JPS5946024A - Vacuum deposition method - Google Patents

Vacuum deposition method

Info

Publication number
JPS5946024A
JPS5946024A JP15612882A JP15612882A JPS5946024A JP S5946024 A JPS5946024 A JP S5946024A JP 15612882 A JP15612882 A JP 15612882A JP 15612882 A JP15612882 A JP 15612882A JP S5946024 A JPS5946024 A JP S5946024A
Authority
JP
Japan
Prior art keywords
film thickness
correction value
film
meter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15612882A
Other languages
Japanese (ja)
Inventor
Takaaki Abe
高明 阿部
Masao Ogiwara
荻原 全夫
Yuji Hanawa
塙 祐治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Yamagata Ltd
Original Assignee
NEC Corp
Nippon Electric Co Ltd
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd, NEC Yamagata Ltd filed Critical NEC Corp
Priority to JP15612882A priority Critical patent/JPS5946024A/en
Publication of JPS5946024A publication Critical patent/JPS5946024A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the variance of film thickness at every cycle by setting up a film thickness meter controlling the thickness of an evaporated film and a film- thickness measuring instrument measuring film thickness after evaporation in a vacuum deposition device, comparing and calculating a correction value data inputted to the controlling film thickness meter and a measuring data and inputting the correction value to the film thickness meter. CONSTITUTION:The quartz type film thickness meter 2 controlling the thickness of the evaporated film and the film-thickness measuring instrument 3 measuring film thickness after evaporation are set up in the vacuum deposition device, and these meter and instrument are connected to a controller 1 through the interface. A set film thickness value t0 determined previously as working conditions is memorized beforehand to the controller 1, and a present correction value Xn is calculated by using the formula of Xn=(tn-1)/t0.Xn-1 by employing the last correction value Xn-1 inputted to the film thickness meter 2 in the last but one evaporation work and the last film thickness value tn-1 measured by the measuring instrument 3. The value is inputted to the film thickness meter 2, and the variance of thicknss at every cycle is minimized.

Description

【発明の詳細な説明】 本発明は、前サイクルのデータをもとにして次のサイク
ルに自動的に補正を加えることによりサイクル毎の1換
厚値のバラツキを最小限に抑えるようにした真空蒸着方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a vacuum cleaner that minimizes variations in 1-conversion thickness values from cycle to cycle by automatically adding corrections to the next cycle based on data from the previous cycle. The present invention relates to a vapor deposition method.

ウェーハ製造」:程で電極形成に金属(主にA7)を蒸
着した後、エツチング工程では、電極以外に付着したA
tをエツチングする。このエツチング」二程では、10
ツト毎に同一の処理条件で作業を行なうため、ロット内
のA−を膜厚にバラツキがあると、ロフト内の半導体ウ
ェーハのAtのエツチング残す、オーバエッチ等が発生
し、そのロフトの半導体ウェーハは、再度処理を行なわ
なりればならない。従って、エツチング工程では、]二
期短縮及び特性面からいっても、精度の良いエツチング
(いわゆるジャストエッチ)が望ましい。一方、AA蒸
着作業は連続処理型はなく何枚かを一1丈に処理するバ
ッチ型がほとんどであり、ウェーハが大口径になるにつ
れ、一度に処理するウェーか量は減少し、10ンドで数
回のバッチ作業が必要になる。
"Wafer manufacturing": After metal (mainly A7) is vapor-deposited to form electrodes, in the etching process, A7 deposited on areas other than the electrodes is removed.
Etch t. "This etching" is 10
Since the process is carried out under the same processing conditions for each lot, if there are variations in the film thickness of A- within a lot, etching of the semiconductor wafers in the loft may be left unetched or overetching may occur. must be processed again. Therefore, in the etching process, highly accurate etching (so-called just etching) is desirable from the viewpoint of shortening the second period and characteristics. On the other hand, most AA vapor deposition operations are not continuous processing types, but are batch-type processes in which several wafers are processed in 11-inch pieces. Requires several batch operations.

AA膜厚のコントロール方法としては、」二記バッチ型
蒸着装置に水晶式膜厚計を用いるのがほとんどであり、
水晶発振子にAtが付着した時の発振周波数の変化と付
着A7量とが直線の関係にあることを利用しているが、
その関係はAtの付着量に従がい、微妙に狂うため、各
サイクル毎tat ′If)ロット内、ロフト間でA4
膜厚値がばらつくので、毎回同じ設定値(特に補正値)
ではなく、数〜数十サイクル毎に補正値を変えなければ
ならない。
Most methods for controlling the AA film thickness include using a crystal film thickness meter in a batch-type evaporation apparatus.
This method utilizes the fact that there is a linear relationship between the change in oscillation frequency when At adheres to a crystal oscillator and the amount of attached A7.
Since the relationship depends on the amount of At attached and is slightly distorted, the A4
Since the film thickness value varies, the setting value (especially the correction value) must be the same every time.
Rather, the correction value must be changed every few to several tens of cycles.

