JPS5945728B2 - Manufacturing method of granular graphite cast iron - Google Patents

Manufacturing method of granular graphite cast iron

Info

Publication number
JPS5945728B2
JPS5945728B2 JP9860176A JP9860176A JPS5945728B2 JP S5945728 B2 JPS5945728 B2 JP S5945728B2 JP 9860176 A JP9860176 A JP 9860176A JP 9860176 A JP9860176 A JP 9860176A JP S5945728 B2 JPS5945728 B2 JP S5945728B2
Authority
JP
Japan
Prior art keywords
graphite
cast iron
temperature
manufacturing
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9860176A
Other languages
Japanese (ja)
Other versions
JPS5325215A (en
Inventor
豊 川野
崇 沢本
進 西川
良平 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Cast Iron Works Ltd
Original Assignee
Kobe Cast Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Cast Iron Works Ltd filed Critical Kobe Cast Iron Works Ltd
Priority to JP9860176A priority Critical patent/JPS5945728B2/en
Publication of JPS5325215A publication Critical patent/JPS5325215A/en
Publication of JPS5945728B2 publication Critical patent/JPS5945728B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 この発明は高伸びを有するねずみ鋳鉄鋳物の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a gray cast iron casting having high elongation.

従来の片状黒鉛鋳鉄は強度が低く、とくに延性は殆んど
示さない。
Conventional flake graphite cast iron has low strength, especially exhibiting almost no ductility.

強度を高め延性を付与するには、Mg等の球状化剤を添
加し、所謂球状黒鉛鋳鉄にする必要がある。
In order to increase strength and impart ductility, it is necessary to add a spheroidizing agent such as Mg to make so-called spheroidal graphite cast iron.

しかし球状黒鉛鋳鉄を得るには、高純度な原材料を必要
とすること、キュポラで溶解した場合等のように高硫黄
の場合は必ず脱硫処理を必要とすること、ひげが大きく
方案に工夫を要すること、フエーデング(fading
)すること、チル化しやすいこと、ドロス欠陥を生じや
すいこと、ガス気泡が出来やすいこと等工業技術上条く
の難点を有する。
However, in order to obtain spheroidal graphite cast iron, highly pure raw materials are required, high sulfur content such as in the case of melting in a cupola requires desulfurization treatment, and the whiskers are large and the method must be devised. aka fading
), easy to chill, easy to produce dross defects, easy to form gas bubbles, etc. It has many disadvantages in terms of industrial technology.

しかも近年にいたって、脱硫処理に大量のCaC2等を
用いることから生ずるスラグの廃棄や過剰球状化処理や
再溶解時に生ずるMgO等の塩基性スラグの廃棄処理に
社会的な問題を招来し、これが今日大きな難点となりわ
が国の球状黒鉛鋳鉄製造の将来の難問となっている。
Moreover, in recent years, social problems have arisen in the disposal of slag resulting from the use of large amounts of CaC2, etc. in desulfurization treatment, and in the disposal of basic slag such as MgO generated during excessive spheroidization treatment and remelting. This has become a major problem today and a future challenge for the production of spheroidal graphite cast iron in our country.

本発明は、全く球状化剤を用いることなく、しかもキュ
ポラ溶湯のような高硫黄の場合でも障害なく、高伸びを
有するねずみ鋳鉄鋳物が得られるようなねずみ鋳鉄鋳物
の製法を提供することを目的とする。
An object of the present invention is to provide a method for producing gray cast iron castings that can obtain gray cast iron castings with high elongation without using any spheroidizing agent and without any problems even in the case of high sulfur content such as cupola molten metal. shall be.

