JP2617498B2 - Magnetic sensor - Google Patents
Magnetic sensorInfo
- Publication number
- JP2617498B2 JP2617498B2 JP62323201A JP32320187A JP2617498B2 JP 2617498 B2 JP2617498 B2 JP 2617498B2 JP 62323201 A JP62323201 A JP 62323201A JP 32320187 A JP32320187 A JP 32320187A JP 2617498 B2 JP2617498 B2 JP 2617498B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- sensor
- output voltage
- magnetic field
- magnetic body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁界の有無、大小、角度等を検出すること
ができ、方位センサ、位置センサ、傾斜センサ、電流セ
ンサ等に使用できる磁気センサに関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention can detect the presence or absence, magnitude, angle, etc. of a magnetic field, and can be used as a direction sensor, a position sensor, a tilt sensor, a current sensor, and the like. About.
(従来の技術) 従来の磁気センサは、第15図に示すように、磁芯1に
励磁巻線2と検出巻線3とを巻回し、励磁巻線2に電源
4により交流電流を流し、これにより磁芯1に磁芯の軸
心方向に内部磁界Hiを発生させ、該内部磁界Hiに対して
バイアスとして作用する外部磁界Hoの大きさにより、検
出巻線3の出力端子5に現われる基本波または高調波の
出力電圧が変化するように構成されている。この磁気セ
ンサは、例えば電流センサとして使用されるもので、電
流の大小によって変化する外部磁界Hoの大小の変化が出
力電圧の変化として検出できる。(Prior Art) In a conventional magnetic sensor, as shown in FIG. 15, an exciting winding 2 and a detecting winding 3 are wound around a magnetic core 1, and an AC current is supplied to the exciting winding 2 by a power supply 4. Accordingly it generates an internal magnetic field H i to the magnetic core 1 in the axial direction of the magnetic core, the magnitude of the external magnetic field H o acting as a bias with respect to said internal magnetic field H i, the output terminal 5 of the detection winding 3 Is configured such that the output voltage of the fundamental wave or the harmonic wave appearing in the above changes. The magnetic sensor, for example intended to be used as a current sensor, a change in the magnitude of the external magnetic field H o that varies with the magnitude of the current can be detected as a change in the output voltage.
第16図は、第15図の磁気センサの用途を変えたもの
で、磁芯1と外部磁界Hoとの相対的な向きが変化するよ
うに磁気センサあるいは磁石等の外部磁界発生手段を配
置し、磁芯1の内部磁界Hiに対し、外部磁界Hoの磁芯1
と同方向成分Ho.cosθの変化が出力電圧の変化として現
われるようにしたものである。この磁気センサは、単体
あるいは複数個のものを組合わせて方位センサ、傾斜セ
ンサ等に使用される。FIG. 16 shows a change of the application of the magnetic sensor shown in FIG. 15, in which an external magnetic field generating means such as a magnetic sensor or a magnet is arranged so that the relative orientation between the magnetic core 1 and the external magnetic field Ho changes. , to the internal magnetic field H i of the magnetic core 1, core 1 of the external magnetic field Ho
The change in the component H o .cos θ in the same direction appears as a change in the output voltage. This magnetic sensor is used alone or in combination of a plurality of magnetic sensors as an orientation sensor, an inclination sensor, and the like.
第15図および第16図に示す磁気センサは、第17図
(A)に示すように、内部磁界Hiに対し、外部磁界Hoの
磁束の方向が平行となり、第17図(B)に示すように、
外部磁界Hoと内部磁界Hiの向きが同じである場合に磁界
強度が最大となり、同(C)に示すように逆方向になる
と最小となり、この変化が出力電圧として検出できるわ
けである。Magnetic sensor shown in FIG. 15 and FIG. 16, as shown in Figure 17 (A), to the internal magnetic field H i, becomes parallel direction of the magnetic flux of the external magnetic field H o, in FIG. 17 (B) As shown,
Magnetic field strength is maximized when the direction of the external magnetic field H o and the internal magnetic field H i is the same, becomes minimal becomes the opposite direction as shown in (C), is not the change can be detected as an output voltage.
