JPS5945634A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPS5945634A
JPS5945634A JP57156947A JP15694782A JPS5945634A JP S5945634 A JPS5945634 A JP S5945634A JP 57156947 A JP57156947 A JP 57156947A JP 15694782 A JP15694782 A JP 15694782A JP S5945634 A JPS5945634 A JP S5945634A
Authority
JP
Japan
Prior art keywords
substrate
disk
magnetic
film
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57156947A
Other languages
Japanese (ja)
Inventor
Fumio Goto
文男 後藤
Yoji Suganuma
菅沼 葉二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57156947A priority Critical patent/JPS5945634A/en
Publication of JPS5945634A publication Critical patent/JPS5945634A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73913Composites or coated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To reduce defects in a substrate for a magnetic disk in size and number and to obtain a high quality disk by forming an Ni alloy layer having a specified saturation magnetic flux density or below on the surface of a metal for the substrate by an electroless plating method and by forming a thin oxide film as a magnetic medium on the Ni alloy layer. CONSTITUTION:The surface of an Al alloy disk is made flat and smooth by mechanical working, and an Ni alloy layer having <=50G saturation magnetic flux density is formed on the disk by an electroless plating method. The Ni alloy layer is finished to a specular surface by polishing, and a thin gamma-Fe2O3 film as a magnetic medium is formed on the layer by sputtering a sintered Fe3O4 body as a target in an Ar atmosphere and by carrying out heat treatment in air. Thus, impurities such as Si and Fe in the Al alloy substrate are prevented from appearing to the surface, causing defects and deteriorating the flatness of the substrate, so a high quality disk making no bit error is obtd.

Description

【発明の詳細な説明】 本発明は磁気記1.11 族ti−ζこ用いられる磁気
ディスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic disk for use in magnetic recording groups 1.11, ti-ζ.

近年、コンビ、−ター・システノ・におりる外部記憶装
置としての重要性か増大し、高記録密度化に対する一要
求は益々高まりつつある位!失・、ティスフ装置は、記
録+q生ヘッドおよびトタ、ティスクのキー・コンポー
ネントから構成され、磁気ディスクは高速で回転し、記
録再生ヘッドは磁気ディスクより微小間隔浮上している
。磁気ディスクの高記録密度化、高性能化を図るために
は、記録媒体の薄膜化、均一化、hチ気特性の改善(保
磁力、角形性の増大)、および低浮上禁におけろ安定し
定ヘッド浮揚状態を確保しヘッドとディスクの衝突(ヘ
ッド・クララシー)を防止するためディスク表面精度の
向上、さらに高密度記録時のビットエラー低減のため基
板ならびに記録媒体の欠陥の減少がなされねばならない
In recent years, the importance of external storage devices in combinations and systems has increased, and the demand for higher recording densities is increasing. The read/write device is composed of the key components of a recording + q raw head and a total disk.The magnetic disk rotates at high speed, and the recording/reproducing head floats a minute distance above the magnetic disk. In order to increase the recording density and improve the performance of magnetic disks, it is necessary to make the recording medium thinner, more uniform, improve the h-chip characteristics (increase coercive force and squareness), and improve stability at low levitation forces. In order to ensure a constant head flying condition and prevent collisions between the head and the disk (head clarity), the accuracy of the disk surface must be improved, and in order to reduce bit errors during high-density recording, defects in the substrate and recording medium must be reduced. No.

従来、磁気ディスクとしては、酸化鉄微粒子とバインダ
ーの混合物を基板上に筐布したいわゆるコーティング媒
体が広く用いられてきた。記録密度の上昇に#ないコー
チインク媒体の薄膜化がなされ、現在記録密度的15.
000ビット/インチ(ティスフ面上の磁束反転密度的
1 f+、000フラツクス・リバーサル/インチ)に
おいて膜厚05μm 程度に達している。しかしコーチ
インク媒体においては、今後さらに高密度化を達成する
ために、より一層の薄膜化をはかり、しかも均一な記録
再生特性を実現することは極めて困難である。したかっ
?コーティング法による媒体においては記録密度の大幅
な増加は期待でき1まい。
Conventionally, so-called coating media in which a mixture of iron oxide fine particles and a binder is coated on a substrate have been widely used as magnetic disks. In response to the increase in recording density, coach ink media have been made thinner, and the recording density is currently 15.
The film thickness reaches about 05 μm at 000 bits/inch (1 f+ magnetic flux reversal density on the tissue surface, 000 flux reversal/inch). However, in coach ink media, it is extremely difficult to make the film even thinner and to achieve uniform recording and reproducing characteristics in order to achieve higher densities in the future. Did you want to? A significant increase in recording density cannot be expected for media produced by the coating method.

そこでコーチインク媒体に代る高密+&磁気記録媒体と
して、薄膜化が容易な連続薄膜媒体が注目されている。
Therefore, continuous thin film media, which can be easily made thin, are attracting attention as high-density +& magnetic recording media to replace coach ink media.