これについて以下説明する。この発明にかかる高伸びを
有するねずみ鋳鉄鋳物の製造法は、鉄を主成分とし、炭
素含有量が2〜4.5%、ケイ素含有量が0.5〜4%
、マンガン含有量が0.2%以下の鋳鉄溶湯を鋳型に注
湯して厚さ2ミクロン以下の微細片状黒鉛を含むフェラ
イト基地の鋳造材とり、しかるのち750°〜1050
℃の温度で少なくとも一度は保持して片状黒鉛を分断す
る熱処理を施こすことを特徴とする。
This will be explained below. The method for manufacturing gray cast iron castings having high elongation according to this invention has iron as the main component, carbon content of 2 to 4.5%, and silicon content of 0.5 to 4%.
, molten cast iron with a manganese content of 0.2% or less is poured into a mold to form a ferrite base casting material containing fine flaky graphite with a thickness of 2 microns or less, and then heated at 750° to 1050°.
It is characterized in that it is subjected to a heat treatment in which flaky graphite is divided by holding it at least once at a temperature of °C.

これをさらに効果的に実施するには低温から9200〜
1050℃の高温に昇温し、その温度で10分間以上保
持したのち再度冷却する周期的加熱処理を、2回以上繰
り返し行なうのが好ましい。
To carry out this more effectively, from low temperature to 9200 ~
It is preferable to repeat a periodic heat treatment in which the temperature is raised to a high temperature of 1050° C., maintained at that temperature for 10 minutes or more, and then cooled again, twice or more.

また、上記鋳造材の硫黄(S)含、有量は0.1%以下
とするのが好ましく、リンP)含有量は0.3%以下と
するのが好ましい。
Further, the sulfur (S) content of the cast material is preferably 0.1% or less, and the phosphorus (P) content is preferably 0.3% or less.

〔原理説明〕[Explanation of principle]

鋳鉄の中の微細片状黒鉛(D形黒鉛)は連続した薄片で
あることは、周知であり、そのため基地の鉄部分が分断
され、強度は低く、その上靭性を殆んど持たないもので
ある。
It is well known that the fine flaky graphite (D-type graphite) in cast iron is continuous flakes, so the iron part of the base is divided, and the strength is low and it has almost no toughness. be.

本発明者らは、この黒鉛の連続性を、熱処理により分断
する研究の結果下記の事実を発見した。
The present inventors discovered the following fact as a result of research on breaking up the continuity of graphite by heat treatment.

(1)フェライトとオーステナイトの炭素の溶解度に、
著しい差があること。
(1) The solubility of carbon in ferrite and austenite,
There is a significant difference.

(2)オーステナイト域で拡散速度は炭素が鉄に比べて
はるかに大きいこと。
(2) Carbon has a much higher diffusion rate than iron in the austenite region.

(3)フェライト基地片状黒鉛鋳鉄をオーステナイト域
に加熱すると炭素の溶解度の大きな差のため先ず、黒鉛
オーステナイト界面附近の炭素がオーステナイトへ溶太
し、空隙が形成される。
(3) When ferrite-based flaky graphite cast iron is heated to the austenite region, due to the large difference in carbon solubility, carbon near the graphite-austenite interface melts into austenite, forming voids.

シ黒鉛片の肉薄が、2μ以下というように薄い部分には
、部分的に黒鉛片が分断される。
The graphite piece is partially divided in a thin part where the thickness of the graphite piece is 2μ or less.

(4)この空隙部分に鉄が、自己拡散し析出して空隙を
充填する。
(4) Iron self-diffuses and precipitates into the void, filling the void.

この作用により体積は減少し全体として収縮する。This action causes the volume to decrease and the whole to shrink.

この現象を図解すると第1図及び第2図に示すとおりで
ある。
This phenomenon is illustrated in FIGS. 1 and 2.

(5)このようにして、微細片状黒鉛は分断され粒状化
する。
(5) In this way, the fine flaky graphite is divided and granulated.

