JPS594850B2 - hand tai souchi no seizou houhou - Google Patents

hand tai souchi no seizou houhou

Info

Publication number
JPS594850B2
JPS594850B2 JP49080186A JP8018674A JPS594850B2 JP S594850 B2 JPS594850 B2 JP S594850B2 JP 49080186 A JP49080186 A JP 49080186A JP 8018674 A JP8018674 A JP 8018674A JP S594850 B2 JPS594850 B2 JP S594850B2
Authority
JP
Japan
Prior art keywords
figures
line segment
dimensional
line
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49080186A
Other languages
Japanese (ja)
Other versions
JPS519684A (en
Inventor
義人 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP49080186A priority Critical patent/JPS594850B2/en
Publication of JPS519684A publication Critical patent/JPS519684A/en
Publication of JPS594850B2 publication Critical patent/JPS594850B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 不発明は半導体装置の製造方法、特に寸法精度を必要と
するフォトエッチング法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, particularly a photoetching method that requires dimensional accuracy.

フォトエッチング法は半導体装置の製造に於いて必要欠
くべからざる方法であるが、露光条件、エッチングの条
件等により最終的にエッチングオフされる図形の寸法が
しぱしば変動する。
Although the photo-etching method is an indispensable method in the manufacture of semiconductor devices, the dimensions of the figure that is finally etched off often vary depending on exposure conditions, etching conditions, etc.

接合型もしくはショットキー障壁型電界効果トランジス
タのゲート長や超高周波用途のバイポーラトランジスタ
のエミッタ幅等のフォトエッチング後のばらつきは電力
利得や耐圧等の特性に大きな影響を与えることはよく知
られている。従来上記図形の寸法制御もしくは検査にあ
たつては測微計等により実寸法を測定していた。
It is well known that variations after photoetching, such as gate length of junction type or Schottky barrier field effect transistors and emitter width of bipolar transistors for ultra-high frequency applications, have a large impact on characteristics such as power gain and breakdown voltage. . Conventionally, when controlling or inspecting the dimensions of the above-mentioned figures, the actual dimensions have been measured using a micrometer or the like.

この場合、寸法変動最大偏差値が1μ以下になると測定
治具の機械的精度等が問題になり、その測定には非常な
困難を伴なうものであつた。5 不発明は従来の上記事
情に鑑みてなされたものであり、従つて本発明の目的は
、従来のフォトエッチング後の図形の実寸法測定という
煩雑さをなくし、治具等の機械的精度を必要とせず該図
形が寸法変動許容範囲内か否かを簡単にしかも正確に1
0判定することができる新規な半導体装置の製造方法を
提供することにある。
In this case, when the maximum deviation value of dimensional variation is less than 1 μm, the mechanical accuracy of the measuring jig becomes a problem, and the measurement is extremely difficult. 5. The invention was made in view of the above-mentioned conventional circumstances, and therefore, the purpose of the present invention is to eliminate the trouble of measuring the actual dimensions of a figure after photo-etching, and to improve the mechanical accuracy of jigs, etc. Easily and accurately determine whether the shape is within the allowable dimensional variation range without the need for
An object of the present invention is to provide a novel method for manufacturing a semiconductor device that can make a zero determination.

本発明の他の目的は、種々の電気特性の良好な半導体装
置を容易に製造する為の新規な方法を提供することにあ
る。
Another object of the present invention is to provide a new method for easily manufacturing semiconductor devices with various good electrical characteristics.

15本発明の上記目的は半導体基板上に形成された絶縁
膜もしくは金属被着層のフォトエッチングに於いて、該
フォトエッチングの際に対をなす少なくとも一組の寸法
検査図形を同時にフォトエッチング七、前記寸法検査図
形の内一方の図形の少な20くとも一辺の線分の延長線
が他方の図形の一辺の線分と平行になる様に設定し、前
記各寸法検査図形の平行する二辺の距離に基づいて被エ
ッチング図形の寸法検査をすることを特徴とした半導体
装置の製造方法によつて達成される。
15. The above object of the present invention is to simultaneously photo-etch at least one pair of dimensional inspection patterns during photo-etching of an insulating film or metal adhesion layer formed on a semiconductor substrate; Set the extension line of at least 20 line segments on one side of one of the dimension inspection figures to be parallel to the line segment on one side of the other figure, and This is achieved by a semiconductor device manufacturing method characterized by inspecting the dimensions of a figure to be etched based on distance.