連l&1tfi膜媒体とし°C金属メッキ膜を用い、た
メッキへ気ディスクが埒:に開発され高記録密度化が達
成されているが、近年になっ−c酸化物磁性薄j漢が注
目され始めた。これも金属メッキ膜と同411膜化が可
能で(み気持性に優れ、かつ耐食性を有するため記録ぞ
度を向上しうるものと期待されている。
A plating disk using a C metal plating film as a TFI film medium was developed in 2005 and achieved high recording density, but in recent years, -c oxide magnetic thin magnetic disks have begun to attract attention. Ta. This can also be made into a 411 film similar to the metal plating film (it has excellent feel and corrosion resistance, so it is expected to improve recording accuracy.

この様な酸化物磁性薄膜媒体を用いた磁気ディスクの製
造は基板形成工程と媒体形成工程に大別され、基板形成
工程には以下lこ述べる問題があった0 酸化物磁性薄膜媒体の基板シしては、媒体の薄膜化を可
能とし低浮上量における安定したヘッド浮揚状態を確保
するため平坦性および平滑性が要求され、基板欠陥の著
しい低減が必要とされる。
The manufacturing of magnetic disks using such oxide magnetic thin film media is roughly divided into a substrate forming process and a medium forming process, and the substrate forming process has the following problems. For this purpose, flatness and smoothness are required in order to enable thinning of the medium and to ensure a stable head flying state at a low flying height, and a significant reduction in substrate defects is required.

また基板には機械的な強度、加工性、研磨性、軽量性、
低価格性、大量生産性などの諸物件が必要とされ、媒体
形成工程での熱処理後も非磁性を保つことが必要とされ
た。この基板としてはこれまで金属、カラスなどが用い
られてきたが、カラス基板は平滑かつ平坦な表面性を有
する反面、衝撃に対して弱く破損の危険性があるため実
用上不適とされている。一方金属基板としては安価で加
工性も良いアルミニウム合金が一般に広く使用されてい
るが、アルミニウム合金だけでは基板面の硬さ及び研磨
性が不十分であるのでアルミニウム合金の表面を陽極酸
化処理し、研磨、加工したものが用いられている。この
基板は前記諸物件の各項目をほぼ満足するが、基板欠陥
の点で根本的な問題点を有している。すなわち、アルミ
ニウム合金中に含有されている81*Fe等の不純物粒
子は陽極酸化処理の際多数の表面欠陥を形成し、これを
避けるため高純度アルミニウム合金を用いた場合素材か
軟くなり基板の平坦性が確保できなくなる。この様な開
路を解決し、磁気ディスク基板の欠陥を低減するため特
開昭57−18029公報に見られる如く、アルミニウ
ム合金基体上に電気メッキが可能な皮膜を形成させ、こ
の皮膜上にニッケル80−90重請チ、リン10〜20
重蓋チのニッケル・リン合金皮膜を電気メッキによって
形成し、このニッケル・リン合金皮膜表面を研磨した基
板(以下電気メッキ・ニッケル・リン基板という)が酸
化物磁性薄膜媒体用j′+!板として提案されている。
The substrate also has mechanical strength, workability, polishability, lightness,
Various properties such as low cost and mass productivity were needed, and it was also necessary to maintain non-magnetic properties even after heat treatment in the media forming process. Until now, materials such as metal and glass have been used as this substrate, but although the glass substrate has a smooth and flat surface, it is weak against impact and has the risk of breakage, so it is considered unsuitable for practical use. On the other hand, aluminum alloys, which are inexpensive and have good workability, are generally widely used as metal substrates, but aluminum alloys alone do not provide sufficient hardness and polishability, so the surface of aluminum alloys is anodized. Polished and processed materials are used. Although this board almost satisfies each of the above-mentioned items, it has a fundamental problem in terms of board defects. In other words, impurity particles such as 81*Fe contained in aluminum alloys form many surface defects during anodizing treatment, and to avoid this, when high-purity aluminum alloys are used, the material becomes soft and the substrate is damaged. Flatness cannot be ensured. In order to solve such open circuits and reduce defects in magnetic disk substrates, a film that can be electroplated is formed on an aluminum alloy substrate, and nickel 80 -90 heavy orders, 10 to 20 phosphorus
A substrate on which a heavy nickel-phosphorous alloy film is formed by electroplating and the surface of this nickel-phosphorus alloy film is polished (hereinafter referred to as electroplated nickel-phosphorus substrate) is used for oxide magnetic thin film media. It is proposed as a board.