〔実施例の説明〕[Explanation of Examples]

新日鉄銑1号B(4,]、4%C12,1%Si、02
%Mn、0.082%P、0.03%S)を原料鉄とし
、純鉄、フェロシリコンで成分調整し、3.4%C12
,7%Si とした溶湯を1350℃で金型(径20X
250mm丸棒:0.3ynm基礎塗型、アセチレンス
ス作業塗型、150℃予熱)に鋳込み、90秒後に離型
し、焼鈍箱に入れエレマ炉中で次の熱処理を行った。
Nippon Steel Pig No. 1 B (4,], 4%C12, 1%Si, 02
%Mn, 0.082%P, 0.03%S) as the raw material iron, the composition was adjusted with pure iron and ferrosilicon, and 3.4%C12
, 7% Si in a mold (diameter 20X) at 1350℃.
250 mm round bar: 0.3 ynm basic coating mold, acetylene suction coating mold, preheated to 150° C.), the mold was released after 90 seconds, and the bar was placed in an annealing box and subjected to the next heat treatment in an Elema furnace.

熱処理(黒鉛分断処理)条件は920℃まで約3時間で
昇温し、その温度で2時間保持後、空冷又は炉冷するも
のであった。
The heat treatment (graphite cutting treatment) conditions were to raise the temperature to 920° C. in about 3 hours, hold it at that temperature for 2 hours, and then cool it in air or in a furnace.

その結果、微細黒鉛の一部は溶分断され、第1表に示す
ように強度は向上した。
As a result, part of the fine graphite was dissolved and the strength was improved as shown in Table 1.

鋳造のままで、微細黒鉛と一部パーライトをもつフェラ
イト基地であり、炉冷で完全なフェライト基地を残存し
、空冷では鋳造のままと殆んど差のない組織でわずかに
パーライトを残存する。
As cast, it has a ferrite base with fine graphite and some pearlite, and when cooled in a furnace, a complete ferrite base remains, and when cooled in air, the structure is almost the same as that as cast, with a slight pearlite remaining.

黒鉛が微細なこと、高炭素のみでなく、27%Siとき
わめて高い珪素量のため、空冷程度でも殆どパーライト
を残存しないものと考えられる。
Because the graphite is fine and has a high carbon content as well as an extremely high silicon content of 27% Si, it is thought that almost no pearlite remains even after air cooling.

顕微鏡組織は100倍程度では黒鉛の組織は殆ど変化は
認められないが、500倍で見ると明らかに黒鉛は溶分
断され、先端に丸味が見られる。
The microscopic structure shows almost no change in the graphite structure when viewed at 100x magnification, but when viewed at 500x magnification, the graphite is clearly fused and separated, and a rounded tip can be seen.

これが強度において10%〜27%もの向上を示した主
原因と考えられる。
This is considered to be the main reason why the strength improved by 10% to 27%.

空冷と炉冷とで殆ど差を示さないのは、空冷してもパー
ライトは殆ど認められず、炉冷とほぼ同じ組織を示した
ためである。
The reason why there is almost no difference between air cooling and furnace cooling is that almost no pearlite was observed even in air cooling, and the structure was almost the same as that in furnace cooling.

このように普通鋳鉄でも、オーステナイト域での短時間
保持による黒鉛の溶分断焼鈍で著しい強度の向上を認め
た。
In this way, even in ordinary cast iron, a remarkable improvement in strength was observed when graphite was melted and annealed by holding it in the austenite region for a short time.

なおこの実験では伸びの測定を行わなかったため明らか
ではないが顕微鏡組織に示す黒鉛の溶分断により、ある
程度の伸びを示すものと考えられる。
Although it is not clear because elongation was not measured in this experiment, it is thought that a certain amount of elongation is exhibited due to the dissolution of graphite shown in the microscopic structure.

低S釜石ダクタイル銑(4,3%C10,6%Si、0
.2%Mn、0.06%P、0.002%S10.00
4%Cr、0.052%Ti、0.002%As )を
用い、純鉄、金属Siで成分を調整し、0.3%フェロ
シリコンで接種し、1350℃で前述の金型(予熱温度
150℃;他条件同じ)に鋳込んだ(化学組成は約3,
5%C12,5%Si)金型離型時間は1〜,2分であ
った。
Low S Kamaishi ductile pig (4.3%C10.6%Si, 0
.. 2%Mn, 0.06%P, 0.002%S10.00
4% Cr, 0.052% Ti, 0.002% As), the components were adjusted with pure iron and metal Si, inoculated with 0.3% ferrosilicon, and the mold was heated to 1350°C (preheating temperature It was cast at 150℃ (other conditions are the same) (chemical composition is approximately 3,
(5% C12, 5% Si) mold release time was 1 to 2 minutes.