25本発明に係る半導体装置の製造方法は、半導体基体
上に形成された絶縁性シリコン化合物もしくは金属被着
層のフォトエッチングの際に同時にフォトエッチングさ
れる複数個の寸法検査図形を使用し、該寸法検査図形の
少なくとも対をなす一組30の図形の内、一方の図形の
少くとも一辺の線分の延長線が他方の図形の一辺の線分
と平行かつ許容寸法変動最大偏差値の距離にある様にし
、該寸法検査図形相互の線分の移動により被フォトエッ
チング物の寸法検査をすることを特徴としている。
25 The method for manufacturing a semiconductor device according to the present invention uses a plurality of dimensional inspection patterns that are photo-etched simultaneously during photo-etching of an insulating silicon compound or metal adhesion layer formed on a semiconductor substrate, and Among a set of 30 figures forming at least a pair of dimension inspection figures, the extension line of at least one side of one figure is parallel to the line segment of one side of the other figure and is at a distance of the maximum allowable dimensional variation deviation value. The present invention is characterized in that the dimensions of the object to be photo-etched are inspected by moving line segments between the dimension inspection figures.

35次に本発明をその良好な実施例について添付図面を
参照しながら具体的に説明しよう。
35 Next, preferred embodiments of the present invention will be specifically described with reference to the accompanying drawings.

不発明に係る方法の一実施例は例えば第1図に示された
寸法精度を必要とする被エツチング図形と例えば第2図
に示された寸法検査図形を同一基板上に同時にエツチン
グする。
In one embodiment of the method according to the invention, a pattern to be etched requiring dimensional accuracy, such as that shown in FIG. 1, and a dimensional inspection pattern, such as that shown in FIG. 2, are simultaneously etched on the same substrate.

