JPS594669B2 - Magnetic field detection element - Google Patents

Magnetic field detection element

Info

Publication number
JPS594669B2
JPS594669B2 JP1260376A JP1260376A JPS594669B2 JP S594669 B2 JPS594669 B2 JP S594669B2 JP 1260376 A JP1260376 A JP 1260376A JP 1260376 A JP1260376 A JP 1260376A JP S594669 B2 JPS594669 B2 JP S594669B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
detection element
field detection
high permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1260376A
Other languages
Japanese (ja)
Other versions
JPS5296073A (en
Inventor
進 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1260376A priority Critical patent/JPS594669B2/en
Publication of JPS5296073A publication Critical patent/JPS5296073A/en
Publication of JPS594669B2 publication Critical patent/JPS594669B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】 この発明は磁場の大きさおよび方向を検出する素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an element for detecting the magnitude and direction of a magnetic field.

従来の磁場検出素子としてはサーチコイルおよびホール
素子が主たる素子として挙げられる。
Conventional magnetic field detection elements include search coils and Hall elements as main elements.

前者は電磁誘導の法則に従つてコイルを通過する磁束の
時間変化に比例した起電力を検出するものであるが、時
間変化が小さくなると検出感度が低下すると言う重大な
欠点がある。その点後者のホール素子は直流磁場でも検
出できる利点があるが電流端子と磁場に比例した出力を
得る電圧端子が必要であり端子数が多いこと、そのため
に端子取り付け、取り出しに問題を起し易いこと、駆動
電流が必要なこと、それによる熱の発生、雑音の発生等
が避けられないこと等の欠点がある。この発明は上述の
ような従来の磁場検出素子の欠点を除去するためになさ
れたもので、その目的は直流磁場から交流磁場まで広い
範囲にわたつて十分な感度を有し、熱の発生、雑音の発
生等を極めて少くした高性能磁場検出素子を提供するこ
とにある。すなわちこの発明は圧電性誘電体を導電性高
透磁率磁性体で挾み磁場中で生じる前記磁性体端面の磁
荷により発生するクーロンカニ漢字をこの圧電性誘電体
に加えその分極電荷を検出することにより構成される。
The former method detects an electromotive force that is proportional to the time change in magnetic flux passing through a coil according to the law of electromagnetic induction, but it has a serious drawback in that the detection sensitivity decreases as the time change becomes smaller. In that respect, the latter Hall element has the advantage of being able to detect even a DC magnetic field, but it requires a current terminal and a voltage terminal that produces an output proportional to the magnetic field, and the number of terminals is large, which tends to cause problems when attaching and removing the terminals. However, there are drawbacks such as the need for a driving current, and the unavoidable generation of heat and noise due to this. This invention was made to eliminate the drawbacks of conventional magnetic field detection elements as described above, and its purpose is to have sufficient sensitivity over a wide range from DC magnetic fields to AC magnetic fields, and to avoid heat generation and noise. An object of the present invention is to provide a high-performance magnetic field detection element in which the generation of magnetic fields is extremely reduced. That is, in this invention, a piezoelectric dielectric is sandwiched between conductive high permeability magnetic materials, and a Coulomb crab kanji generated by the magnetic charge on the end face of the magnetic material generated in a magnetic field is added to the piezoelectric dielectric and its polarization charge is detected. It consists of:

さらにこの発明は磁場の方向をも検出する場合には、上
記構成にその導電性高透磁率磁性体の少くとも1端にバ
イアス磁場発生体を設けることにより構成される。
Furthermore, in the case where the direction of the magnetic field is also detected, the present invention is constructed by providing the above structure with a bias magnetic field generator at at least one end of the conductive high permeability magnetic material.

以下この発明を図面を用いて説明する。This invention will be explained below with reference to the drawings.