別に肉厚物にも適用しうるように、黒鉛の微細化処理と
してTi0.5%(目標0.25%含有)を添加した場
合について調べた。
Separately, we investigated the case where 0.5% Ti (targeted content of 0.25%) was added as a graphite refinement treatment so that it could be applied to thick-walled objects.

更に、Ti0.5%添加溶湯を金型と同一形状のCO2
砂型に鋳込んだ鋳造材についても黒鉛分断処理を行った
Furthermore, the 0.5% Ti-added molten metal was placed in a CO2 mold with the same shape as the mold.
Graphite fragmentation treatment was also applied to the cast material cast into the sand mold.

黒鉛分断処理条件は、下記のとおり。The graphite separation treatment conditions are as follows.

温(3回繰り返し加熱) 以上a、 b、 cld及びeの5種である。Warm (repeated heating 3 times) The above five types are a, b, cld, and e.

なお、引張り試験機はインストロン型で行い、応力−歪
曲線を得た。
The tensile testing machine was an Instron type, and a stress-strain curve was obtained.

以上のうち(d)の熱処理により得られた顕微鏡組織の
代表例(倍率2000倍)を第3図(鋳造のまま)と第
3d図(1050℃、2回加熱)で示す。
Representative examples (magnification: 2000x) of the microscopic structures obtained by the heat treatment in (d) above are shown in Fig. 3 (as cast) and Fig. 3d (heated twice at 1050°C).

以下に示す語例はすべて熱処理による強度の向上を示す
が、その原因は、この写真に示されるような黒鉛の粒状
化に基づくものである。
The examples below all show an improvement in strength due to heat treatment, but this is due to the granulation of graphite as shown in this photo.

〔機械的強度および応力−歪曲線の特徴〕(I) 熱
処理条件a)(b)(c)の場合強度(引張り強さ、伸
び)の変化を第2表に示す。
[Characteristics of mechanical strength and stress-strain curve] (I) Changes in strength (tensile strength, elongation) under heat treatment conditions a), (b), and (c) are shown in Table 2.

この表より明らかなように、750’Cではわずかの引
張り強さの増加だが、920’Cで8%、1050℃で
13%増加する。
As is clear from this table, the tensile strength increases slightly at 750'C, but increases by 8% at 920'C and 13% at 1050°C.

特に伸びは750℃でも4倍、920’C11050’
Cでそれぞれ実に6.8倍の増加を示した。
Especially the elongation is 4 times even at 750℃, 920'C11050'
C showed an increase of 6.8 times.

それらの顕微鏡組織を第4図、第4a図、第4b図、第
4c図(各倍率13o)と第5図、第5a図、第5b図
、第5c図(各倍率65o)に示す。
Their microscopic structures are shown in FIGS. 4, 4a, 4b, and 4c (each magnification 13o) and FIGS. 5, 5a, 5b, and 5c (each magnification 65o).

これにより750℃の加熱ですでに若干の黒鉛の溶分断
が認められ、その分断程度ば920 ’C11、050
℃と保持温度が増加するに従って著しくなり、強度、特
に伸びとの対応性がはっきりと認められる。
As a result, some graphite melting was already observed by heating at 750°C, and the extent of the splitting was 920'C11, 050°C.
It becomes more significant as the holding temperature increases, and the correspondence with strength, especially elongation, is clearly recognized.

なお、第6図の応力−歪曲線で見るよう降伏点までは4
者ともほぼ一致するが、以後の塑性変形の相異が間隙で
黒鉛の分断による伸びの上昇がよ(理解される。
As shown in the stress-strain curve in Figure 6, it takes 4 to reach the yield point.
It is understood that the difference in the subsequent plastic deformation is that the elongation increases due to the division of graphite in the gap.