第1図は寸法精度を必要とする図形を示しており、図形
1は設計中心値Wの幅を有するものとし、寸法変動最大
偏差値はl/2及びu/2すなわちフオトエツチング後
の寸法変動許容範囲はW−l/2よりW+u/2である
ものとする。第2図は本発明に係る方法に使用する寸法
検査図形の基本形態の一例を示しており、第1図に示さ
れた寸法精度を必要とする図形1と同一の基板上の適宜
の位置に同時にフオトエツチングされるものであり、図
形1が設計中心値幅にフオトエツチングされた時の状態
を示している。第2図についてさらに詳しく説明するに
、図形2の線分2xの延長線即ち線分2xを含む直線4
xと図形3の線分3xを含む直線5xはそれぞれ図形3
と図形2を間通(貫通)し、かつ距離lをへだてた平行
線である。同様に図形2の線分2yを含む直線4yと図
形3の線分3yを含む直線5yは距離uをへだてた平行
線でありかつそれぞれ図形3、図形2を間通していない
。第2図に示された寸法検査図形2及び3は対をなす一
組の図形であり、これらの図形2及び3が上記の条件を
満たしていれば第1図に示された図形1は設計中心値幅
Wにフオトエツチングされたと判断される。その際、相
互に対をなす他の図形を間通する直線からなる平行線(
第2図に示された例に於いては直線4x及び5x)は図
形1が寸法変動許容範囲W−l/2以下に細くフオ千エ
ツチングされたか否かの判断の基準に使用され、他方、
相互に対をなす他の図形を間通しない直線から成る平行
線(第2図の例に於いては直線4y及び5y)は図形1
が寸法変動許容範囲W+u/2以上に太くフオトエツチ
ングされたか否かの判断の基準に使用されるものである
。向、第2図に示された例に於いては、直線4x,5x
を互いに対をな、す他の図形を間通する直線とし、直線
4y,5yを互いに対をなす他の図形を間通しない直線
としたが、これる逆にして直線4x,5xを互いに対を
なす他の図形を間通しない直線とし、直線4y,5yを
互いに対をなす他の図形を間通する直線とする様に図形
2及び3の位置を変位させてもよいことは勿論である。
又寸法検査図形は四辺形でなくとも又曲線をその一部に
含んでいてもよい。さらに該寸法検査図形一辺の長さは
任意である。もし第1図の図形1が寸法変動許容範囲W
−l/2以下に細くフオトエツチングされたとすると、
同時にフオトエツチングされた各寸法検査図形2,3の
線分2x,3xは夫々図形2,3の内側方向に距離l以
上移動するので、第3図に示される如く直線4x及び5
xがそれぞれ図形3及び図形2を間通しなくなる。
Figure 1 shows a figure that requires dimensional accuracy. Figure 1 has a width of the design center value W, and the maximum deviation values of dimensional variation are l/2 and u/2, that is, the dimensional variation after photoetching. It is assumed that the allowable range is from W-l/2 to W+u/2. FIG. 2 shows an example of the basic form of the dimensional inspection figure used in the method according to the present invention, and it is placed at an appropriate position on the same substrate as the figure 1 that requires dimensional accuracy shown in FIG. They are photo-etched at the same time, and show the state when figure 1 is photo-etched to the design center value range. To explain FIG. 2 in more detail, the straight line 4 that includes the line segment 2x, that is, the extension line of the line segment 2x of the figure 2.
Straight line 5x including x and line segment 3x of figure 3 is each figure 3
is a parallel line that passes through (penetrates) figure 2 and is separated by a distance l. Similarly, straight line 4y including line segment 2y of figure 2 and straight line 5y including line segment 3y of figure 3 are parallel lines separated by distance u and do not pass through figures 3 and 2, respectively. Dimensional inspection figures 2 and 3 shown in Fig. 2 are a pair of figures, and if these figures 2 and 3 satisfy the above conditions, figure 1 shown in Fig. 1 is a designed one. It is determined that the image has been photoetched to the center value width W. At that time, parallel lines (
In the example shown in FIG. 2, the straight lines 4x and 5x) are used as a criterion for determining whether figure 1 has been finely etched to within the dimensional variation tolerance range W-l/2, and on the other hand,
Parallel lines (straight lines 4y and 5y in the example in Figure 2) consisting of straight lines that do not pass through other figures that are paired with each other are figure 1.
This is used as a criterion for determining whether or not the photo has been photoetched thicker than the allowable dimensional variation range W+u/2. In the example shown in FIG. 2, the straight lines 4x, 5x
is a straight line that passes through other figures that are paired with each other, and straight lines 4y and 5y are defined as straight lines that do not pass through other figures that are paired with each other. It goes without saying that the positions of figures 2 and 3 may be displaced so that the other figures forming the pair are straight lines that do not pass through them, and the straight lines 4y and 5y are straight lines that pass through the other figures that are paired with each other. .
Further, the dimension inspection figure does not have to be a quadrilateral and may include a curved line as a part thereof. Furthermore, the length of one side of the dimension inspection figure is arbitrary. If figure 1 in Figure 1 is the dimensional variation tolerance W
If it is thinly photoetched to less than -l/2,
Since the line segments 2x and 3x of the dimension inspection figures 2 and 3, which were photoetched at the same time, move inward of the figures 2 and 3 by more than a distance l, the lines 4x and 5 are shown in FIG.
x no longer passes through figure 3 and figure 2, respectively.