しかし1、アルミニウム合金円板の表面に亜鉛置換処理
により0.5μm厚さの表向処理膜を形成し、その上に
PI(10のM°化銅メッキ液を用いて4μm厚の電気
銅メッキ膜を形成し、その上に穴あきじゃま板と補助陰
極を用いて回転しながら15μm厚のニッケル・リン・
メッキ膜を形成し、この表面を研磨して基板とするこの
様〜方法においては、熱処理工程によっ°Cニッケル・
リン中メッキ膜が磁性を帯びることはないが、基板表面
に多数の欠陥が生じ、円板の半径方向におけるメッキ厚
の不均一が大きく、円板の面内の局所的なメッキ厚の不
均一かあるほか、電極配置・+1!It 4pi通の板
雑さのために生産性が悪く著しく高価となる等の問題が
ある。すなわち、電気メツキ法によって銅メッキ膜およ
びニッケル・リン争メッキ膜を形成する方法においては
、メッキ液中の不純物または被メッキ物およびアノード
からメッキ液中に溶出した不純物が、通電してメッキ膜
が形成される際に巻き込まれて共析され、それが核とな
って表面欠陥を生じやすく磁気ディスク基板の欠陥を減
少することは極めて困難である。また電気メツキ法によ
って円板上に均一な膜厚のメッキ膜を形成することは困
難であり、特公昭45−94471号公報に記載されて
いる様な穴あきじゃま板と徐顯陰極を用いてメッキを行
っても直径210m、厚さ2ガの円板の半径方向におい
て±7チ以上のニッケル・リン・メッキ厚の不均一を生
じた。更にまた亜鉛置換処理後の表面には微小な凹凸が
存在するが、その上に電気メツキ法によって銅メッキお
よびニッケル・リン・メッキを行う場合、表面の微小な
凸部における電流密度が増加し局所的にメッキ膜厚が増
大し円板の表面に多数の突起を生じる〇表面欠陥はビッ
トエラーの原因となるほか、メッキ後の機械加工におい
で表面突起とともに研磨不良の原因となり表面の平滑性
を低下させる。
However, 1. A 0.5 μm thick surface treatment film was formed on the surface of the aluminum alloy disk by zinc substitution treatment, and then a 4 μm thick electrolytic copper plating film was applied using PI (10 M° copper plating solution). A film was formed, and a 15 μm thick nickel phosphorus film was deposited on top of the film while rotating using a perforated baffle plate and an auxiliary cathode.
In this method, a plated film is formed and the surface is polished to form a substrate.
Although the plating film in phosphorus does not become magnetic, many defects occur on the substrate surface, and the plating thickness is highly uneven in the radial direction of the disk, and local unevenness in the plating thickness within the plane of the disk. In addition to that, electrode placement +1! There are problems such as poor productivity and extremely high cost due to the roughness of the board for It 4pi. In other words, in the method of forming a copper plating film and a nickel phosphorous plating film by electroplating, impurities in the plating solution or impurities eluted from the object to be plated and the anode into the plating solution are removed by electricity and the plating film is formed. When it is formed, it is rolled up and eutectoid, which becomes a nucleus and tends to cause surface defects, making it extremely difficult to reduce defects in magnetic disk substrates. In addition, it is difficult to form a plated film of uniform thickness on a disk by electroplating, so using a perforated baffle plate and a slow-painting cathode as described in Japanese Patent Publication No. 45-94471 is necessary. Even after plating, the nickel-phosphorus plating thickness was uneven by ±7 inches or more in the radial direction of a disk with a diameter of 210 m and a thickness of 2 ga. Furthermore, there are minute irregularities on the surface after zinc substitution treatment, but when copper plating or nickel phosphorus plating is performed on the surface by electroplating, the current density increases at the minute convexities on the surface, causing local damage. As a result, the plating film thickness increases and many protrusions are produced on the surface of the disk.Surface defects not only cause bit errors, but also cause polishing defects along with surface protrusions during machining after plating, reducing surface smoothness. lower.

本発明の目的は上述した従来技術の欠点を牧舎して、高
密度記録に適する表簡鞘屡′(平坦性、平滑性、表面欠
陥)叡・シ砿的強度、大新生産性7.ijどの諸物件に
おいて優れた基板を用いて記録再生特性に遜色のない磁
気ディスクを提供することにある。
The purpose of the present invention is to overcome the above-mentioned drawbacks of the prior art, and to provide a surface that is suitable for high-density recording (flatness, smoothness, surface defects), mechanical strength, and new productivity. The object of the present invention is to provide a magnetic disk that uses an excellent substrate and has comparable recording and reproducing characteristics in various materials.

本発明によれば、金属基板と、この金属基板を被覆する
ニッケル合金メッキ層と、このニッケル合金メッキ層を
級覆する酸化物磁性薄膜媒体を有する磁気ディスクにお
いて、前記ニッケル合金メッキ層は、その飽和磁束密度
が50カフス以下である無電解メッキ層であることを特
徴とする磁気ディスクが提供される0本発明の磁気ディ
スクの基板は無電解メッキ法によるニッケル合金メッキ
層を研磨して形成されるため、機械的強度、加工性、研
磨性および軽景性の点で良好’jh性を南することに加
え、基板欠陥の微小化および極少教化が可能で微視的に
も巨視的にも均−r−″ニッケル合金メッキ層のメッキ
つきまわり性によって十分な表面精度が確保され、電気
ノブキ法のような複雑な槽構造を必要とせず一括多量生
産が可能なために低価格化を達成しうろことなどの優れ
た長所を有しでいる。従来、酸化s磁性薄膜媒体を用い
た磁気ディスクにおいては、媒体形成時の熱処理工程に
おいてニッケル合金メッキ層が帯磁するため無電解メッ
キ法lこより形成されたニッケル合金メッキ層を有する
基板(以下無電解ニッケル合金メッキ基板という)の適
用が困難であると考えられていたが、本発明者らは帯磁
したニッケル合金メッキ層の飽オ[1磁束密度が50ガ
ウス以下であれば帯磁しない基板を用いた場合と比較し
た再生出力の低下が10チ以内となり記録再生回路系に
与える負担が小さいために無電解ニッケル合金メッキ基
板を酸化物磁性薄膜媒体の基板として十分適用しうるこ
とを見い出し、本発明をなすに至った〇この結果、酸化
物磁性薄膜媒体を用いた磁気ディスクの高記録密度化お
よび高品質化が可能となった0 以下、本発明による磁気ティスフの特長を比較例および
実施例により説明する。
According to the present invention, in a magnetic disk having a metal substrate, a nickel alloy plating layer covering the metal substrate, and an oxide magnetic thin film medium covering the nickel alloy plating layer, the nickel alloy plating layer is Provided is a magnetic disk characterized by an electroless plated layer having a saturation magnetic flux density of 50 or less. The substrate of the magnetic disk of the present invention is formed by polishing a nickel alloy plated layer by electroless plating. Therefore, in addition to improving mechanical strength, workability, polishability, and lightness, it is possible to miniaturize and minimize substrate defects, both microscopically and macroscopically. The plating coverage of the uniform r-nickel alloy plating layer ensures sufficient surface precision, and low prices are achieved because bulk production is possible without the need for a complicated tank structure like the electric knob method. Conventionally, in magnetic disks using oxidized magnetic thin film media, the nickel alloy plating layer becomes magnetized during the heat treatment process during media formation, so electroless plating has been used. Although it was thought that it would be difficult to apply a substrate having a nickel alloy plating layer formed thereon (hereinafter referred to as an electroless nickel alloy plating substrate), the present inventors found that the saturation [1 magnetic flux] of a magnetized nickel alloy plating layer If the density is 50 Gauss or less, the reduction in reproduction output will be within 10 Gauss compared to when using an unmagnetized substrate, and the load on the recording and reproduction circuit system will be small. As a result, it has become possible to increase the recording density and quality of magnetic disks using oxide magnetic thin film media. The features of the magnetic tissue according to the invention will be explained using comparative examples and examples.