第1図はこの発明の基本構成を示すもので、それぞれに
端子8、9をつけた導電性高透磁率磁性体(鉄ーニッケ
ル合金等)1、2に挾まれた圧電性誘電体(チタン酸ジ
ルコン酸鉛等)3から成る。図のような形状で断面を決
める寸法a、bが長さ11、12に比し十分小さければ
(例えばa二b二50μm、l3二12二5mm、を二
10ttm)図で示したY方向Z方向には反磁界係数が
大きくなるためY、Z方向の磁化成分は殆どoとなりX
方向のみ磁化する。従つて以下に示すように、このよう
な磁場検出素子はX方向の磁場成分のみ選択的に検出す
ることになる。磁化の大きさM1およびM2は被測定磁
場Hに比例し、前記磁性体1および2の両端には単位面
積当り士M、および士M。の磁荷が現われ、特に圧電性
誘電体3に接する面では互に異符号の磁荷が対面するこ
とになりクーロンカニ漢字(引力)による圧力が前記誘
電体3に加わる。この圧力によつて前記誘電体3は電気
分極を起しそのため導電性高透磁率磁性体1および2の
間に電位差を生じ、この値はそれぞれに取り付けられた
端子8および9を通して電気的に検出される。すなわち
このような素子ではクーロンカニ漢字の原因となる前記
磁性体1および2の磁化成分にのみ応答し、従つて被測
定磁場のx成分を選択的に検出し、その大きさに応じた
電気的出力を示す。第2図は、この発明の他の実施例を
示すもので第1図に示した基本構成にバイアス磁場発生
体を付与したものである。すなわち、端子28および2
9をつけた導電性高透磁率磁性体21および22に挾ま
れた圧電性誘電体23および前記磁性体21および22
を予め一方向に磁化しておくバイアス磁場発生体24か
ら成る。バイアス磁場発生体24により前記磁性体21
および22は予め一方(図ではXの負方向)に磁化され
ており(バイアス磁場の大きさは前記磁場体21および
22が飽和する磁場の半分位が適当で通常は0.1〜1
00エルステツド位。)被測定磁場がOの状態でも圧電
性誘電体23に一定圧力を加えている。被測定磁場がこ
のバイアス磁場発生体24の作る磁場と同方向になると
きは両者の和の大きさで前記磁性体21および22を磁
化することになり、より強い圧力が前記誘電体23に加
わりより大きな電位差を端子28および29間に生じる
。一方被測定磁場がバイアス磁場発生体24の作る磁場
と逆方向になるときは両者の差の磁場が前記磁性体21
および22に加わることになるため磁化は小さくなり前
記誘電体23に加わる力が減少し従つて端子28および
29間に生じる電位差も減少する。このようにして被測
定磁場の大きさおよび方向を被測定磁場が零の時を基準
として端子28および29間に生じる電位差の大きさお
よび増減で検出することができる。第3図は第2図で示
した実施例を用いて電流検出器(力レットプローブ)を
構成した例を示す。
Figure 1 shows the basic configuration of the present invention, in which a piezoelectric dielectric material (titanic acid (lead zirconate, etc.) 3. If the dimensions a and b that determine the cross section in the shape shown in the figure are sufficiently smaller than the lengths 11 and 12 (for example, a2b250μm, l321225mm, and 210ttm), the Y direction Z shown in the figure Since the demagnetizing field coefficient increases in the direction, the magnetization components in the Y and Z directions become almost o, and the
Magnetizes only in the direction. Therefore, as shown below, such a magnetic field detection element selectively detects only the magnetic field component in the X direction. The magnitudes of magnetization M1 and M2 are proportional to the magnetic field H to be measured, and the magnetic bodies 1 and 2 have magnetizations of M and M per unit area at both ends of the magnetic bodies 1 and 2, respectively. Magnetic charges appear, and in particular, on the surface in contact with the piezoelectric dielectric 3, magnetic charges of opposite signs face each other, and pressure due to the Coulomb crab kanji (gravitational force) is applied to the dielectric 3. This pressure causes the dielectric body 3 to undergo electrical polarization, thereby creating a potential difference between the conductive high permeability magnetic bodies 1 and 2, which value is electrically detected through terminals 8 and 9 attached to each. be done. In other words, such an element responds only to the magnetization components of the magnetic bodies 1 and 2 that cause the Coulomb crab kanji, and therefore selectively detects the x component of the magnetic field to be measured, and generates an electrical signal according to its magnitude. Show the output. FIG. 2 shows another embodiment of the present invention, in which a bias magnetic field generator is added to the basic configuration shown in FIG. 1. That is, terminals 28 and 2
A piezoelectric dielectric material 23 sandwiched between conductive high permeability magnetic materials 21 and 22 marked with 9 and said magnetic materials 21 and 22
It consists of a bias magnetic field generator 24 that is magnetized in one direction in advance. The bias magnetic field generator 24 causes the magnetic body 21 to
and 22 are magnetized in advance in one direction (the negative direction of
00 Ersted. ) A constant pressure is applied to the piezoelectric dielectric 23 even when the magnetic field to be measured is O. When the magnetic field to be measured is in the same direction as the magnetic field generated by the bias magnetic field generator 24, the magnetic bodies 21 and 22 are magnetized by the sum of the two, and a stronger pressure is applied to the dielectric body 23. A larger potential difference is created between terminals 28 and 29. On the other hand, when the magnetic field to be measured is in the opposite direction to the magnetic field generated by the bias magnetic field generator 24, the magnetic field of the difference between the two is generated by the magnetic body 21.
Since the magnetization is applied to the terminals 28 and 22, the magnetization becomes smaller, the force applied to the dielectric 23 is reduced, and the potential difference generated between the terminals 28 and 29 is also reduced. In this way, the magnitude and direction of the magnetic field to be measured can be detected by the magnitude and increase/decrease of the potential difference generated between the terminals 28 and 29 with respect to when the magnetic field to be measured is zero. FIG. 3 shows an example of a current detector (forcelet probe) constructed using the embodiment shown in FIG.