寸法変動許容範囲の下限であるW−l/2にフオトエツ
チングされた場合には直線4xと直線5xとは一致し重
合する。又もし第1図の図形1が寸法変動許容範囲W+
u以上に太くフオトエツチングされたとすると、寸法検
査図形2,3の線分2y,3yは夫々図形2,3の外側
方向に距離u以上移動するので、第4図に示されている
如く直線4y及び5yがそれぞれ図形3、図形2を間通
する様になる。その際同時に図形2及び3の線分2x及
び3xも夫々図形2及び3の外側方向に距離u以上移動
することはいうまでもない。従つて第2図で図形2の線
分2xの延長線4xが図形3を間通し、かつ図形2の線
分2yの延長線4yが図形3を間通しなければ、第1図
の寸法精度を必要とする図形1は寸法変動許容範囲内に
フオトエツチングされている。
When photoetched to W-l/2, which is the lower limit of the allowable dimensional variation range, the straight lines 4x and 5x coincide and overlap. Also, if figure 1 in Figure 1 is within the dimensional variation tolerance range W+
If the photo is thicker than u, the line segments 2y and 3y of the dimension inspection figures 2 and 3 will move outward of the figures 2 and 3 by a distance u or more, so the line 4y will become the straight line 4y as shown in Fig. 4. and 5y pass through figure 3 and figure 2, respectively. Needless to say, at the same time, the line segments 2x and 3x of figures 2 and 3 are also moved outwardly of figures 2 and 3 by a distance u or more. Therefore, if the extension line 4x of line segment 2x of figure 2 passes through figure 3 in Figure 2, and the extension line 4y of line segment 2y of figure 2 does not pass through figure 3, the dimensional accuracy in Figure 1 will be reduced. The required figure 1 is photoetched within the allowable range of dimensional variation.

以上の如く杢発明によれば、実寸法を測定せずとも上記
寸法検査図形により寸法変動許容範囲内か否かを顕微鏡
等により直視することができる。
As described above, according to the present invention, it is possible to directly check with a microscope or the like whether or not the dimensional variation is within the permissible range based on the dimensional inspection pattern without measuring the actual dimension.

又、寸法精度を必要とする図形1の幅Wにかかわりなく
、寸法変動最大偏差値のl/2及びu/2によつてのみ
寸法検査図形それぞれの辺の相対位置が定まる。尚、図
形1に於いてフオトエツチングされる部分は図形1その
もの即ち斜線を施した部分でもよいし、図形1の周囲の
部分でも良いことは明らかであり、又同時に行われる寸
法検査図形2,3についてのフオトエツチングされる部
分は図形2,3そのもの即ち斜線を施した部分でもよい
し図形2,3を包囲している部分でもよいことはいうま
でもない。
Moreover, regardless of the width W of the figure 1 which requires dimensional accuracy, the relative position of each side of the dimension inspection figure is determined only by l/2 and u/2 of the maximum deviation value of the dimensional variation. It is clear that the portion of figure 1 to be photoetched may be the figure 1 itself, that is, the shaded area, or the surrounding area of figure 1. It goes without saying that the portions to be photographed may be the figures 2 and 3 themselves, that is, the shaded areas, or the portions surrounding the figures 2 and 3.

第5図は杢発明に係る半導体装置の製造方法に使用する
寸法検査図形の他の例を示すものであり、第2図の2個
に示された図形2及び3を寸法検査に関与しない部分2
aで接続して1個の図形としたものであるが、機能的に
は第2図の2個の図形と同じであり、この第5図に示さ
れる場合も図形2及び図形3は対をなす一組の図形の範
囲内に包含されるものとする。
FIG. 5 shows another example of dimensional inspection figures used in the method of manufacturing a semiconductor device according to the present invention, in which two figures 2 and 3 shown in FIG. 2 are used as parts not involved in dimensional inspection. 2
Although they are connected at point a to form one figure, they are functionally the same as the two figures in Figure 2, and in the case shown in Figure 5, Figures 2 and 3 are paired. shall be included within the range of a set of figures.

この様に寸法検査図形は第2図、第5図或いは後述され
る第6図に示された範囲に限定する意図はなく前記本発
明の主旨を逸脱しない範囲で該寸法検査図形の統合、分
離等の変契約いはその他の変形、変更をさせることがで
きることはいうまでもない。第6図は本発明に係る方法
に使用する寸法検査図形の他の例であり、第2図に示さ
れた図形よりも視覚的に寸法検査を行い易すくしたもの
である。
In this way, the dimension inspection figures are not intended to be limited to the range shown in FIG. 2, FIG. 5, or FIG. It goes without saying that other variations and changes can be made. FIG. 6 shows another example of a dimension inspection figure used in the method according to the present invention, which is designed to make it easier to visually inspect dimensions than the figure shown in FIG.