上記の他、従来の磁気センサとして、ホール素子を用
いたものがある。In addition to the above, there is a conventional magnetic sensor using a Hall element.
また、従来の磁気センサとして、第14図に示すよう
に、金属等の導電体10aの周囲にフェライトやアモルフ
ァス合金等の磁性体10bを固着したもの、あるいは磁性
体10bを別体に構成して導電体10aを挿入し、磁性体10b
の周囲に検出巻線12を巻き、導電体10aの両端に、該導
電体10aにパルス電流または交流電流を流すための電源1
1を接続し、検出巻線12の両端に端子13を接続したもの
がある。As a conventional magnetic sensor, as shown in FIG. 14, a magnetic body 10b such as a ferrite or an amorphous alloy is fixed around a conductor 10a such as a metal, or a magnetic body 10b is formed separately. Insert the conductor 10a and insert the magnetic body 10b
A power supply 1 for passing a pulse current or an alternating current to the conductor 10a is provided at both ends of the conductor 10a.
1 is connected, and terminals 13 are connected to both ends of the detection winding 12.
(発明が解決しようとする課題) 上記従来の磁気センサのうち、第15図および第16図に
示したものは、励磁巻線2と検出巻線3の2つの巻線が
必要であり、構造が複雑になるという問題がある。ま
た、ホール素子を用いた磁気センサは、感度が悪いとい
う問題点がある。(Problems to be Solved by the Invention) Among the above-mentioned conventional magnetic sensors, the one shown in FIGS. 15 and 16 requires two windings, an excitation winding 2 and a detection winding 3, and has a structure. Is complicated. Further, the magnetic sensor using the Hall element has a problem that the sensitivity is poor.
また、第14図に示すように、導電体10aの周囲に磁性
体10bを設けた構造のものは、導電体10aと磁性体10bの
2部材が必要となる上、導電体10aの周囲に磁性体10bを
設ける工程が必要となり、材料費の増加と製造工程数の
増加により、価格低減が困難であるという問題点があ
る。Further, as shown in FIG. 14, a structure having a magnetic body 10b provided around a conductor 10a requires two members, a conductor 10a and a magnetic body 10b. A step of providing the body 10b is required, and there is a problem that it is difficult to reduce the price due to an increase in material cost and an increase in the number of manufacturing steps.
本発明の目的は。上記の問題点に鑑み、検出高感が高
く、しかも部品点数、製造工程の低減、構成の簡略化、
軽量化が達成でき、価格低減が図れる磁気センサを提供
することにある。What is the purpose of the present invention? In view of the above problems, a high sense of detection is high, and the number of parts, the number of manufacturing steps are reduced, the configuration is simplified,
It is an object of the present invention to provide a magnetic sensor that can achieve weight reduction and reduce cost.
(課題を達成するための手段) 上記目的を達成するため、本発明の磁気センサは、導
電性を有する線状、帯状あるいは棒状の磁性体と、該磁
性体に長手方向にパルス電流あるいは交流電流を流す手
段と、該磁性体に巻回された検出巻線とからなり、前記
パルス電流あるいは交流電流により前記磁性体の周回方
向に生じる磁界によって外部磁界を前記検出巻線に生じ
る電気信号として検出する構成を有することを特徴とす
る。(Means for Achieving the Object) In order to achieve the above object, a magnetic sensor according to the present invention comprises a linear, band-shaped or rod-shaped magnetic material having conductivity, and a pulse current or an alternating current applied to the magnetic material in a longitudinal direction. And a detection winding wound around the magnetic body. An external magnetic field is detected as an electric signal generated in the detection winding by a magnetic field generated in a circumferential direction of the magnetic body by the pulse current or the alternating current. It is characterized by having the structure which does.