(II)Ti処理した金型および砂型鋳造材の熱処理の
影響について 次に溶湯をTi0.5%で処理しくTi 目標値0.2
5%)、これを前記金型及びCO□砂型に鋳込んだ。
(II) Effects of heat treatment on Ti-treated molds and sand casting materials Next, the molten metal should be treated with 0.5% Ti.Target value: 0.2
5%) and was cast into the mold and CO□ sand mold.

金型材でも肉厚の場合は黒鉛が粗大になり、黒鉛の分断
処理が困難となると考え、あらかじめTi処理により析
出黒鉛のすべてを微細化しようとした。
Considering that if the mold material was too thick, the graphite would become coarse and it would be difficult to separate the graphite, so an attempt was made to make all the precipitated graphite finer by Ti treatment in advance.

なお砂型を用いたのは、砂型でも黒鉛さえ微細であれば
、本発明におげろ熱処理は効果ある筈であると考えた。
The reason why a sand mold was used was because it was thought that as long as the graphite was fine even in a sand mold, the heat treatment would be effective in the present invention.

それらの結果を第3表に示す。The results are shown in Table 3.

この表より明らかなように、金型材では750℃保持よ
り1050℃の方が引張り強度で15%増加し、伸びは
2倍以上増大している。
As is clear from this table, the tensile strength of the mold material increased by 15% at 1050°C compared to that at 750°C, and the elongation increased by more than twice.

鋳造のままの強度は明らかでないが、鋳造のままでは7
50’Cより可成り悪いことが予想されることから、T
iを添加した金型材でもTi無添加の場合と同様に黒鉛
溶分断効果は明らかであり、この場合の顕微鏡組織を第
7図、第7A図(以下各倍率160)及び第8図、第8
A図(以上各倍率800)に示すが、これらの図からも
黒鉛の粒状化の進行は、保持温度の上昇により顕著であ
ることがわかる。
The strength of the as-cast condition is not clear, but the strength of the as-cast condition is 7.
Since it is expected to be considerably worse than 50'C, T
Even with the mold material added with Ti, the graphite melting and separation effect is obvious as in the case without the addition of Ti.
As shown in Figure A (each magnification is 800), it can be seen from these figures that the progress of graphite granulation is more pronounced as the holding temperature increases.

砂型材では、750℃保持では殆ど熱処理効果は見られ
ないが、920℃でやや改善され、1050℃では引張
り強さで実に26%、伸びは2.5倍程度増加する。
In the sand mold material, almost no heat treatment effect is observed when held at 750°C, but it is slightly improved at 920°C, and at 1050°C, the tensile strength increases by 26% and the elongation increases by about 2.5 times.

但し、伸びの向上は、他の場合はどは顕著ではない。However, the improvement in elongation is not as noticeable in other cases.

然し砂型での微細黒鉛の場合でも、明らかに効果が現れ
たことは、真に注目に値する。
However, it is truly remarkable that even in the case of fine graphite in a sand mold, the effect was evident.

それらの顕微鏡組織を第9図、第9a図、第9b図、第
9c図(以上各倍率130)と第10図、第10a図、
第10b図、第10c図(以上各倍率650 )に示し
た。
The microscopic structures are shown in Fig. 9, Fig. 9a, Fig. 9b, Fig. 9c (each magnification: 130), Fig. 10, Fig. 10a,
This is shown in Figures 10b and 10c (each magnification is 650).

これより鋳造のままの組織は、金型材に比較し黒鉛は明
らかに粗大であり、そのため、鋳造のままの強度も可成
り劣る。
From this, it can be seen that the structure of the as-cast graphite is obviously coarser than that of the mold material, and therefore the as-cast strength is considerably inferior.

このように黒鉛が粗大な場合は、本発明の黒鉛溶分断効
果はやや小さくなり、1050℃のような高温の後述の
繰り返し加熱が有効となる。
When the graphite is coarse like this, the graphite melting and cutting effect of the present invention becomes somewhat small, and repeated heating at a high temperature such as 1050° C., which will be described later, becomes effective.