比較f/11゜ 機械加工によりイ坦かつ平滑に仕上けたアルミ合金円板
(直径230txm、厚さ19町)を熱矯正、熱処理な
どにより平坦性を更イこ11j」上させ7;陵、陽極酸
化処趣をイJいアルミ合金円板上に膜厚4μmの酸化膜
(アルマイト皮膜)を形成した。
Comparison f/11° An aluminum alloy disc (diameter 230 txm, thickness 19 mm) that was made flat and smooth by machining was further improved in flatness by heat straightening, heat treatment, etc. 7; ridge, anode An oxide film (alumite film) with a thickness of 4 μm was formed on an aluminum alloy disk that was not oxidized.

更にこの両面を機械加工により線面仕上けし、磁気ティ
スフの基板とした。
Furthermore, both sides of this were machined to give a linear finish, and a magnetic tissue substrate was obtained.

こうして・Fjら才jた基板には直径2μrr+ にJ
土の欠陥力S多数存在し、この点て集用上In、1題か
あるか、磁気ディスクを作製し記録再生+* a O)
測定を行うこみは可能であった。得られた基板上にF 
e s Oa焼結体をターゲットとし、Arカス雰囲気
中でスパッタリンクすること1こより1.+” Cs 
Oa膜を形成しそれを大気中で300℃ 1時間の熱処
理を行って膜厚0.17μmのγ−F e −Os か
らする酸化膜磁性#膜媒体を形成した。こうして得られ
た磁気ディスクの磁気特性は、保磁力Hc7Js  6
200e1飽和磁束密度Bsが3000カウス、角形比
Br/Bs(Brは残留磁束冑:斐)が0.81であっ
た0本実施例Cごおいて得られた磁気ディスクについて
下記の条件で記録拘止特性の測定を行った0測定条件 ディスク回転数  3.00Orpm 使用トラック  短枠125.6鰭 使用 ヘ ッ ド  トラック幅20μm1ギヤツプ長
1.0μmヘッド浮上量  0.2μm 記録電流 50mA 30.000 F几PI(フラックス・リバーサル/イ
ンチ)の高記録密度時Jこおける再生出力はO141m
Vとなり、基板」−(こ欠陥が多数存在し、夾用土は非
常ζζ問題である7J5、出力値は十分な値か得られた
0比較例2゜ 機械加工により表面を平坦かつ平滑に仕上げたアルミ合
金円板(直径210咽、痺さ1.9籠)を熱矯正、熱処
理などにより平坦性を更に向上させた後、特開昭57−
18029公報に見られる如く亜鉛置換処理により05
μm厚さの表面処理膜を形成し、その上に4μm厚の電
気銅メッキ膜を形成し、その上に穴あきじゃま版と補助
陰極を用いて回転しながら15μm厚のニッケル拳すン
メッキ腰を形成し、この表面を研磨して電気メッキ・ニ
ッケル・リン基板を得た。こうして得られた基板には、
局所的なメッキ厚の不均一およびメッキ欠陥に起因する
01磨不良によって表面にヘッドクララシーの原因とt
lる高さ0.2μm以上の突起が多数存在した。才だ直
径2μm以上の欠陥は一面に30〜60個、平均40個
程度存在した〇この様に磁気メッキ・ニッケル・リン基
板は表面精度の点で実用上問題があった。
In this way, the Fj et al. substrate has a diameter of 2μrr+ J
There are many defective forces S in the soil, and in this regard, if there is one topic in the collection, we will create a magnetic disk and record and reproduce +* a O)
It was possible to carry out measurements. F on the obtained substrate
es Using the Oa sintered body as a target, perform sputter linking in an Ar gas atmosphere.1. +”Cs
An Oa film was formed and then heat treated in the atmosphere at 300° C. for 1 hour to form an oxide film magnetic film medium made of γ-Fe-Os with a film thickness of 0.17 μm. The magnetic properties of the magnetic disk obtained in this way are coercive force Hc7Js 6
200e1 The magnetic disk obtained in Example C, which had a saturation magnetic flux density Bs of 3000 cous and a squareness ratio Br/Bs (Br is residual magnetic flux) of 0.81, was subjected to recording constraints under the following conditions. Measuring conditions under which the stopping characteristics were measured: Disc rotation speed: 3.00 rpm Track used: Short frame 125.6 fins used Head: Track width: 20 μm 1 Gap length: 1.0 μm Head flying height: 0.2 μm Recording current: 50 mA 30.000 F The playback output at high recording density of PI (Flux Reversal/inch) is 0141m.
7J5, a sufficient output value was obtained.Comparative Example 2゜The surface was made flat and smooth by machining. After further improving the flatness of an aluminum alloy disk (diameter 210mm, numbness 1.9mm) by heat straightening, heat treatment, etc.,
05 by zinc substitution treatment as seen in Publication No. 18029.
A μm thick surface treatment film is formed, a 4 μm thick electrolytic copper plating film is formed on it, and a 15 μm thick nickel plating film is applied on top of it while rotating using a perforated block plate and an auxiliary cathode. The surface was polished to obtain an electroplated nickel-phosphorus substrate. The substrate obtained in this way has
01 Polishing defects caused by localized uneven plating thickness and plating defects may cause head clarity on the surface.
There were many protrusions with a height of 0.2 μm or more. There were 30 to 60 defects with a diameter of 2 μm or more on one surface, about 40 on average.As described above, the magnetic plated nickel phosphorus substrate had a practical problem in terms of surface accuracy.