(作用) 本発明の磁気センサは、磁性体として導電性を有する
材料を用い、該磁性体を通電のための導電体として兼用
するため、構成が簡略化されると共に、磁性体が導電体
を兼用し、導電体により近接させて検出巻線が巻かれる
ため、電磁作用が直接的となり、検出感度が向上する。(Operation) The magnetic sensor of the present invention uses a conductive material as a magnetic material, and also uses the magnetic material as a current-carrying conductor. Also, since the detection winding is wound closer to the conductor, the electromagnetic action becomes direct and the detection sensitivity is improved.
(実施例) 第1図は本発明による磁気センサの一実施例であり、
該実施例の磁気センサは、導電性を有する線状あるいは
棒状の磁性体10と、該磁性体10に長手方向にパルス電流
あるいは交流電流を流す手段としての電源11と、該磁性
体10に巻回された検出巻線12とからなり、第2図に示す
ように、前記パルス電流あるいは交流電流により前記磁
性体10の周回方向に内部磁界Hiを発生させ、該内部磁界
Hiによって外部磁界Hoを前記検出巻線12に生じる電気信
号として検出するものである。FIG. 1 shows an embodiment of a magnetic sensor according to the present invention.
The magnetic sensor of this embodiment includes a linear or rod-shaped magnetic body 10 having conductivity, a power supply 11 as a means for passing a pulse current or an alternating current to the magnetic body 10 in a longitudinal direction, and a winding around the magnetic body 10. consists Spun detection winding 12. as shown in Figure 2, to generate an internal magnetic field H i in the circumferential direction of the magnetic body 10 by the pulse current or alternating current, the internal magnetic field
By H i is used for detecting an external magnetic field H o as an electric signal generated in the detection coil 12.
第3図は、電源11により発生させる電圧パルスEiによ
り磁性体10にパルス電流を流した場合、外部磁界Hoが内
部磁界Hiと異なる方向に存在する際に、検出巻線12の出
力端子13に現われる出力電圧Eoを示すものであり、パル
ス電流の立ち上がりまたは立ち下がりにおいて、出力端
子13に現れる電圧Eoの波高値Hは、外部磁界Hoの強度が
所定の大きさ以下であれば、その強度が大であるほど、
また、外部磁界Hoの向きが磁性体10の向きに近い程大と
なる。Figure 3, when passing a pulse current to the magnetic member 10 by a voltage pulse E i to be generated by the power source 11, when the external magnetic field H o is in a different direction as the internal magnetic field H i, the output of the detection winding 12 and shows the output voltage E o appearing at terminal 13, at the rising or falling of the pulse current, pulse height H of the voltage E o appearing at the output terminal 13, the following intensity is predetermined magnitude of the external magnetic field H o If so, the greater its strength,
In addition, the orientation of the external magnetic field H o is Hododai close to the direction of the magnetic body 10.
[実施例1]Co系磁性材で磁歪ゼロのアモルファスワイ
ヤ(線径125μm、長さ65mm)を前記磁性体10として用
い、その周囲に検出巻線12を200ターン巻回し、地磁気
の水平成分に対してアモルファスワイヤが平行になるよ
うに非磁性基板上に配置した。このアモルファスワイヤ
の両端に振幅2V、デューティーファクタ50%、繰返し周
期10μsのパルスを印加した。この状態で磁性体10を水
平に保ちながら時計回り方向に回転すると、端子13に現
われる電圧は第4図に示すように推移した。第4図は、
磁性体10の向きが地磁気の水平成分に対して0度、90
度、180度、270度をなす場合を示しており、出力電圧
(尖頭値、以下同じ)は0度、180度、すなわち磁性体1
0の向きが地磁気の水平成分と同方向の場合に最大とな
り、出力電圧の極性は逆になる。また、出力電圧は、90
度、270度、すなわち磁性体10の向きが地磁気の水平成
分に対して直角をなす場合に最小となる。[Example 1] An amorphous wire (wire diameter 125 µm, length 65 mm) made of a Co-based magnetic material and having no magnetostriction was used as the magnetic body 10, and a detection winding 12 was wound around the magnetic body 10 for 200 turns to reduce the horizontal component of geomagnetism. On the other hand, the amorphous wires were arranged on the non-magnetic substrate so as to be parallel. A pulse having an amplitude of 2 V, a duty factor of 50%, and a repetition period of 10 μs was applied to both ends of the amorphous wire. In this state, when the magnetic body 10 was rotated clockwise while being kept horizontal, the voltage appearing at the terminal 13 changed as shown in FIG. FIG.