(ホ)繰り返し加飾d)および熱処理(e)の場合10
50℃−2回および920℃−3回繰り返し加熱の結果
を第4表に示す。
(e) In case of repeated decoration d) and heat treatment (e) 10
Table 4 shows the results of repeated heating at 50° C. twice and at 920° C. three times.

引張り強さは1050℃−2回で約23%、920℃−
3回で約30%増加しており、伸びも約7倍及び9倍と
著増し繰り返し加熱のきわめて顕著な効果を示している
Tensile strength is approximately 23% at 1050°C twice, and at 920°C
It increased by about 30% after 3 times, and the elongation increased significantly by about 7 times and 9 times, showing the extremely remarkable effect of repeated heating.

なお組織の変化は第4図〜第4c図(第5図〜第5c図
)が代表例で、前記熱処理(a)、(b)、(C)等の
加熱により、黒鉛がきれいに粒状化していることがわか
る。
Typical examples of changes in the structure are shown in Figures 4 to 4c (Figures 5 to 5c), where the graphite is neatly granulated by the heat treatments (a), (b), and (C). I know that there is.

つぎに、上と同様な鋳鉄溶湯を用いて得た鋳造材に、第
11図に示すような周期的加熱処理、すなわち、600
℃以下の温度から950℃の高温に昇温し、その温度で
2時間保持したのち600℃以下の温度に再度冷却する
加熱処理を、繰り返し行なった結果は第12図のとおり
であった1、第12図から明らかなように、このような
周期的加熱処理を3回以上繰り返し行なうのが効果的で
ある。
Next, a cast material obtained using the same molten cast iron as above was subjected to a periodic heat treatment as shown in FIG.
Figure 12 shows the results of repeated heat treatment in which the temperature was raised from below 10°C to a high temperature of 950°C, held at that temperature for 2 hours, and then cooled again to 600°C or below1. As is clear from FIG. 12, it is effective to repeat such periodic heat treatment three or more times.

この場合、昇温する温度(高温)としてはオースアナイ
ト域の温度であり、実用的には800°〜1000℃、
さらに好ましくは950℃前後の温度が適当である。
In this case, the temperature to be raised (high temperature) is a temperature in the ausanite range, which is practically 800° to 1000°C,
More preferably, the temperature is around 950°C.

あまり高温では設備的に問題が生ずる。If the temperature is too high, equipment problems will occur.

なお、繰り返し加熱による熱処理を行なう場合は、いず
れの場合にも約10分間程度の高温における保持時間で
効果があられれたが、実用的には1〜3時間とするのが
好ましかった。
In addition, when heat treatment by repeated heating is performed, in all cases, an effect was obtained with a holding time at a high temperature of about 10 minutes, but in practical terms, a holding time of 1 to 3 hours was preferable.

つぎに、本発明における鋳物の炭素(q、ケイ素(Si
)、マンガン(Mn)含有量について述べれば、第13
図は炭素当量CE値(C+1/3Si)と黒鉛化率なら
びに黒鉛肉厚との関係を調べた結果をあられすグラフで
あり、同図から炭素含有量を2〜4.5%、ケイ素含有
量を0.5〜4%とするのが好ましいことがわかる。
Next, carbon (q, silicon (Si)
), if we talk about manganese (Mn) content, the 13th
The figure is a graph showing the results of investigating the relationship between carbon equivalent CE value (C+1/3Si), graphitization rate, and graphite thickness.From the figure, carbon content is 2 to 4.5%, silicon content is It can be seen that it is preferable to set the amount to 0.5 to 4%.

また、第14図は各種S量でのMn含有量の黒鉛化率に
およぼす影響を調べた結果をあられすグラフであり、M
n含有量を0.2%以下とすれば80%以上の望ましい
黒鉛化率が得られるのである。
In addition, Fig. 14 is a graph showing the results of investigating the influence of Mn content on graphitization rate at various S contents.
If the n content is 0.2% or less, a desirable graphitization rate of 80% or more can be obtained.