次にこの基板上に比較例1と同様にして1狭化膜磁性薄
膜媒体を形成した。得られた綴込ディスクの磁気特性(
j、Hc=5900e、Bsx 3000カウス、Br
/Bs=0.78であり、市、気メッキ・ニッケル・リ
ン基板に帯磁は認めらtl、f、rかった0比較例1と
同様の条件で記録再生特性の測定を行った結果、30.
000FILPIの高記録密度時における再生出力は0
.40 m Vと実用上十分なtjj力値が得られた。
Next, a one-narrow magnetic thin film medium was formed on this substrate in the same manner as in Comparative Example 1. Magnetic properties of the obtained storage disc (
j, Hc=5900e, Bsx 3000cous, Br
/Bs=0.78, and no magnetization was observed on the air-plated nickel-phosphorus substrate. ..
The playback output at high recording density of 000FILPI is 0.
.. A practically sufficient tjj force value of 40 mV was obtained.

実施例1゜ 機械加工により表面を平坦かつ平滑匿仕上けたアルミ合
金円板(直径210m、厚さ1.9 wm )を熱矯正
、熱処理などにより平坦性を更に向上させた後、酸洗浄
、亜鉛置換などからなるアルミ合金上に一様な無電解ニ
ッケル合金メッキを行うに適した前処理を施した。次に
これを金属イオンの供給源となるニッケル塩、金属イオ
ンの還元剤としての次亜リン酸塩、金属イオンの錯化剤
、PH緩衝剤、糸加剤などからなる無電解ニッケル合金
メッキ液に浸漬して膜厚20μmのニッケル・リンメッ
キ膜を形成する。本実施例では無電解ニッケル・リンメ
ッキ液として日本カンゼン社製シューマーBO液を用い
、浴温を90℃とし、メッキ液のPHを39から5.5
まで変化させた7種類のメッキ浴を使用した。更にこの
両面を機械加工により鏡面仕上げし、無電解ニッケル合
金メッキ基板を得た。こうして得られた基板はいずれも
直径1.0μm以上の欠陥および高さ0.1/jm以上
の突起がなく、平坦性、平滑性も含め高密度記録に適す
る表面精度を十分に満たしていた。次にこの基板面上に
比較例1.と同様にして酸化膜磁性薄膜媒体を形成した
0得られた磁気ディスクの磁気特性は、Hc=6300
e、Bs−3000カウス、Br/Bs −0,79で
あり、比較例工と同様の条件で記録再生特性の測定を行
った結果、30,0OOFRPIの高記録密度時におけ
る再生出力と各基板の無電解ニッケル合金メーツキ層の
300℃1時間の熱処理後のBsとの間に表1の様な関
係が祷られた。
Example 1 An aluminum alloy disc (diameter 210 m, thickness 1.9 wm) whose surface was finished flat and smooth by machining was further improved in flatness by heat straightening, heat treatment, etc., and then acid-washed and zinc-treated. A pretreatment suitable for performing uniform electroless nickel alloy plating on an aluminum alloy consisting of a substituted aluminum alloy was performed. Next, this is an electroless nickel alloy plating solution consisting of nickel salt as a source of metal ions, hypophosphite as a reducing agent for metal ions, a complexing agent for metal ions, a PH buffer, a thread adding agent, etc. A 20 μm thick nickel-phosphorus plating film is formed by dipping the sample into a 20 μm thick film. In this example, Schumer BO solution manufactured by Nippon Kanzen Co., Ltd. was used as the electroless nickel/phosphorous plating solution, the bath temperature was 90°C, and the pH of the plating solution was adjusted from 39 to 5.5.
Seven types of plating baths were used, varying up to: Further, both surfaces of the substrate were machined to a mirror finish to obtain an electroless nickel alloy plated substrate. All of the substrates thus obtained had no defects with a diameter of 1.0 μm or more and no protrusions with a height of 0.1/jm or more, and fully satisfied the surface precision, including flatness and smoothness, suitable for high-density recording. Next, Comparative Example 1. An oxide film magnetic thin film medium was formed in the same manner as in 0. The magnetic properties of the obtained magnetic disk were as follows: Hc = 6300
e, Bs-3000 Caus, and Br/Bs -0.79.As a result of measuring the recording and reproduction characteristics under the same conditions as the comparative example, the reproduction output and each substrate at a high recording density of 30,000FRPI were A relationship as shown in Table 1 was expected between the electroless nickel alloy matte layer and Bs after heat treatment at 300° C. for 1 hour.

