JP2662904B2 - Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same - Google Patents

Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same

Info

Publication number
JP2662904B2
JP2662904B2 JP4078491A JP4078491A JP2662904B2 JP 2662904 B2 JP2662904 B2 JP 2662904B2 JP 4078491 A JP4078491 A JP 4078491A JP 4078491 A JP4078491 A JP 4078491A JP 2662904 B2 JP2662904 B2 JP 2662904B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
film
magnetic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4078491A
Other languages
Japanese (ja)
Other versions
JPH06120028A (en
Inventor
武信 佐藤
松男 日野
吉広 赤松
玲子 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA DENKA KK
Tohoku Tokushuko KK
Original Assignee
KYOWA DENKA KK
Tohoku Tokushuko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA DENKA KK, Tohoku Tokushuko KK filed Critical KYOWA DENKA KK
Priority to JP4078491A priority Critical patent/JP2662904B2/en
Publication of JPH06120028A publication Critical patent/JPH06120028A/en
Application granted granted Critical
Publication of JP2662904B2 publication Critical patent/JP2662904B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体用の磁性
膜に関し、特に、コバルト・ニッケル・燐合金の高保磁
力を有するコバルト・ニッケル・燐合金の磁気記録媒体
用の磁性薄膜に関する。本発明は、金属薄膜型磁気記録
媒体に関し、特に、磁気ディスク、磁気テープ、磁気式
エンコーダなどの用途に好適な磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic film for a magnetic recording medium, and more particularly to a magnetic thin film for a cobalt-nickel-phosphorus alloy having a high coercive force. The present invention relates to a metal thin-film magnetic recording medium, and more particularly to a magnetic recording medium suitable for applications such as a magnetic disk, a magnetic tape, and a magnetic encoder.

【0002】[0002]

【従来の技術】磁気記録媒体としては、金属または金属
酸化物などの磁性材料粉末を有機バインダーで基材上に
塗布したいわゆる塗布型の磁気記録媒体が広く使用され
ていたが、最近記録密度の向上という要請に伴ない、非
磁性の基材上に、真空蒸着、スパッタリング及び無電解
めっきなどの手法によって磁性金属の薄膜を形成させ
た、いわゆる金属薄膜型の磁気記録媒体の使用が増加し
てきている。この金属薄膜型の記録媒体は、現在、主と
して、真空蒸着、スパッタリングにより薄膜が形成され
ているが、いずれの方法も高価な設備を必要とし、さら
に薄膜形成に使用する母材の利用効率が非常に低く問題
とされけている。これらの方法に比して、無電解めっき
は、比較的簡単な設備で製造することができるが、磁気
特性の再現性が難しく、生産性も低く問題がある。
2. Description of the Related Art As a magnetic recording medium, a so-called coating type magnetic recording medium in which a magnetic material powder such as a metal or a metal oxide is coated on a substrate with an organic binder has been widely used. With the demand for improvement, the use of so-called metal thin film type magnetic recording media, in which a thin film of a magnetic metal is formed on a non-magnetic substrate by a method such as vacuum evaporation, sputtering and electroless plating, has been increasing. I have. At present, thin films are formed mainly by vacuum evaporation and sputtering on this metal thin film type recording medium, but each method requires expensive equipment, and the utilization efficiency of the base material used for forming the thin film is extremely high. The problem is low. Compared to these methods, electroless plating can be manufactured with relatively simple equipment, but has a problem in that reproducibility of magnetic characteristics is difficult and productivity is low.