以上に説明したように、本発明にかかる高伸びを有する
ねずみ鋳鉄鋳物の製造法は、特別な脱硫処理を必要とせ
ず、比較的簡単な工程によって高伸びを有するねずみ鋳
鉄鋳物を得ることのできるきわめて実用性の高いもので
ある。
As explained above, the method for producing a gray cast iron casting with high elongation according to the present invention does not require any special desulfurization treatment and can produce a gray iron casting with high elongation through a relatively simple process. It is extremely practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を解説する片状黒鉛分断による熱
膨張変化曲線図、第2図■、■、■は片状黒鉛の分断に
よる形状変化を示す模式図である。 第3図及び第3d図は鋳鉄のままと、本発明熱処理の代
表的実施例の組織の各顕微鏡写真 (X100O)、第4図(鋳鉄のまま)と第4a図、第
4b図、第4c図は同じく他の3種の実施例の同様の顕
微鏡写真(X130)、第5図と第5a図、第5b図、
第5c図はそれぞれ同じものの倍率(X650)の各顕
微鏡写真である。 第6図は前記鋳鉄のまま及び本発明熱処理による3種の
実施例の応力−歪曲線を示すグラフ、第7図、第7A図
及び第8図、第8A図は、Ti処理した鋳鉄材の金型使
用の場合、加熱後における組織の倍率(X180)及び
倍率(xsoo)の各顕微鏡、写真である。 第9図と第9a図、第9b図、第9c図並に第10図と
第10a図、第10b図、第10c図は同じ<Ti処理
の鋳鉄材の砂型使用の場合の同様な倍率(X130)と
同(X650)の各顕微鏡写真である。 第11図は、周期的加熱処理のスケジュール図、第12
図は、その繰り返し回数と効果との相関図である。 第13図はCE値と黒鉛化率ならびに黒鉛肉厚との関係
をあられすグラフ、第14図は各種S量でのMn含有量
の黒鉛化率におよぼす影響をあられすグラフである。
FIG. 1 is a thermal expansion change curve diagram due to fragmentation of flaky graphite, which explains the principle of the present invention, and FIG. Figures 3 and 3d are micrographs (X100O) of the structures of cast iron as it is and a typical example of the heat treatment of the present invention, Figure 4 (as cast iron), Figures 4a, 4b, and 4c. The figures are similar micrographs (X130) of three other examples, Figures 5, 5a, 5b,
Figure 5c is a photomicrograph of the same specimen at a magnification (X650). FIG. 6 is a graph showing the stress-strain curves of the cast iron as-is and three examples heat-treated according to the present invention, and FIGS. 7 and 7A, and FIGS. In the case of using a mold, these are microscopic photographs of the structure after heating (X180) and magnification (xsoo). Figures 9, 9a, 9b, and 9c as well as Figures 10, 10a, 10b, and 10c show the same magnification when using a sand mold of Ti-treated cast iron ( These are micrographs of the same (X130) and the same (X650). FIG. 11 is a schedule diagram of periodic heat treatment;
The figure is a correlation diagram between the number of repetitions and the effect. FIG. 13 is a graph showing the relationship between CE value, graphitization rate, and graphite wall thickness, and FIG. 14 is a graph showing the influence of Mn content on graphitization rate at various S amounts.