表      1 再生出力と熱処理後のBsの関係 表に示される様に熱処理後の無電解ニッケル合金メッキ
層のBsが50カウスより大きい51〜扁4の磁気ディ
スクの場合には、再生出力は比較例1、の場合にくらべ
て著しく低]した0熱処理後の無電解ニッケル合金メッ
キ層のBsが50 ガウス以下となる扁5〜A7の場合
は、比較例1.の場合と比較したf)生出力の低下が1
0%以内となり実用上問題のない記録再生特性が得られ
た。
Table 1 Relationship between playback output and Bs after heat treatment As shown in the table, in the case of magnetic disks with sizes 51 to 4 where the Bs of the electroless nickel alloy plating layer after heat treatment is greater than 50 cous, the playback output is as shown in the comparative example. In the case of Comparative Example 1.1, the Bs of the electroless nickel alloy plating layer after heat treatment was 50 Gauss or less, which was significantly lower than that of Comparative Example 1. f) The reduction in raw output compared to the case of
It was within 0%, and recording and reproducing characteristics with no practical problems were obtained.

実施例2゜ 実施例1と同様の手順で磁気ディスクを作製したが、本
実施例ではメッキ族のリン含有量が比較的高い市販液を
用いたニッケル合金メッキ浴にて膜厚側μmのニッケル
・リンメッキ膜を形成した。
Example 2 A magnetic disk was produced using the same procedure as in Example 1, but in this example, nickel was coated on the film thickness side in a nickel alloy plating bath using a commercially available solution with a relatively high phosphorus content in the plating group.・A phosphorus plating film was formed.

無電解ニッケル合金メッキ浴 無電解ニッケル・リン・メッキ液ニムデン11P(上村
工朦社製)メッキ条件 メッキ液のPH耽5.5 浴   温     90℃ 得られた磁気ディスクは実施例1.と同様に高密度記録
に適する表面精度を満たしており、比較例1と同様の条
件で記録再生特性の測定を行った結果、30.0OOF
RPIにおける再生出力と無電解ニッケル合金メツ、キ
層の300℃1時間の熱処理後のBsとの間に表2の様
な関係が得られた。
Electroless nickel alloy plating bath Electroless nickel phosphorus plating solution Nimden 11P (manufactured by Uemura Koshu Co., Ltd.) Plating conditions Plating solution PH: 5.5 Bath temperature: 90°C The obtained magnetic disk was as described in Example 1. Similarly, it satisfies the surface precision suitable for high-density recording, and as a result of measuring the recording and reproducing characteristics under the same conditions as Comparative Example 1, it was found to be 30.0OOF.
A relationship as shown in Table 2 was obtained between the reproduction output in RPI and the Bs after heat treatment of the electroless nickel alloy layer and layer at 300° C. for 1 hour.