The direction of the magnetic body 10 is 0 degree with respect to the horizontal component of
Degrees, 180 degrees, and 270 degrees, and the output voltage (peak value, the same applies hereinafter) is 0 degrees, 180 degrees, that is, the magnetic substance 1
When the direction of 0 is the same as the horizontal component of terrestrial magnetism, it becomes maximum, and the polarity of the output voltage is reversed. The output voltage is 90
Degrees, 270 degrees, that is, when the direction of the magnetic body 10 is perpendicular to the horizontal component of the geomagnetism.
第5図は磁性体10の地磁気の水平成分に対する回転角
度と出力電圧(印加した矩形電圧パルスの立ち上がり部
分で発生する出力電圧)との関係を示すもので、コサイ
ンカーブを描く。FIG. 5 shows the relationship between the rotation angle of the magnetic body 10 with respect to the horizontal component of the terrestrial magnetism and the output voltage (output voltage generated at the rising portion of the applied rectangular voltage pulse), and draws a cosine curve.
このような磁性体10の回転角度と出力電圧との関係か
ら、この磁気センサは、方位センサ(ただし東西のどち
ら側に傾斜しているかは不明である。)や、磁石等で発
生させた磁界の方向に対する磁性体10の傾斜を求める傾
斜センサや、出力電圧が外部磁界強度に比例することを
利用した電流センサや、可動体と静止体にそれぞれ磁性
体10あるいは磁石等を取付け、磁性体10が磁石等に対向
した際に出力が現れるような位置センサまたは回転セン
サ等に用いることができる。From such a relationship between the rotation angle of the magnetic body 10 and the output voltage, this magnetic sensor is an azimuth sensor (however, it is unknown to which side east or west it is inclined) or a magnetic field generated by a magnet or the like. A tilt sensor that determines the tilt of the magnetic body 10 with respect to the direction of the current, a current sensor that uses that the output voltage is proportional to the external magnetic field strength, or a magnetic body 10 or a magnet attached to a movable body and a stationary body, respectively. It can be used for a position sensor or a rotation sensor or the like in which an output appears when an object faces a magnet or the like.
なお、磁性体10の材料として前記径、材質のアモルフ
ァスワイヤを用い、磁性体10の長さを40mm〜130mmの範
囲で変え、検出巻線12の巻き数を200ターン(同ピッ
チ)とし、繰返し周期10μs、デューティーファクタ50
%の定電流パルスを磁性体10に流した場合、地磁気の水
平成分の方向に磁性体10を向けたときの出力電圧の変化
を調べた。その結果は、第6図に示すように、磁性体長
が長くなると出力電圧がやや増大するという結果を得
た。The amorphous wire having the diameter and the material described above was used as the material of the magnetic body 10, the length of the magnetic body 10 was changed in a range of 40 mm to 130 mm, the number of turns of the detection winding 12 was set to 200 turns (the same pitch), and repeated. Period 10μs, Duty factor 50
When a constant current pulse of% was passed through the magnetic body 10, a change in the output voltage when the magnetic body 10 was oriented in the direction of the horizontal component of terrestrial magnetism was examined. As a result, as shown in FIG. 6, a result was obtained that the output voltage slightly increased as the magnetic body length increased.
また、第7図は、入力電圧と出力電圧との関係を示し
た図で、この場合の磁性体10の材質、径は前記同様で、
長さを65mmとし(該磁性体10の直径抵抗は12Ωであっ
た。)、繰返し周期10μs、デューティーファクタ50%
の入力電圧の振幅を0.5V〜2.0Vの範囲で変化させ、地磁
気の水平成分の方向に磁性体10を向けたときの出力電圧
の変化を調べたものである。第7図から、2v近くまでは
入力電圧、すなわち入力電流の増大に比例して出力電圧
が増大することがわかる。FIG. 7 is a diagram showing the relationship between the input voltage and the output voltage. In this case, the material and diameter of the magnetic body 10 are the same as described above.