【0003】[0003]

【発明が解決しようとする問題点】めっき法による磁気
記録媒体として、コバルト燐合金(Co−P)及びコバ
ルトニッケル燐合金(Co−Ni−P)の磁性膜は知ら
れている。しかし、これ等の合金膜を一定範囲の組成に
制御して、電気めっきにより製造することは非常に難し
い。特に、コバルトニッケル燐(Co−Ni−P)合金
は、コバルト燐合金に比して、高い保磁力等の良好な磁
気特性が得られ易いとされているが、コバルトニッケル
燐合金について、良好な磁気特性が得られる組成範囲は
未だ確定されておらず、また、一定の組成のものが得ら
れるように、その組成を制御する手法も確立されていな
い。したがって、良好な磁気特性を有するCo−Ni−
P合金膜は、再現性良く作製されていない。ところで、
コバルト燐合金のめっき膜は、銅(Cu)又はアルミニ
ウム(Al)の非磁性金属或は有機フィルム上に形成さ
れて用いられているが、機械的強度或は熱膨張などが要
求される使用目的の場合には、Cu又はAlの非磁性金
属の基材は適していないために、このような場合には、
Fe−Cr−Ni系の非磁性ステンレス鋼が使用される
ことが多い。しかし、このステンレス基材上に一定組成
のコバルトニッケル燐合金膜を電気めっきにより安定し
て形成することは、更に難しく、問題とされている。本
発明は、従来のコバルトニッケル燐合金の磁性薄膜の組
成及びその製法に係る問題点を解決することを目的とし
ている。
Problems to be Solved by the Invention Magnetic films of cobalt phosphorus alloy (Co-P) and cobalt nickel phosphorus alloy (Co-Ni-P) are known as magnetic recording media by plating. However, it is very difficult to manufacture these alloy films by electroplating while controlling the composition within a certain range. In particular, a cobalt nickel phosphorus (Co-Ni-P) alloy is said to easily obtain good magnetic properties such as a high coercive force as compared with a cobalt phosphorus alloy. The composition range in which the magnetic properties can be obtained has not yet been determined, and a method of controlling the composition so as to obtain a composition having a constant composition has not been established. Therefore, Co-Ni- having good magnetic properties
The P alloy film has not been produced with good reproducibility. by the way,
The plating film of the cobalt-phosphorus alloy is used by being formed on a non-magnetic metal of copper (Cu) or aluminum (Al) or an organic film, but is used for applications requiring mechanical strength or thermal expansion. In the case of, since a nonmagnetic metal substrate of Cu or Al is not suitable, in such a case,
An Fe-Cr-Ni-based non-magnetic stainless steel is often used. However, it is more difficult and problematic to stably form a cobalt-nickel-phosphorus alloy film having a constant composition on the stainless steel substrate by electroplating. An object of the present invention is to solve the problems associated with the composition of a conventional magnetic thin film of a cobalt-nickel-phosphorus alloy and its manufacturing method.

【0004】[0004]

【問題点を解決するための手段】本発明は、磁気記録媒
体として、Co−Ni−P合金膜を電気めっき法で形成
するために、良好な磁気特性が得られるCo−Ni−P
合金膜の組成範囲を確立すると共に、その組成範囲内の
Co−Ni−P合金膜を、非磁性材料、特にFe−Cr
−Ni系非磁性ステンレス鋼基材上に形成するめっき条
件を確立して、良好な磁気特性を有するCo−Ni−P
合金膜を非磁性ステンレス鋼基材上に形成する方法を提
供することを目的としている。本発明は、電解液の組成
及び電解めっき条件を変えて、Co−Ni−P合金薄膜
を形成し、形成された薄膜の膜組成と磁気特性を測定す
ることにより、Co−Ni−P合金について、良好な磁
気特性の得られる組成とそのめっき条件について研究を
行い、またFe−Cr−Ni系非磁性ステンレス鋼基材
への好適な組成のCo−Ni−P合金薄膜を形成するた
めの下地処理条件について研究を行って、本発明に到達
した。
SUMMARY OF THE INVENTION According to the present invention, a Co-Ni-P alloy film having good magnetic properties can be obtained because a Co-Ni-P alloy film is formed by electroplating as a magnetic recording medium.
The composition range of the alloy film is established, and the Co—Ni—P alloy film within the composition range is replaced with a nonmagnetic material, in particular, Fe—Cr.
Co-Ni-P having good magnetic properties by establishing plating conditions for forming on Ni-based non-magnetic stainless steel substrate
It is an object of the present invention to provide a method for forming an alloy film on a non-magnetic stainless steel substrate. The present invention relates to a Co-Ni-P alloy by forming a Co-Ni-P alloy thin film by changing the composition of an electrolytic solution and electrolytic plating conditions, and measuring the film composition and magnetic properties of the formed thin film. Research on composition and plating conditions for obtaining good magnetic properties, and base for forming Co-Ni-P alloy thin film of suitable composition on Fe-Cr-Ni-based non-magnetic stainless steel substrate Research was conducted on the processing conditions to arrive at the present invention.