表2.  再生出力と熱処理後のBsの関係本実施例で
は熱処理後の無電解ニッケル合金メッキ層のBSが5.
3カウスと小さいため、比較例1で得た磁気テ、fスク
の場合と変らぬ再生出力値力S得られた0 実施例3゜ 実施例1.と同様の手順で磁気ディスクを作製したが、
本呆施例では下記の無電解ニッケル合金メッキ浴を用い
て膜厚20μmのニッケル・スズ・リンメッキ膜を形成
したO 無電解ニッケル合金メッキ浴 メッキ液組成 硫酸ニッケ/l/     0.15 mal/1次亜
リン酸ナトリウム    0.30 mol/1乳12
   0.9 mol/1 [(11ニスズ    0.1  mol/1メッキ条
件 メッキ液のPH騨4.2.4.5.4.8.5.1 、
5.5浴   温        90℃ 得られた磁気ディスクは実施例1.と同様に高密度記録
に適する表面精度を満たしており、比較例1゜と同様の
条件で記録再生特性の測定を行った結果30.0OOF
RPIにおける再生出力と無電解ニッケル合金メッキ層
の300℃ 1時間の熱処鯉稜のBsとの間に表3.の
様な関係が得られた0表      3゜ 再生出力と熱処理後のBsの関係 表に示される様に熱処理後の無電解ニッケル合金メッキ
層のBsが50カウスより大きい扁9〜S10の(1蝕
気デイスクの場合には、再生出力は比較例1の場合にく
らべて著しく低下した。熱処理後の無電解ニッケル合金
メッキ層の]Jsか50ガウス以下となるA11〜13
の場合は、比較例1.の場合と比較した再生出力の低I
Jが10%以内となり実用上問題のない記録再生特性が
得られた0 実施例4゜ 実施例1.と同様の手順で磁気ディスクを作製したが、
本冥施例では銅を共析できる無電解ニッケル合金メッキ
液としてシブレイ・ファーイースト社製ニックロイ22
液を用いた下記の無電解ニッケル合金メッキ浴にて膜厚
20 It mのニッケル・調書リンメッキ膜を形成し
た0 無電解ニッケル合金メッキ浴 無電解ニッケル・銅・リンメッキ液ニック【】イ22(
シブレイ・)7−イースト社製ツ メツキ条件 メッキ液のPH鯰4.6 、4.8 、5.0 + 5
.3 、5.6浴  温       90℃ 得られた磁気ディスクは実施例1と同様に高密度記録に
適する表面¥i¥度を清だしており、比較例1と同様の
条件で記録再生特性の測定を行った結果30.0OOF
RPIに2ける再生出力と照電屏ニツケル合金メッキ層
の300℃1時間の熱処理後のBs (!:の間に表4
.の様な関係が得られた。
Table 2. Relationship between reproduction output and Bs after heat treatment In this example, the BS of the electroless nickel alloy plating layer after heat treatment is 5.
Since it is as small as 3 cows, the reproduction output value S obtained in Comparative Example 1 is the same as in the case of magnetic tape and f disk.Example 3゜ Example 1. I made a magnetic disk using the same procedure as above, but
In this example, a nickel-tin-phosphorous plating film with a film thickness of 20 μm was formed using the following electroless nickel alloy plating bath. Sodium hypophosphite 0.30 mol/1 milk 12
0.9 mol/1 [(11 nistin 0.1 mol/1 plating conditions PH value of plating solution 4.2.4.5.4.8.5.1,
5.5 Bath temperature: 90°C The obtained magnetic disk was as described in Example 1. Similarly, it satisfies the surface precision suitable for high-density recording, and the recording and reproducing characteristics were measured under the same conditions as Comparative Example 1, and the result was 30.0OOF.
Table 3 shows the relationship between the regeneration output in RPI and the Bs of the carp ridge heat-treated at 300°C for 1 hour on the electroless nickel alloy plating layer. As shown in Table 3, the relationship between reproduction output and Bs after heat treatment, the Bs of the electroless nickel alloy plating layer after heat treatment is greater than 50 cous (1 In the case of the corrosive disk, the reproduction output was significantly lower than that of Comparative Example 1.A11 to A13 where the Js of the electroless nickel alloy plating layer after heat treatment was 50 Gauss or less.
In the case of Comparative Example 1. Low I of playback output compared to the case of
J was within 10%, and recording and reproducing characteristics with no practical problems were obtained.0 Example 4゜Example 1. I made a magnetic disk using the same procedure as above, but
In this example, Nickloy 22 manufactured by Sibley Far East Co., Ltd. was used as an electroless nickel alloy plating solution that can eutectoid copper.
A nickel/copper/phosphorus plating film with a film thickness of 20 It m was formed in the following electroless nickel alloy plating bath using electroless nickel/copper/phosphorus plating solution.
Sibley) 7-East Co., Ltd. nail condition plating solution PH catfish 4.6, 4.8, 5.0 + 5
.. 3, 5.6 Bath temperature: 90°C The obtained magnetic disk had a clean surface temperature suitable for high-density recording as in Example 1, and the recording and reproducing characteristics were measured under the same conditions as in Comparative Example 1. The result was 30.0OOF.
Table 4 shows the difference between the playback output in RPI 2 and the Bs (!:
.. A relationship like this was obtained.

表      4゜ 再生出力と熱処理後のBsの関係 表に示される様に熱処理後の無電解ニッケル合金メッキ
層のBsが50ガウスより大きい扁14〜15の磁気デ
ィスクの場合には、再生出力は比較例1゜の場合にくら
べて著しく低下した。熱処理後の無電解ニッケル合金メ
ッキ層のBsが50カウス以下とハるガニ1〜13の場
合は、比較例1.の場合と比較した4’4生出力の低重
が10φ以内となり実用上問題のない記録再生特性が得
られた。
Table 4: Relationship between reproduction output and Bs after heat treatment As shown in the table, in the case of magnetic disks with a diameter of 14 to 15 where the Bs of the electroless nickel alloy plating layer after heat treatment is greater than 50 Gauss, the reproduction output is compared. This was significantly lower than that of Example 1°. When the Bs of the electroless nickel alloy plating layer after heat treatment is 50 or less, Comparative Example 1. The weight of the 4'4 raw output was within 10φ compared to the case of 1, and recording and reproducing characteristics with no practical problems were obtained.