Claims (1)

【特許請求の範囲】 1 鉄を主成分とし、炭素含有量が2〜4.5%、ケイ
素含有量が0.5〜4%、マンガン含有量が0.2%以
下の鋳鉄溶湯を鋳型に注湯して厚さ2ミクロン以下の微
細片状黒鉛を含むフェライト基地の鋳造材とし、しかる
のち750°〜1050℃の温度で少なくとも一度は保
持して片状黒鉛を分断する熱処理を施すことを特徴とす
る高伸びを有するねずみ鋳鉄鋳物の製造法。 2 鋳造材を低温から920°〜1050℃の高温に昇
温し、その温度で10分間以上保持したのち再度冷却す
る周期的加熱処理を、2回以上繰り返し行なう特許請求
の範囲第1項記載の高伸びを有するねずみ鋳鉄鋳物の製
造法。 3750℃以上での保持時間が1〜3時間である特許請
求の範囲第1項または第2項記載の高伸びを有するねず
み鋳鉄鋳物の製造法。
[Scope of Claims] 1 Molten cast iron containing iron as a main component and having a carbon content of 2 to 4.5%, a silicon content of 0.5 to 4%, and a manganese content of 0.2% or less is used as a mold. The material is poured into a ferrite base casting material containing fine flaky graphite with a thickness of 2 microns or less, and then heat-treated by holding it at a temperature of 750° to 1050°C at least once to break up the flaky graphite. A manufacturing method for gray cast iron castings with a characteristic high elongation. 2. The method according to claim 1, in which a periodic heat treatment in which the cast material is heated from a low temperature to a high temperature of 920° to 1050°C, held at that temperature for 10 minutes or more, and then cooled again is repeated two or more times. A method for manufacturing gray iron castings with high elongation. The method for manufacturing a gray cast iron casting having high elongation according to claim 1 or 2, wherein the holding time at 3750°C or higher is 1 to 3 hours.
JP9860176A 1976-08-20 1976-08-20 Manufacturing method of granular graphite cast iron Expired JPS5945728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9860176A JPS5945728B2 (en) 1976-08-20 1976-08-20 Manufacturing method of granular graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9860176A JPS5945728B2 (en) 1976-08-20 1976-08-20 Manufacturing method of granular graphite cast iron

Publications (2)

Publication Number Publication Date
JPS5325215A JPS5325215A (en) 1978-03-08
JPS5945728B2 true JPS5945728B2 (en) 1984-11-08

Family

ID=14224125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9860176A Expired JPS5945728B2 (en) 1976-08-20 1976-08-20 Manufacturing method of granular graphite cast iron

Country Status (1)

Country Link
JP (1) JPS5945728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248864A (en) * 1984-05-23 1985-12-09 Kusaka Reametaru Kenkyusho:Kk Brake drum made of cv graphite cast iron

Also Published As

Publication number Publication date
JPS5325215A (en) 1978-03-08

Similar Documents

Publication Publication Date Title
US5139579A (en) Method for preparing high silicon, low carbon austempered cast iron
JP2019119924A (en) Spheroidal graphite cast iron
CN108746508A (en) A kind of production technology of more alloy cylinder caps
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
US10844450B2 (en) Black heart malleable cast iron and manufacturing method thereof
JPH0549722B2 (en)
JPS5945728B2 (en) Manufacturing method of granular graphite cast iron
US5346561A (en) Spheroidal graphite cast iron member having improved mechanical strength hand method of producing same
JPH08333650A (en) Thin-walled spheroidal graphite cast iron, automobile parts using same, and production of thin-walled spheroidal graphite cast iron
US5100612A (en) Spheroidal graphite cast iron
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
JPS6347774B2 (en)
RU2449043C2 (en) Method for cast iron heat treatment with spherical graphite
JP2007327083A (en) Spheroidal graphite cast iron and its production method
JPS6321728B2 (en)
US2943932A (en) Boron-containing ferrous metal having as-cast compacted graphite
JP2659352B2 (en) Manufacturing method of Bamikiura graphite cast iron
JPH09235609A (en) Production of cast iron
US2706681A (en) Alloy for addition to iron or steel
US228615A (en) Charles j
JP2001240934A (en) Method for producing spheroidal graphite cast iron
JPH08176656A (en) Production of cast iron with high ductility
WO2018043685A1 (en) Spherical graphite cast iron semi-solid casting method and semi-solid cast product
RU2352671C1 (en) Method of receiving products made of iron with carbon alloy
TW202300664A (en) Manufacturing method of ductile cast iron with high strength and high ductility