【0005】すなわち、本発明は、コバルトが75乃至
87重量%、ニッケルが8.5乃至22重量%、燐が
2.5乃至4.5重量%よりなり、厚さが0.05μm
乃至50μmであることを特徴とする磁気記録媒体用コ
バルトニッケル燐合金磁性膜にあり、また、本発明は、
非磁性の鉄・クロム・ニッケル系合金の基材上に下地層
が形成されており、該下地層の上に、コバルトが75乃
至87重量%,ニッケルが8.5乃至22重量%,Pが
2.5乃至4.5重量%よりなり、厚さが0.05乃至
50μmであるコバルト・ニッケル・燐合金製磁性膜が
形成されていることを特徴とする磁気記録媒体にあり、
さらに、本発明は、液のpHが2.0乃至4.5であっ
て、コバルト塩濃度が0.1乃至0.72モル/リット
ル、ニッケル塩濃度が0.04乃至0.31モル/リッ
トル及び燐酸塩の濃度が0.09乃至0.5モル/リッ
トルを含むメッキ用電解液に、温度40乃至60℃で、
電流密度30乃至150A/dm2の電解電流及び通電
時間が0.5ミリ秒乃至10ミリ秒の通電を、パルス的
に繰り返すことにより、非磁性基材上に、コバルトが7
5乃至87重量%、ニッケルが8.5乃至22重量%及
び燐が2.5乃至4.5重量%よりなり、厚さが0.0
5乃至50μmであるコバルト・ニッケル・燐合金膜を
形成することを特徴とする磁気記録媒体の製造方法にあ
る。
That is, according to the present invention, cobalt is 75 to 87% by weight, nickel is 8.5 to 22% by weight, phosphorus is 2.5 to 4.5% by weight, and the thickness is 0.05 μm.
To 50 μm in the cobalt-nickel-phosphorus alloy magnetic film for a magnetic recording medium,
An underlayer is formed on a non-magnetic iron-chromium-nickel alloy base material. On the underlayer, 75 to 87% by weight of cobalt, 8.5 to 22% by weight of nickel, and P A magnetic recording medium comprising a cobalt-nickel-phosphorus alloy magnetic film having a thickness of 0.05 to 50 μm and a thickness of 2.5 to 4.5% by weight.
Further, in the present invention, the pH of the solution is 2.0 to 4.5, the cobalt salt concentration is 0.1 to 0.72 mol / l, and the nickel salt concentration is 0.04 to 0.31 mol / l. And a plating electrolyte having a phosphate concentration of 0.09 to 0.5 mol / l at a temperature of 40 to 60 ° C.
By repeating the electrolysis current with a current density of 30 to 150 A / dm 2 and the energization time of 0.5 to 10 milliseconds in a pulsed manner, cobalt is reduced to 7 on the non-magnetic substrate.
5 to 87% by weight, 8.5 to 22% by weight of nickel and 2.5 to 4.5% by weight of phosphorus,
A method for manufacturing a magnetic recording medium, comprising forming a cobalt-nickel-phosphorus alloy film having a thickness of 5 to 50 μm.