The length was 65 mm (the diameter resistance of the magnetic material 10 was 12Ω), the repetition period was 10 μs, and the duty factor was 50%.
The variation of the output voltage when the magnetic body 10 is directed in the direction of the horizontal component of the terrestrial magnetism is examined by changing the amplitude of the input voltage in the range of 0.5 V to 2.0 V. It can be seen from FIG. 7 that the output voltage increases in proportion to the increase of the input voltage, that is, the input current, up to near 2v.
また第8図は、第7図における試験条件において、入
力電圧の振幅を2Vとし、繰返し周期を4μs〜100μs
に変化させた場合の出力電圧の変化を示すもので、繰返
し周期によっては出力電圧は大きくは変化しない。FIG. 8 shows that, under the test conditions in FIG. 7, the amplitude of the input voltage is 2 V, and the repetition period is 4 μs to 100 μs.
Indicates the change of the output voltage when the output voltage is changed to the above, and the output voltage does not largely change depending on the repetition period.
[実施例2]磁性体10として、実施例1と同様のCo系磁
歪ゼロの材質で、幅1mm、板厚15μmの細い帯状のもの
を用い、200ターンの検出巻線12を巻回し、同様の回路
で地磁気に対する感度を測定した結果、ワイヤの場合と
同様の傾向を示した。[Embodiment 2] As the magnetic body 10, a thin strip having a width of 1 mm and a thickness of 15 μm was used as the magnetic material 10 of the first embodiment, and a detection winding 12 of 200 turns was wound. As a result of measuring the sensitivity to geomagnetism with the circuit of No. 1, the same tendency as that of the wire was shown.
また、帯状磁性体10の長さを38mm(該磁性体10の直流
抵抗は3Ωであった。)、入力電圧の振幅を0.5V、繰返
し周期を25μs、デューティーファクタ50%の電圧を磁
性体10に印加し、その立ち上がり時間を0.5μs〜2.0μ
sの範囲で変化させた場合の出力電圧の変化を第10図に
示す。第9図からわかるように、入力パルスの立ち上が
り時間が短い程出力電圧が高くなるという傾向が顕著に
現われる。The length of the band-shaped magnetic body 10 was 38 mm (the DC resistance of the magnetic body 10 was 3Ω), the amplitude of the input voltage was 0.5 V, the repetition period was 25 μs, and the voltage of the duty factor 50% was applied to the magnetic body 10. And the rise time is 0.5 μs to 2.0 μs.
FIG. 10 shows the change of the output voltage when it is changed in the range of s. As can be seen from FIG. 9, the tendency that the output voltage becomes higher as the rise time of the input pulse becomes shorter becomes remarkable.
[実施例3]実施例2と同様の材質、寸法の帯状磁性体
を2本用い、第10図に示すように、これらの磁性体10x,
10yに検出巻線12x,12yを200ターン巻回したものを直交
させて配設し、電源11に対し、磁性体10x,10yを直列に
接続し、振幅2V、デューティーファクタ50%、繰返し周
期25μsの電圧パルスを加え、磁性体10x,10yを水平に
保ち、時計回り方向に回転し、各検出巻線12x,12yの出
力電圧Ex,Eyを測定した。その結果、第11図に示すよう
に、出力が推移した。第11図は第10図のように磁性体10
x,10yを配置した場合を回転角度ゼロ度とし、回転角度
を変化したときの出力電圧Ex,Eyの変化を示す図であ
り、第11図に示すように、方位により、2つの出力電圧
Ex,Eyの極性と値の組合わせが一義的に決定されること
から、この交叉形の磁気センサは、方位センサとして用
いることが可能である。[Embodiment 3] As shown in Fig. 10, two magnetic strips having the same material and dimensions as those of Embodiment 2 were used.