その補正値(X)の算出方法は Xn=t11−□/1o−X。The method of calculating the correction value (X) is Xn=t11-□/1o-X.

である。It is.

たたし、Xn、今回の補正値 tIF−1’前回の膜厚値 to  :v定膜厚値 Xo  :初期補正値 従来の作業のやり方は、作業を開始する前にノクイロッ
ト(本作業ではなく、ダミーウェーハてやること)を行
ない、そのAA膜厚値(1)を測定してから手計算にて
補正値(]を出し、その[1の作業を行なっていた。こ
の方法では10ツトを数回に分けて蒸着作業を行なう場
合に、どうしてもサイクル間で膜厚のバラツキ(たとえ
、規格値に入ったとしても)が生じ、10ツト処理のエ
ツチング作業でジャストエッチが望めず、再処理を行ち
゛うか、蒸着サイクル毎に処理条件を変える等厄介であ
った。又、蒸着装置はほとんとか自動化されているが、
補正値設定は手作業で行なわれるため、人為的な誤差が
生してしまう恐れがあった。
where, Xn, current correction value tIF-1' previous film thickness value to :v constant film thickness value , using a dummy wafer), measured the AA film thickness value (1), calculated the correction value ( ) by hand, and performed the work in [1]. This method requires 10 points. When performing vapor deposition work in several steps, variations in film thickness inevitably occur between cycles (even if it is within the standard value), and it is not possible to achieve just etching with the 10-step etching process, so reprocessing is necessary. However, it was difficult to change the processing conditions for each deposition cycle.In addition, although most of the deposition equipment is automated,
Since the correction value setting is done manually, there is a risk of human error.

本発明は前記問題点を解消するもので、市川−イクルの
データをもとにして次のサイクルに自動的に補正を加え
ることによりサイクルjIJ、の膜厚値のバフツキを最
小限に抑えるようにすることを1)徴とするものである
。以上、本発明の一実施例を図によって説明する。
The present invention solves the above problem and minimizes the buffing of the film thickness value of cycle jIJ by automatically adding correction to the next cycle based on the Ichikawa-Ikuru data. 1) It is a sign that An embodiment of the present invention will be described above with reference to the drawings.

第1図に示すように、半導体ウェーハに金属を蒸着する
真空蒸着装置本体に内蔵され、蒸着膜厚をコノトロール
する水晶式膜厚用2と、蒸着後の膜厚を実測する膜厚測
定器5とをIts−232C等のインターフニスでコン
トローラ1に接続する。フン)o−ラ1には作業条件と
して予じめ決めた設定膜厚値[0を記憶さぜる。
As shown in Fig. 1, a crystal film thickness measuring device 2, which is built into the main body of a vacuum evaporation apparatus that evaporates metal onto a semiconductor wafer, controls the evaporated film thickness, and a film thickness measuring device 5, which actually measures the film thickness after evaporation. and are connected to the controller 1 through an interface such as Its-232C. (Hmph) In the o-ra 1, a predetermined film thickness value [0] is stored as a working condition.

第2図に示すように、コントローラ1て、111j々回
の蒸着作業で与えられた膜厚用2に人力さぜた前回の補
正値X。−1および膜厚測定器6て実測した前回の膜厚
値t11−1を収集、記憶しこれらの情報をもとにして
合同の補正値Xnを X p −n −1/ t、 、 X n−1の式に基
き算出さぜる。その補正値を膜jl計2に人力させ膜厚
用2てコントロールするサイクル毎の膜厚値を補正さゼ
る。
As shown in FIG. 2, the controller 1 calculates the previous correction value X manually applied to the film thickness value 2 given in 111j vapor deposition operations. -1 and the previous film thickness value t11-1 actually measured by the film thickness measuring device 6, and store them, and based on these information, calculate the joint correction value Xn as X p -n -1/ t, , X n Calculate based on the formula -1. The correction value is manually applied to the film thickness meter 2 to correct the film thickness value for each cycle to be controlled by the film thickness meter 2.