以上、比較例及び実施例で示された様に本発明によりば
、金h=基板と、この金−基板を被覆するニッケル合金
、メッキ層と、このニッケル合金メッキ層を被覆覆る酸
化物能、性沖膜媒体とからなる磁気ディスクにおい”:
 z l?iJ u己ニッケル合金メツキノはのfIl
オロ砿束密度力550カウス以下である無電解メッキ層
を用いるごとにより、酸化物画性〜膜妨体形成工程に4
.:+いて熱処理を行う(C=もかijsわもず実用上
問題のない記録再生付性をイ1する山気ブ′イスクか得
られる。
As shown above in the comparative examples and examples, according to the present invention, gold h=substrate, nickel alloy coating this gold-substrate, plating layer, oxide ability covering this nickel alloy plating layer, Magnetic disk odor consisting of magnetic media:
z l? iJ u self nickel alloy metsukino fil
By using an electroless plating layer with a flux density force of 550 or less, the oxide image quality to membrane barrier formation process is improved by 4.
.. :+ Heat treatment is carried out (C=MokaijsAlso, it is possible to obtain a high-temperature buoyancy with good recording and reproducing properties without any problems in practical use.

この様に酸化’fy1磁性薄磁性薄体4媒嵐記録に適す
る表面16度、大量生類性等の優れた特徴を有J−る無
電11ニッケル合金メッキ基板の適用がC+J能となり
、酸化′吻!注薄j膜媒体を用いた磁気ディスクの高記
録Wi直化および高品質化か可能と−ったOlム,お実
施例30拍よひ4.においでニッケル、リンに加え2ス
ス月たは錆を含むニッケル合金メッキ層を用いたが、熱
処理後のニッケル合金メッキ層の飽和磁束密度が50カ
ウス以下であれば、ニッケル、リンに加えてスズ、銅、
スンクステン、マンカン、モリブデン、亜鉛、パラジウ
ムなどの元素より1つ以上を含む多元合金からするニッ
ケル合金メッキ層を用いることによっても本発明の目的
は達せられる0
In this way, the application of the electroless 11 nickel alloy plated substrate, which has excellent characteristics such as surface 16 degree and mass-transferability, which are suitable for oxidized magnetic thin magnetic thin 4-media storm recording, enables C+J performance, and oxidized ! Note: An example of 30 examples of an optical system that enables high recording speed and high quality of magnetic disks using thin film media.4. A nickel alloy plating layer containing nickel, phosphorus, and 2 soot or rust was used, but if the saturation magnetic flux density of the nickel alloy plating layer after heat treatment is 50 or less, tin is used in addition to nickel and phosphorus. ,copper,
The object of the present invention can also be achieved by using a nickel alloy plating layer made of a multi-element alloy containing one or more elements such as sunkusten, mankan, molybdenum, zinc, and palladium.

Claims (1)

【特許請求の範囲】[Claims] 金属基板と、この金属基板を被覆するニッケル合金メッ
キ層と、このニッケル合金、ノツキ)fを被覆する酸化
物磁性薄IBN m体を有するC4気デイスクにおいて
、−前記ニッケル合金メッキ層は、その飽和磁束密度が
50ガウス以下の岬取解メッキ層であることを特徴とす
る山気ディスク。
In a C4 disk having a metal substrate, a nickel alloy plating layer covering the metal substrate, and an oxide magnetic thin IBN body covering the nickel alloy, the nickel alloy plating layer is A mountain disc characterized by having a cape-plated layer with a magnetic flux density of 50 Gauss or less.
JP57156947A 1982-09-09 1982-09-09 Magnetic disk Pending JPS5945634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57156947A JPS5945634A (en) 1982-09-09 1982-09-09 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57156947A JPS5945634A (en) 1982-09-09 1982-09-09 Magnetic disk

Publications (1)

Publication Number Publication Date
JPS5945634A true JPS5945634A (en) 1984-03-14

Family

ID=15638812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57156947A Pending JPS5945634A (en) 1982-09-09 1982-09-09 Magnetic disk

Country Status (1)

Country Link
JP (1) JPS5945634A (en)

Similar Documents

Publication Publication Date Title
US4109287A (en) Process for recording information or sound and process for preparation of recording materials used therefor
US4150172A (en) Method for producing a square loop magnetic media for very high density recording
JP2006092721A (en) Substrate for perpendicular magnetic recording medium, its manufacturing method, and perpendicular magnetic recording medium
US4587178A (en) Magnetic recording medium
JPS61253622A (en) Magnetic recording medium and its production
JPS5945634A (en) Magnetic disk
US3905776A (en) Method of making a thin, ferro-magnetic memory layer and article made thereby
JPS59178617A (en) Manufacture of magnetic recording medium
US20020192503A1 (en) Thin film magnetic head and method of fabricating the head
JPS5961107A (en) Magnetic memory body
JPH0515790B2 (en)
JP2662904B2 (en) Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same
US3549418A (en) Magnetic recording films of cobalt
JPS613317A (en) Magnetic recording medium
JPH0429739B2 (en)
JP2963230B2 (en) Manufacturing method of magnetic recording medium
JPH0451885B2 (en)
JPS6085433A (en) Magnetic recording material
JPS59221826A (en) Magnetic recording medium
US20090004510A1 (en) Substrate For Perpendicular Magnetic Recording Medium, Method Of Manufacturing The Same, And Perpendicular Magnetic Recording Medium
JPS6325826A (en) Magnetic recording medium
JPS63134668A (en) Magnetic plating solution
JPS59180829A (en) Magnetic storage body
JPS59142735A (en) Magnetic recording medium
JPS61216125A (en) Production of magnetic recording medium