23399982A JPS59125376A (en) 1982-12-31 1982-12-31 Controller for hot air of burner in cereal grain drier

Publications (2)

Publication Number Publication Date
JPS59125376A JPS59125376A (en) 1984-07-19
JPH0472152B2 true JPH0472152B2 (en) 1992-11-17

Family

ID=16963962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23399982A Granted JPS59125376A (en) 1982-12-31 1982-12-31 Controller for hot air of burner in cereal grain drier

Country Status (1)

Country Link
JP (1) JPS59125376A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4786075B2 (en) * 2001-07-31 2011-10-05 パナソニックエコシステムズ株式会社 Drying control method and drying apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121980A (en) * 1980-02-29 1981-09-25 Iseki Agricult Mach Burner combustion control device for grain drying machine
JPS5730697B2 (en) * 1971-11-03 1982-06-30
JPS57124680A (en) * 1981-01-24 1982-08-03 Yamamoto Mfg Drying of grain particles
JPS57174682A (en) * 1981-04-21 1982-10-27 Tsuneo Kashitani Grain drying

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730697U (en) * 1980-07-28 1982-02-18
JPS57111370U (en) * 1980-12-26 1982-07-09

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730697B2 (en) * 1971-11-03 1982-06-30
JPS56121980A (en) * 1980-02-29 1981-09-25 Iseki Agricult Mach Burner combustion control device for grain drying machine
JPS57124680A (en) * 1981-01-24 1982-08-03 Yamamoto Mfg Drying of grain particles
JPS57174682A (en) * 1981-04-21 1982-10-27 Tsuneo Kashitani Grain drying

Also Published As

Publication number Publication date
JPS59125376A (en) 1984-07-19

Similar Documents

Publication Publication Date Title
JPH0472152B2 (en)
JPS58214776A (en) Controller for combustion of burner in cereal drier
JPS6333073B2 (en)
JPS591981A (en) Controller for combustion of burner in cereal drier
JPS59119174A (en) Controller for combustion of burner in cereal grain drier
JPS5969684A (en) Controller for hot air of burner in cereal drier
JPS594878A (en) Controller for combustion of burner in cereal drier
JPH049991B2 (en)
JPS5963479A (en) Controller for hot air of burner in cereal drier
JPS59125377A (en) Controller for hot air of burner in cereal grain drier
JPS594876A (en) Controller for combustion of burner in cereal drier
JPS5974486A (en) Controller for hot air of burner in cereal drier
JPH0536713B2 (en)
JPS63306387A (en) Drying air-quantity controller for cereal drier
JPS5960173A (en) Controller for hot air of burner in cereal grain drier
JPS5971976A (en) Controller for hot air of burner in cereal drier
JPH01230982A (en) Grain drying machine
JPS636381A (en) Cereal drier controller
JPS63290387A (en) Hot-air temperature detector for cereal drier
JPS6391481A (en) Cereal drier operation controller
JPH0198886A (en) Combustion controller for burner in cereal grain drier
JPS62276390A (en) Drying controller for cereal grain drier
JPS62272087A (en) Drying controller for cereal grain drier
JPH01163591A (en) Dead time compensator in cereal drier
JPS62280573A (en) Cereal-temperature controller for cereal grain drier