それぞれに端子38および39を取り付けた導電性高透
磁率磁性体31および32で圧電性誘電体33を挟み、
一方の端は高透磁率磁性体35および36を介してバイ
アス磁場発生体34に連なり、その発生する磁場により
(図では点線で磁力線の経路を示す。)一定の圧力を前
記圧電性誘電体33に加えている。高透磁率磁性体35
をスライドさせて電流1の流れる導線37をこの枠内に
入れると導線37のまわりに生ずる磁場がこの電流検出
器に加わり、その方向がバイアス磁場と同方向なら端子
38および39間に出力増大を、逆方向なら減少をもた
らす。そしてその変化量は導線37に流れる電流に応じ
た値となり直流から高周波までの高感度電流検出が可能
となる。
A piezoelectric dielectric material 33 is sandwiched between conductive high permeability magnetic materials 31 and 32 to which terminals 38 and 39 are attached, respectively.
One end is connected to the bias magnetic field generator 34 via the high permeability magnetic bodies 35 and 36, and the generated magnetic field applies a constant pressure to the piezoelectric dielectric 34 (the path of the magnetic lines of force is shown by the dotted line in the figure). In addition to High permeability magnetic material 35
When the conductor 37 through which the current 1 flows is placed within this frame, the magnetic field generated around the conductor 37 is applied to this current detector, and if the direction is the same as the bias magnetic field, an output increase is generated between the terminals 38 and 39. , in the opposite direction will result in a decrease. The amount of change is a value corresponding to the current flowing through the conducting wire 37, and high-sensitivity current detection from direct current to high frequency becomes possible.

以上の例で挙げた素材はこの発明を実施するための一例
を示したに過ぎず、上述の材料に限定されるものではな
い。
The materials mentioned in the above examples are merely examples for implementing the present invention, and the materials are not limited to the above-mentioned materials.