【0006】磁気記録媒体は、400 (Oe:エール
ステッド) 以上の保磁力が必要とされているが、本発
明の磁性膜は、600 Oe以上の保磁力を有し、高密
度記録或は外部磁界等による減磁を少なくすることがで
きる。この高い保磁力を得るためには、コバルトは、7
5〜87重量%含有される。コバルトの含有量が75%
以下では保磁力は急激に低下し、また86%を越すと6
00oe以上の保磁力は得られなくなる。またニッケル
は8〜22重量%含有される。ニッケルの含有量が8.
5〜22重量%の範囲外では保磁力は600Oeの高い
保磁力を得ることができない。Pは2.5〜4.5重量
%の範囲で含有される。この範囲外では保磁力は600
Oe以下となるので、この狭い範囲に制御する必要が
ある。また、コバルト含有量を84乃至87重量%、ニ
ッケル含有量を9乃至12重量%及び燐含有量を3乃至
4.5重量%とすると、800乃至900 Oe以上の
更に高い保磁力を有するCo−Ni−P合金磁性膜を得
ることができるので好ましい。
A magnetic recording medium requires a coercive force of 400 (Oe: Oersted) or more. The magnetic film of the present invention has a coercive force of 600 Oe or more, and is used for high-density recording or external recording. Demagnetization due to a magnetic field or the like can be reduced. To obtain this high coercivity, cobalt must be
The content is 5 to 87% by weight. 75% cobalt content
In the following, the coercive force drops sharply, and when it exceeds 86%,
A coercive force of 00 oe or more cannot be obtained. Nickel is contained in an amount of 8 to 22% by weight. 7. Nickel content is 8.
Outside the range of 5 to 22% by weight, a high coercive force of 600 Oe cannot be obtained. P is contained in the range of 2.5 to 4.5% by weight. Outside this range, the coercive force is 600
Oe or less, it is necessary to control within this narrow range. Further, when the cobalt content is 84 to 87% by weight, the nickel content is 9 to 12% by weight, and the phosphorus content is 3 to 4.5% by weight, Co- having a higher coercive force of 800 to 900 Oe or more is obtained. This is preferable because a Ni-P alloy magnetic film can be obtained.

【0007】また、本発明において、Co−Ni−P合
金磁性膜は、電解めっきによって得られる。この電解液
としては、液のpHが2.0乃至4.5であって、コバ
ルト塩濃度が0.1乃至0.72モル/リットル、ニッ
ケル塩濃度が0.04乃至0.31モル/リットル及び
燐酸塩の濃度が0.09乃至0.5モル/リットルを含
むメッキ用電解液が使用される。このような電解液は、
例えば次の組成に調製することによって得られる。すな
わち、 CoSO4・7H2O 30〜200g/l NiSO4・6H2O 12〜80g/l NH4Cl 40〜100g/l NaH2PO2・H2O 10〜50g/l 湿潤材 4g/l以下 光沢剤 1g/l以下 この電解液のpHは、2.0〜4.5であり、40〜6
0℃の温度で電解めっきを行うことにより良好な磁気特
性を得ることができる。
In the present invention, the Co—Ni—P alloy magnetic film is obtained by electrolytic plating. The electrolyte has a pH of 2.0 to 4.5, a cobalt salt concentration of 0.1 to 0.72 mol / l, and a nickel salt concentration of 0.04 to 0.31 mol / l. And a plating electrolyte containing a phosphate concentration of 0.09 to 0.5 mol / l. Such an electrolyte is
For example, it can be obtained by preparing the following composition. That, CoSO 4 · 7H 2 O 30~200g / l NiSO 4 · 6H 2 O 12~80g / l NH 4 Cl 40~100g / l NaH 2 PO 2 · H 2 O 10~50g / l wetting agent 4g / l Brightener 1 g / l or less The pH of this electrolytic solution is 2.0 to 4.5, and 40 to 6
By performing electrolytic plating at a temperature of 0 ° C., good magnetic properties can be obtained.