The detection windings 12x and 12y are wound 200 turns around 10y and are arranged orthogonally. The magnetic material 10x and 10y are connected in series to the power supply 11, the amplitude is 2V, the duty factor is 50%, and the repetition period is 25μs. Then, the magnetic bodies 10x and 10y were kept horizontal and rotated clockwise, and the output voltages Ex and Ey of the detection windings 12x and 12y were measured. As a result, the output changed as shown in FIG. FIG. 11 shows the magnetic material 10 as shown in FIG.
FIG. 11 is a diagram showing a change in output voltage Ex, Ey when the rotation angle is changed, where the rotation angle is changed to zero degree when x and 10y are arranged. As shown in FIG.
Since the combination of the polarity and value of Ex and Ey is uniquely determined, this cross-shaped magnetic sensor can be used as a direction sensor.
第12図は第10図に示した磁気センサの処理回路の一例
であり、各出力電圧Ex,Eyの位相検波後の波高値をそれ
ぞれサンプルホールド回路14x,14yにより保持し、その
各電圧値をそれぞれA−D変換回路15x,15yによりデジ
タル値に変換し、例えばマイクロコンピュータ16によっ
て方位信号を算出し、マイクロコンピュータ16に付帯し
た表示器17によって表示するものである。なお、前記出
力電圧Ex,Eyの処理回路としては第12図の他種々のもの
が用いられることは勿論である。FIG. 12 is an example of a processing circuit of the magnetic sensor shown in FIG. 10, in which the peak values after phase detection of each output voltage Ex and Ey are held by sample and hold circuits 14x and 14y, respectively, and the respective voltage values are held. The digital signals are converted into digital values by A / D conversion circuits 15x and 15y, and the azimuth signal is calculated by a microcomputer 16, for example, and is displayed by a display 17 attached to the microcomputer 16. It is a matter of course that various circuits other than those shown in FIG. 12 are used as the processing circuits for the output voltages Ex and Ey.
第13図は本発明の他の実施例であり、アルミナ等の基
板20上に膜形成技術により磁性体膜21を形成し、基板20
と共に磁性体膜21に検出巻線22を巻装し、磁性体膜21に
前記電源11より通電し、外部磁界を検出巻線22に生じる
電気信号として検出するようにしたものである。FIG. 13 shows another embodiment of the present invention, in which a magnetic film 21 is formed on a substrate 20 of alumina or the like by a film forming technique.
At the same time, a detection winding 22 is wound around the magnetic film 21, the power is supplied to the magnetic film 21 from the power supply 11, and an external magnetic field is detected as an electric signal generated in the detection winding 22.
上記実施例においては、電源11による矩形電圧パルス
を磁性体10に印加する例について示したが、三角波ある
いは正弦波等、他の波形の電圧を印加するようにしても
よい。また、磁性体10としては、導電性があり、かつ高
い透磁率で飽和磁束密度の大きな前記アモルファス合金
の他、同様の特性を有するパーマロイが好ましいが、同
様な特性であれば、他の材質のものを用いてもよい。In the above embodiment, the example in which the rectangular voltage pulse from the power supply 11 is applied to the magnetic body 10 has been described. However, a voltage having another waveform such as a triangular wave or a sine wave may be applied. In addition, as the magnetic body 10, in addition to the above-mentioned amorphous alloy having conductivity and high magnetic permeability and high saturation magnetic flux density, permalloy having similar characteristics is preferable. A thing may be used.
(発明の効果) 以上述べたように、本発明の磁気センサは、磁性体と
して導電性を有する材料を用いることにより磁性体を導
電体として兼用し、該磁性体に検出巻線を巻き、磁性体
に直接パルス電流または交流電流を流し、パルス電流あ
るいは交流電流により磁性体の周回方向に生じる磁界に
よって外部磁界を前記検出巻線に生じる電気信号として
検出する構成としたものであり、従来の磁芯を有する磁
気センサで必要とした励磁巻線が不要となる上、パルス
電流や交流電流を流すための導電体が不要となるので、
部品点数や製造工程数が低減されると共に、構成が簡略
化され、方位センサに例をとれば、前記のような細線に
よって磁性体が実現できるから、従来のトロイダル磁芯
を有するものに比較し、約1/10〜1/100程度に軽量化さ
れ、廉価に提供できる。また、軽量で高感度の磁気セン
サが実現でき、微小磁界の検出の用途にも用いることが
できる。(Effect of the Invention) As described above, the magnetic sensor of the present invention uses a magnetic material as a conductor by using a conductive material as a magnetic material, and winds a detection winding around the magnetic material to form a magnetic sensor. A pulse current or an AC current is directly passed through the body, and an external magnetic field is detected as an electric signal generated in the detection winding by a magnetic field generated in a circumferential direction of the magnetic body by the pulse current or the AC current. The excitation winding required for the magnetic sensor having a core is not required, and a conductor for passing a pulse current or an alternating current is not required.