以上のように本発明によれば、前サイクルのデータをも
とに、次のサイクルに自動的に補正を加えるため、サイ
クル毎の膜厚値のバラツキを最小限に押えることがi」
能になり、エツチング作業でのジャストエッチを行なう
ことかできる。又、コントローラで機械的に補正値を割
り出し蒸着作業を行なうため人為的な誤差を防止できる
と共に、パイロット作業等の不必要な作業が省は生産性
を向上できる効果を有するものである。
As described above, according to the present invention, since correction is automatically applied to the next cycle based on the data of the previous cycle, it is possible to minimize variations in film thickness values from cycle to cycle.
This makes it possible to perform just-etching in etching operations. Further, since the controller mechanically determines the correction value and performs the deposition operation, human errors can be prevented, and unnecessary operations such as pilot operations can be saved, thereby improving productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるシステム図、第2図
はデータのフロー図である。
FIG. 1 is a system diagram in one embodiment of the present invention, and FIG. 2 is a data flow diagram.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体ウェーハに金属を蒸着する真空蒸着装置本
体に内蔵され、蒸着膜厚をコントロールする膜厚用と、
蒸着後の膜厚を実測する膜厚測定器とを備え、コントロ
ーラで膜厚計に入力させた前回の蒸着膜厚補正値データ
および膜厚測定器が実測した前回の膜厚値データを収集
、記憶し、これらのデータと規格値データとを比較計算
させて次の蒸着1侯jv補正値を算出し、その補正値を
膜厚用に人力させることを特徴とする真空蒸着方法。
(1) A film thickness control device that is built into the main body of the vacuum evaporation equipment that evaporates metal onto semiconductor wafers and controls the evaporation film thickness;
Equipped with a film thickness measuring device that actually measures the film thickness after vapor deposition, it collects the previous vaporized film thickness correction value data entered into the film thickness meter by the controller and the previous film thickness value data actually measured by the film thickness measuring device. A vacuum evaporation method characterized by storing the data, comparing and calculating these data with standard value data to calculate a correction value for the next evaporation, and manually inputting the correction value for film thickness.
JP15612882A 1982-09-08 1982-09-08 Vacuum deposition method Pending JPS5946024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15612882A JPS5946024A (en) 1982-09-08 1982-09-08 Vacuum deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15612882A JPS5946024A (en) 1982-09-08 1982-09-08 Vacuum deposition method

Publications (1)

Publication Number Publication Date
JPS5946024A true JPS5946024A (en) 1984-03-15

Family

ID=15620931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15612882A Pending JPS5946024A (en) 1982-09-08 1982-09-08 Vacuum deposition method

Country Status (1)

Country Link
JP (1) JPS5946024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996030A (en) * 2023-03-22 2023-04-21 日照皓诚电子科技有限公司 Quartz crystal coating thickness control method and system, equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996030A (en) * 2023-03-22 2023-04-21 日照皓诚电子科技有限公司 Quartz crystal coating thickness control method and system, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP3859875B2 (en) Method for adjusting film thickness of vapor deposition equipment for semiconductor manufacturing
US6594542B1 (en) Method and system for controlling chemical mechanical polishing thickness removal
US7851233B2 (en) E-chuck for automated clamped force adjustment and calibration
US6623333B1 (en) System and method for controlling a wafer polishing process
JPS60126832A (en) Dry etching method and device thereof
JP2662377B2 (en) Process condition setting method in semiconductor device manufacturing process
KR20020013811A (en) Run-to-run control over semiconductor processing tool based upon mirror image target
JPS5946024A (en) Vacuum deposition method
JP2003124084A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP3393934B2 (en) Film thickness monitoring control method
KR20000025932A (en) Deposition device having thickness monitoring function and method thereof
JPH03228347A (en) Method of controlling internal stress of semiconductor element
JPS63308317A (en) Charged beam aligner
JPH09186151A (en) Oxidizer for semiconductor device and method for oxide film formation using it
JP3402035B2 (en) How to modify the resistance value of a chip resistor
Mishin et al. Thickness control by ion beam milling in acoustic resonator devices
JP2756126B2 (en) Sputtering equipment
US7892442B2 (en) Method of manufacturing a thin-film magnetic head, thin-film magnetic head manufacturing apparatus, and thin-film magnetic head manufacturing system
JP2742170B2 (en) Semiconductor device manufacturing system
JPH03209906A (en) Vapor deposition controller for adjusting frequency of crystal resonator
JPH04277802A (en) Method for controlling manufacture facilities
JPS59201423A (en) Semiconductor photo etching process control system
JPH05206051A (en) Ion implantation monitor method
JPH09295060A (en) D value controller in bending machine
JPS6383259A (en) Sputtering device