【0008】しかし、本発明において、膜組成は、電流
密度や通電時間によって影響されて、大きく変動するこ
とが解った。即ち、電流密度が低い場合には、めっき時
間が長くなると共に、めっき膜のCo量は減少するが、
逆にNi,P量は増加するので、Co,Ni及びPを同
時に好適な組成範囲に制御することはできない。一方電
流密度を高くすると、めっき膜のCo,Ni量は非常に
短時間内に目標組成に近づきほぼ一定値で安定するが、
P成分は短時間に高濃度のところで安定する。したがっ
て、長時間めっきを続ける場合には、膜組成の制御は不
可能である。
However, in the present invention, it has been found that the film composition is greatly affected by the current density and the current supply time. That is, when the current density is low, the plating time increases and the Co amount of the plating film decreases,
Conversely, since the amounts of Ni and P increase, Co, Ni and P cannot be simultaneously controlled to a suitable composition range. On the other hand, when the current density is increased, the Co and Ni contents of the plating film approach the target composition within a very short time and stabilize at a substantially constant value.
The P component stabilizes at high concentration in a short time. Therefore, when plating is continued for a long time, it is impossible to control the film composition.

【0009】しかしながら、上記の電解液を用い、電流
密度を30〜150A/dm2の範囲とし、通電時間を
0.5〜10msecの範囲の短時間めっきを繰り返す
ことによりCo,Ni,Pを同時に制御することができ
る。電流密度は、30〜150A/dm2の範囲とされ
る。電流密度が30A/dm2より低い場合には、最適
値のCo量よりも高くなり、またNi量は最適値より低
くなり、また結晶粒が大きくなり高い保磁力は得られな
い。電流密度が150A/dm2以上になるとCo量は
大幅に低くなりNi量は逆に増加して保磁力は著しく低
くなる。
However, by using the above-mentioned electrolytic solution, the current density is set in the range of 30 to 150 A / dm 2 , and the energizing time is repeated in a short period of time in the range of 0.5 to 10 msec. Can be controlled. The current density is in the range of 30~150A / dm 2. When the current density is lower than 30 A / dm 2 , the Co amount becomes higher than the optimum value, the Ni amount becomes lower than the optimum value, the crystal grains become large, and a high coercive force cannot be obtained. When the current density is 150 A / dm 2 or more, the amount of Co is significantly reduced, the amount of Ni is increased, and the coercive force is significantly reduced.

【0010】一方、P組成を制御するためには電流密度
の制御に加えて通電時間による制御が行われる。P量を
制御するための好適な通電時間は電流密度によって異な
るが、電流密度が30〜150A/dm2の範囲内であ
れば、通電時間が0.5〜10msecの範囲でP量を
制御可能で600 Oe以上の保磁力が得られる。しか
し、通電時間が非常に短時間の場合には、必要な膜厚を
得るための全めっき時間は長くなり生産性が低下するの
で、0.5msec以上とすることが望ましい。
[0010] On the other hand, in order to control the P composition, in addition to the control of the current density, the control by the current supply time is performed. The preferred energizing time for controlling the amount of P varies depending on the current density, but if the current density is in the range of 30 to 150 A / dm 2 , the amount of P can be controlled in the range of 0.5 to 10 msec for the energizing time. , A coercive force of 600 Oe or more can be obtained. However, if the energization time is very short, the total plating time for obtaining the required film thickness becomes longer and the productivity is reduced.

【0011】本発明においては、電解めっき時の通電は
パルス状に繰り返されるので、ステンレス鋼等の非磁性
基材上に形成されるCo−Ni−P合金磁性膜は、極め
て薄いCo−Ni−P合金膜の積み重ねられた複数層か
ら形成されることとなり、膜組成の調整が容易となる。
In the present invention, since the energization during electrolytic plating is repeated in a pulsed manner, the Co—Ni—P alloy magnetic film formed on a non-magnetic substrate such as stainless steel has an extremely thin Co—Ni— Since it is formed from a plurality of stacked P alloy films, the film composition can be easily adjusted.