参照番号10,20,30及び40は第1図の寸法精度
を必要とする図形1と同時にフオトエツチングされる寸
法検査図形であり、図形10と20が、及び図形30と
40が夫々対の組をなしている。第6図の各図形は図形
1が設計中心値幅にフオトエツチングされた時の状態を
示している。l/2及びu/2は前述と同様に寸法変動
最大偏差値である。第6図についてさらに詳しく説明す
る。直線51xは図形10の線分11x及び図形30の
線分31xを含み図形20の線分20xとはlの距離を
へだて平行をなしかつ又図形20を間通している。又、
直線52yは、図形20の線分22y及び図形40の線
分42yを含み、図形30の線分30yとはuの距離を
へだて平行をなし、かつ又図形30を間通していない。
同様に直線52xは図形30の線分32x及び図形10
の線分12xを含み、図形40の線分40xとはlの距
離をへだて平行をなしかつ又図形40を間通している。
又直線51yは図形20の線分21y及び図形40の線
分41yを含み、図形10の線分10yとはuの距離を
へだてかつ又図形10を間通していない。この第6図の
場合に於いて図形10の線分11x及び図形30の線分
31xの延長線である直線51xは図形20の両側に線
分11x及び31xが存するので、第2図の直線4xよ
りも視覚的に感知し易くなつている。
Reference numerals 10, 20, 30, and 40 are dimensional inspection figures that are photoetched at the same time as figure 1 in FIG. 1, which requires dimensional accuracy. is doing. Each figure in FIG. 6 shows the state when figure 1 is photoetched to the design center value range. l/2 and u/2 are the maximum deviation values of dimensional variation, as described above. FIG. 6 will be explained in more detail. The straight line 51x includes the line segment 11x of the figure 10 and the line segment 31x of the figure 30, is parallel to the line segment 20x of the figure 20 at a distance of l, and also passes through the figure 20. or,
The straight line 52y includes the line segment 22y of the figure 20 and the line segment 42y of the figure 40, is parallel to the line segment 30y of the figure 30 at a distance of u, and does not pass through the figure 30.
Similarly, the straight line 52x is the line segment 32x of the figure 30 and the figure 10.
It includes a line segment 12x of the figure 40, is parallel to the line segment 40x of the figure 40 at a distance of l, and also passes through the figure 40.
The straight line 51y includes the line segment 21y of the figure 20 and the line segment 41y of the figure 40, is separated by a distance u from the line segment 10y of the figure 10, and does not pass through the figure 10. In the case of FIG. 6, the straight line 51x, which is an extension of the line segment 11x of the figure 10 and the line segment 31x of the figure 30, has line segments 11x and 31x on both sides of the figure 20, so the straight line 4x of FIG. It is now easier to detect visually.

直線52x,51y及び52yについても同様の効果が
得られる。第7図は第1図の寸法精度を必要とする図形
1が寸法変動許容範囲W−l/2以下に細くフオトエツ
チングされた場合の同時にフオトエツチングされた第6
図に示した形態の寸法検査図形を表わしている。
Similar effects can be obtained with the straight lines 52x, 51y, and 52y. Figure 7 shows the 6th figure that was photoetched at the same time when Figure 1, which requires dimensional accuracy in Figure 1, was thinly photo-etched to within the dimensional variation tolerance W-l/2.
It represents the dimension inspection figure of the form shown in the figure.

又、第8図は第1図の寸法精度を必要とする図形1が寸
法変動許容範囲W+u/2以上に太くフオトエツチング
された場合の同時にフオトエツチングされた寸法検査図
形を表わしている。
Further, FIG. 8 shows a dimensional inspection pattern that is photoetched at the same time when the pattern 1 shown in FIG. 1, which requires dimensional accuracy, is photoetched to be thicker than the dimensional variation allowable range W+u/2.