このような磁場検出素子は端子の数がわずか2本ですみ
、また駆動に外部からエネルギーの供給が不要なこと、
従つて熱の発生、雑音の発生が少いこと等の長所を有し
、特に微小磁場(100エルステツド以下)の検出に優
れている。
This type of magnetic field detection element requires only two terminals, and does not require an external supply of energy to drive it.
Therefore, it has the advantage of generating less heat and noise, and is particularly excellent in detecting minute magnetic fields (100 oersted or less).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はこの発明の実施例を示す
もので1,2,21,22,31および32は導電性高
透磁率磁性体であり、3,23および33は圧電性誘電
体であり、24および34はバイアス磁場発生体であり
、35および36は高透磁率磁性体であり、37は導線
であり、8,9,28,29,38および39は端子で
ある。
1, 2, and 3 show examples of the present invention, in which 1, 2, 21, 22, 31, and 32 are conductive high permeability magnetic materials, and 3, 23, and 33 are piezoelectric 24 and 34 are bias magnetic field generators, 35 and 36 are high permeability magnetic materials, 37 is a conductive wire, and 8, 9, 28, 29, 38 and 39 are terminals. .

Claims (1)

【特許請求の範囲】 1 圧電性誘電体と該圧電性誘電体をはさんでその両側
に固着された導電性高透磁率磁性体とより成ることを特
徴とする磁場検出素子。 2 圧電性誘電体と該圧電性誘電体をはさんでその両側
に固着された導電性高透磁率磁性体と、該導電性高透磁
率磁性体の少くとも一端に固着されたバイアス磁場発生
体とより成ることを特徴とする磁場検出素子。
[Scope of Claims] 1. A magnetic field detection element comprising a piezoelectric dielectric material and a conductive high permeability magnetic material sandwiching the piezoelectric dielectric material and fixed to both sides thereof. 2. A piezoelectric dielectric, a conductive high permeability magnetic material fixed to both sides of the piezoelectric dielectric, and a bias magnetic field generator fixed to at least one end of the conductive high permeability magnetic material. A magnetic field detection element characterized by comprising:
JP1260376A 1976-02-06 1976-02-06 Magnetic field detection element Expired JPS594669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1260376A JPS594669B2 (en) 1976-02-06 1976-02-06 Magnetic field detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1260376A JPS594669B2 (en) 1976-02-06 1976-02-06 Magnetic field detection element

Publications (2)

Publication Number Publication Date
JPS5296073A JPS5296073A (en) 1977-08-12
JPS594669B2 true JPS594669B2 (en) 1984-01-31

Family

ID=11809917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1260376A Expired JPS594669B2 (en) 1976-02-06 1976-02-06 Magnetic field detection element

Country Status (1)

Country Link
JP (1) JPS594669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170961U (en) * 1984-10-17 1986-05-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170961U (en) * 1984-10-17 1986-05-15

Also Published As

Publication number Publication date
JPS5296073A (en) 1977-08-12

Similar Documents

Publication Publication Date Title
US4385273A (en) Transducer for measuring a current-generated magnetic field
US4692703A (en) Magnetic field sensor having a Hall effect device with overlapping flux concentrators
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
EP0195217B1 (en) Magnetic reluctance sensing apparatus and method
US5994899A (en) Asymmetrical magneto-impedance element having a thin magnetic wire with a spiral magnetic anisotropy
JPH07181239A (en) Magnetic impedance effect element
EP1467214A2 (en) Current sensor and current detection unit using the same
JPS6022726B2 (en) displacement detector
JPH05264699A (en) Field measuring apparatus
JP3764834B2 (en) Current sensor and current detection device
CN115856725B (en) magnetic sensor
JPH11101861A (en) Magneto-resistance effect type sensor
JPS594669B2 (en) Magnetic field detection element
JPH06176930A (en) Magnetic inductance element
Kashiwagi et al. 300 A current sensor using amorphous wire core (invertor control of AC motors)
JP2617498B2 (en) Magnetic sensor
JP2007132926A (en) Voltage measuring device and electric power measuring device
JPH0712930Y2 (en) Shock detector
JPH054037U (en) Current detection sensor
JP2514338B2 (en) Current detector
JPH0510980A (en) Current detection method
US3204186A (en) Antenna utilizing the hall effect
JPH06160499A (en) Magnetic detector
JP2666613B2 (en) Magnetic sensor
SU1231522A1 (en) Device for counting moving objects