The number of parts and the number of manufacturing steps are reduced, the configuration is simplified, and in the case of an azimuth sensor, for example, a magnetic body can be realized by the thin wire as described above. , The weight can be reduced to about 1/10 to 1/100 and can be provided at a low price. Further, a light-weight and high-sensitivity magnetic sensor can be realized, and the magnetic sensor can be used for detecting a minute magnetic field.
第1図は本発明の磁気センサの一実施例を示す構成図、
第2図は本発明の原理説明図、第3図は本発明における
入力電圧と出力電圧との関係の一例を示す波形図、第4
図は第1図の実施例における各回転角に対応した出力電
圧波形を示す写真図、第5図は第1図の実施例における
回転角と出力電圧との関係図、第6図は該実施例におけ
る磁性体長と出力電圧との関係図、第7図は該実施例に
おける入力パルス電圧と出力電圧との関係図、第8図は
該実施例における繰返し周期と出力電圧との関係図、第
9図は磁性体として帯状のものを用いた場合における入
力パルス立ち上がり時間と出力電圧との関係図、第10図
は磁性体を直交させた本発明の他の実施例を示す構成
図、第11図は該実施例における回転角と出力電圧との関
係図、第12図は該実施例の処理回路の一例図、第13図は
本発明の他の実施例を示す斜視図、第14図は従来の磁気
センサを示す図、第15図および第16図は従来の磁気セン
サを示す構成図、第17図は従来の磁気センサの原理図で
ある。FIG. 1 is a configuration diagram showing one embodiment of a magnetic sensor of the present invention,
FIG. 2 is a diagram for explaining the principle of the present invention, FIG. 3 is a waveform diagram showing an example of the relationship between the input voltage and the output voltage in the present invention, and FIG.
FIG. 5 is a photograph showing the output voltage waveform corresponding to each rotation angle in the embodiment of FIG. 1, FIG. 5 is a diagram showing the relationship between the rotation angle and the output voltage in the embodiment of FIG. 1, and FIG. FIG. 7 is a relationship diagram between an input pulse voltage and an output voltage in the embodiment, FIG. 8 is a relationship diagram between a repetition period and an output voltage in the embodiment, FIG. FIG. 9 is a diagram showing the relationship between the input pulse rise time and the output voltage in the case where a band-shaped magnetic material is used. FIG. 10 is a configuration diagram showing another embodiment of the present invention in which the magnetic material is orthogonalized. FIG. 12 is a diagram showing the relationship between the rotation angle and the output voltage in the embodiment, FIG. 12 is an example of a processing circuit of the embodiment, FIG. 13 is a perspective view showing another embodiment of the present invention, and FIG. FIGS. 15 and 16 are diagrams showing a conventional magnetic sensor, FIGS. 15 and 16 are configuration diagrams showing a conventional magnetic sensor, and FIGS. It is a principle diagram of the conventional magnetic sensor.