従つて第6図で図形10の線分11x及ひ図形30の線
分31xの延長線51xと図形10の線分12x及び図
形30の線分32xの延長線52xがそれぞれ図形20
、図形40を間通し、かつ図形20の線分21y及び図
形40の線分41yの延長線51yと図形20の線分2
2y及び図形40の線分42yの延長線52yがそれぞ
れ図形10及び図形30を間通しなければ、第1図の寸
法精度を必要とする図形1は寸法変動許容範囲内にフオ
トエツチングされている。
Therefore, in FIG. 6, the extension line 51x of the line segment 11x of the figure 10 and the line segment 31x of the figure 30, and the extension line 52x of the line segment 12x of the figure 10 and the line segment 32x of the figure 30 are the figure 20.
, through the figure 40, and the line segment 21y of the figure 20, the extension line 51y of the line segment 41y of the figure 40, and the line segment 2 of the figure 20.
2y and the extension line 52y of the line segment 42y of the figure 40 do not pass through the figures 10 and 30, respectively, the figure 1 which requires dimensional accuracy shown in FIG. 1 is photoetched within the dimensional variation tolerance range.

本発明は以上の如く構成されており、本発明は寸法精度
を必要とする被エツチング図形と同時に寸法検査図形を
フオトエツチングし、該寸法検査図形のエツチング状態
を視ることによつて前記被エツチング図形が寸法変動許
容範囲内にエツチングされたか否かを判断する方法であ
るから、本発明によれば、従来のフオトエツチング後の
被エツチング図形の実寸法測定という煩雑さがなくなり
更には治具等の機械的精度を必要とせず、被エツチング
図形が寸法変動許容範囲内か否かを簡単にしかも正確に
判定することができる利点がある。
The present invention is constructed as described above, and the present invention is capable of photo-etching a dimension inspection figure at the same time as a figure to be etched which requires dimensional accuracy, and by observing the etched state of the dimension inspection figure. Since this is a method for determining whether or not a figure has been etched within an allowable range of dimensional variation, the present invention eliminates the troublesome measurement of the actual dimensions of the figure to be etched after photo etching, and also eliminates the need for tools such as jigs, etc. This method has the advantage that it is possible to easily and accurately determine whether or not the figure to be etched is within the allowable dimensional variation range without requiring mechanical precision.

以上本発明は添付図面を参照しながらその良好な実施例
について説明されたが、それは単なる例示的なものであ
つて制限的意味を有するものでないことは勿論である。
従つて本発明の精神及び範囲から逸脱することなしに本
発明は種々の変更を加えて実施し得るが、それらはすべ
て前記した本願特許請求の範囲内に包含されるものであ
る。
Although the present invention has been described above with reference to the preferred embodiments thereof with reference to the accompanying drawings, it goes without saying that these are merely illustrative and do not have a restrictive meaning.
Accordingly, the present invention may be practiced with various modifications without departing from the spirit and scope of the invention, but all such modifications are included within the scope of the claims of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフオトエツチングにおいて寸法精度を必要とす
る図形を示す図、第2図は本発明に係る半導体の製造方
法に使用する寸法検査図形の基本形態の一例を示す図、
第3図及び第4図は寸法変動許容範囲外にある寸法検査
図形を示す図、第5図は第2図の変形であり、杢発明に
係る方法に使用する寸法検査図形の他の例を示す図、第
6図は本発明に係る方法に使用する寸法検査図形の更に
他の例を示す図、第7図及び第8図は寸法変動許容範囲
外にある寸法検査図形を示す図である。
FIG. 1 is a diagram showing a figure that requires dimensional accuracy in photoetching, FIG. 2 is a diagram showing an example of the basic form of a dimensional inspection figure used in the semiconductor manufacturing method according to the present invention,
Figures 3 and 4 are diagrams showing dimensional inspection figures that are outside the allowable dimensional variation range, and Figure 5 is a modification of Figure 2, showing other examples of dimensional inspection figures used in the method according to the invention. FIG. 6 is a diagram showing still another example of a dimension inspection figure used in the method according to the present invention, and FIGS. 7 and 8 are diagrams showing a dimension inspection figure outside the allowable range of dimensional variation. .

Claims (1)

【特許請求の範囲】[Claims] 1 フォトエッチング工程を含む半導体装置の製造方法
において、フォトエッチングの際に対をなす少なくとも
一組の寸法検査図形を同時にフォトエッチングし、前記
寸法検査図形の内一方の図形の少なくとも一辺の線分が
他方の図形の一辺の線分と平行になるように設定し、前
記各寸法検査図形の平行する二辺の距離に基づいて被エ
ッチング図形の寸法検査をすることを特徴とした半導体
装置の製造方法。
1. In a semiconductor device manufacturing method including a photo-etching step, at least one pair of dimension inspection figures is simultaneously photo-etched during photo-etching, and a line segment on at least one side of one of the dimension inspection figures is A method for manufacturing a semiconductor device, characterized in that the dimension of the figure to be etched is inspected based on the distance between the two parallel sides of each dimension inspection figure, with the figure being set to be parallel to a line segment on one side of the other figure. .
JP49080186A 1974-07-15 1974-07-15 hand tai souchi no seizou houhou Expired JPS594850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49080186A JPS594850B2 (en) 1974-07-15 1974-07-15 hand tai souchi no seizou houhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49080186A JPS594850B2 (en) 1974-07-15 1974-07-15 hand tai souchi no seizou houhou

Publications (2)

Publication Number Publication Date
JPS519684A JPS519684A (en) 1976-01-26
JPS594850B2 true JPS594850B2 (en) 1984-02-01

Family

ID=13711325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49080186A Expired JPS594850B2 (en) 1974-07-15 1974-07-15 hand tai souchi no seizou houhou

Country Status (1)

Country Link
JP (1) JPS594850B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240458Y2 (en) * 1980-11-04 1987-10-16
JPS6285485A (en) * 1985-10-09 1987-04-18 富士通テン株式会社 Checking of printed circuit board
JP5421893B2 (en) * 2010-12-20 2014-02-19 日東電工株式会社 Wiring circuit board manufacturing method, wiring circuit board assembly sheet manufacturing method, wiring circuit board, and wiring circuit board assembly sheet

Also Published As

Publication number Publication date
JPS519684A (en) 1976-01-26

Similar Documents

Publication Publication Date Title
US3808527A (en) Alignment determining system
US6803638B2 (en) Semiconductor hall sensor
JPH0321901B2 (en)
KR100242503B1 (en) Misregistration detecting marks for pattern formen on semiconductor substrate
US4529314A (en) Method of measuring misalignment between levels on a substrate
JPS594850B2 (en) hand tai souchi no seizou houhou
JPS63170981A (en) Magnetoresistance element made of ferromagnetic substance
KR100392744B1 (en) Semiconductor device and manufacturing method thereof, and registration accuracy measurement enhancement method
JPH0311669A (en) Magnetic transistor
JPS627692B2 (en)
JP3036472B2 (en) Semiconductor device and mask alignment misalignment measurement method
TWI847479B (en) Overlay measurement element and operating method thereof
JP2514394B2 (en) Method of measuring shot length or alignment accuracy of shotgate
JP2007526497A (en) Offset-dependent resistors for measuring mismatch between bonded masks
JPS62203340A (en) Accuracy measurement pattern of photorithography
US6647619B2 (en) Positioning arrangement and method
JPH07192994A (en) Alignment mark of electron-beam exposure and detection method of alignment mark of elctron-beam exposure
TW202429591A (en) Overlay measurement element and operating method thereof
JPS5851410B2 (en) Mask alignment accuracy measurement method
KR100217436B1 (en) On-chip reference hall element for the enhancement of the hall device
JP2839469B2 (en) Pattern for measuring mask misalignment and method for measuring the same
JPS5922370B2 (en) How to align masks for integrated circuits
JP4023983B2 (en) Pattern dimension inspection method and image recognition auxiliary pattern
JPS6321845A (en) Measuring method for contact hole
CN117542837A (en) Semiconductor structure and measuring method