Claims (1)
磁性体と、該磁性体に長手方向にパルス電流あるいは交
流電流を流す手段と、該磁性体に巻回された検出巻線と
からなり、前記パルス電流あるいは交流電流により前記
磁性体の周回方向に生じる磁界によって外部磁界を前記
検出巻線に生じる電気信号として検出する構成を有する
ことを特徴とする磁気センサ。1. A linear, band-shaped or rod-shaped magnetic material having conductivity, means for supplying a pulse current or an alternating current to the magnetic material in a longitudinal direction, and a detection winding wound on the magnetic material. A magnetic sensor having a configuration in which an external magnetic field is detected as an electric signal generated in the detection winding by a magnetic field generated in a circumferential direction of the magnetic body by the pulse current or the alternating current.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62323201A JP2617498B2 (en) | 1987-12-21 | 1987-12-21 | Magnetic sensor |
DE3843087A DE3843087C2 (en) | 1987-12-21 | 1988-12-21 | Magnetic field sensor |
US07/287,153 US4939459A (en) | 1987-12-21 | 1988-12-21 | High sensitivity magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62323201A JP2617498B2 (en) | 1987-12-21 | 1987-12-21 | Magnetic sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01163686A JPH01163686A (en) | 1989-06-27 |
JP2617498B2 true JP2617498B2 (en) | 1997-06-04 |
Family
ID=18152172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62323201A Expired - Lifetime JP2617498B2 (en) | 1987-12-21 | 1987-12-21 | Magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2617498B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9857436B2 (en) | 2015-02-16 | 2018-01-02 | Magnedesign Corporation | High sensitive micro sized magnetometer |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3614588B2 (en) * | 1996-12-06 | 2005-01-26 | 独立行政法人科学技術振興機構 | High sensitivity stress detector |
EP1336858A3 (en) | 2002-02-19 | 2005-03-23 | Aichi Micro Intelligent Corporation | Two-dimensional magnetic sensor |
JP3786887B2 (en) | 2002-03-04 | 2006-06-14 | アイチ・マイクロ・インテリジェント株式会社 | Magnetic detector |
KR100536837B1 (en) | 2003-02-10 | 2005-12-16 | 삼성전자주식회사 | Fluxgate sensor integrated on semiconductor substrate and method for manufacturing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54156575A (en) * | 1978-05-31 | 1979-12-10 | Tdk Corp | Magnetic detecting element |
-
1987
- 1987-12-21 JP JP62323201A patent/JP2617498B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9857436B2 (en) | 2015-02-16 | 2018-01-02 | Magnedesign Corporation | High sensitive micro sized magnetometer |
Also Published As
Publication number | Publication date |
---|---|
JPH01163686A (en) | 1989-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4939459A (en) | High sensitivity magnetic sensor | |
KR100993928B1 (en) | Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method | |
US6885183B2 (en) | Current probe | |
JP3286446B2 (en) | DC current sensor | |
JP3091398B2 (en) | Magnetic-impedance element and method of manufacturing the same | |
US4859944A (en) | Single-winding magnetometer with oscillator duty cycle measurement | |
JPH09127218A (en) | Magnetism detection element, magnetic sensor, geomagnetism detection-type direction sensor and sensor for attitude control | |
JP4209114B2 (en) | Magnetic field sensor | |
JP2003315376A (en) | Current sensor | |
JP2617498B2 (en) | Magnetic sensor | |
Vincueria et al. | Flux-gate sensor based on planar technology | |
JPH112647A (en) | Direct current sensor and method for preventing flowing-out of direct current | |
US4963818A (en) | Current sensor having an element made of amorphous magnetic metal | |
JPH10332745A (en) | Electric current sensor | |
JP2004239828A (en) | Flux gate magnetic field sensor | |
JP3399185B2 (en) | Magnetic detection device and magnetic detection method | |
JPH0778528B2 (en) | Magnetic sensor | |
EP0990919A2 (en) | Magneto-Impedance effect element driving circuit | |
JP2582133B2 (en) | Magnetic field sensor | |
JPH112646A (en) | Direct current sensor and method for preventing flowing-out of direct current | |
JP2000266786A (en) | Current sensor | |
JPH07248365A (en) | Magnetism-magnetic direction sensor and magnetism-magnetic direction measuring method | |
JP2000055940A (en) | Dc current sensor | |
JPS61262613A (en) | Geomagnetic azimuth sensor | |
JP2582132B2 (en) | Magnetic field sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080311 Year of fee payment: 11 |