【0012】SUS304に代表されるステンレス基材
上にめっきを施す場合、その表面に形成される不動態被
膜はめっき性を損なうため、ステンレス基材上に直接C
o−Ni−Pめっき被膜を施すには、まずステンレス基
材上に、Ni被膜を施して不動態被膜の影響を除去する
と共にめっき膜の密着性を向上させ、さらに、NiP被
膜を施してその上に形成されるCo−Ni−P被膜の結
晶粒を一定とし、安定析出させる。その結果、良好な磁
気特性を有するCo−Ni−P合金被膜を安定して得る
ことができる。
When plating is performed on a stainless steel substrate represented by SUS304, a passivation film formed on the surface impairs the plating property.
To apply an o-Ni-P plating film, first, a Ni film is applied on a stainless steel substrate to remove the influence of the passivation film and to improve the adhesion of the plating film. The crystal grains of the Co—Ni—P coating film formed thereon are made constant and are deposited stably. As a result, a Co—Ni—P alloy film having good magnetic properties can be obtained stably.

【0013】[0013]

【作用】本発明は、非磁性の鉄・クロム・ニッケル系合
金の基材上に下地層を形成させ、該下地層の上に、コバ
ルトが75乃至87重量%,ニッケルが8.5乃至22
重量%,Pが2.5乃至4.5重量%よりなり、厚さが
0.05乃至50μmであるコバルト・ニッケル・燐合
金製磁性膜が形成させるので、600 Oe以上の高い
保磁力を有する磁性膜が安定してかつ容易に製造するこ
とができる。
According to the present invention, an underlayer is formed on a nonmagnetic iron / chromium / nickel alloy base material, and 75 to 87% by weight of cobalt and 8.5 to 22% by weight of nickel are formed on the underlayer.
%, P is 2.5 to 4.5% by weight, and a magnetic film made of a cobalt-nickel-phosphorus alloy having a thickness of 0.05 to 50 μm is formed, so that it has a high coercive force of 600 Oe or more. The magnetic film can be manufactured stably and easily.

【0014】[0014]

【実施例】本発明の実施の態様について、以下に本発明
を具体化した例を挙げて説明するが、本発明は、以下の
説明により何等制限を受けるものではない。 例1. CoSO4・7H2O 120g/l NiSO4・6H2O 80g/l NH4Cl 60g/l NaH2PO2 30g/l を配合した水溶液5lをめっき液とし、PH3.0,液
温53℃で直径6mmの非磁性ステンレス鋼(SUS3
04)に電解めっきによりCo−Ni−P合金被膜を形
成した。SUS304には下地処理としてまずNiCl
2・6H2O250g/l,HCl100g/lを含む電
解液中で3A/dm2の電解電流を2分間通電してNi
被膜を施した後、無電解めっきによりNiP被膜を形成
した。
The embodiments of the present invention will be described below with reference to specific examples of the present invention. However, the present invention is not limited by the following description. Example 1 The CoSO 4 · 7H 2 O 120g / l NiSO 4 · 6H 2 O 80g / l NH 4 Cl 60g / l NaH solution 5l blended with 2 PO 2 30g / l as a plating solution, pH 3.0, at a liquid temperature of 53 ° C. Non-magnetic stainless steel with a diameter of 6 mm (SUS3
04), a Co—Ni—P alloy film was formed by electrolytic plating. For SUS304, NiCl
2 · 6H 2 O250g / l, Ni energized electrolytic current of 3A / dm 2 in an electrolyte containing HCl100g / l 2 minutes
After applying the coating, a NiP coating was formed by electroless plating.

【0015】第一表にめっき条件とめっき膜の組成およ
び保磁力を示したが、本例による試料(試料番号1乃至
6)の場合は、良好な磁気特性が得られており、また、
比較例(試料番号7乃至9)に比して、優れた磁気特性
が得られている。 第一表 試料 電流密度 通電方式 膜厚 めっき膜組成(wt%) 保磁力No (A/dm) 通電時間 (μm) Co Ni P (Oe) 1 40 断続 10 84.0 11.5 4.3 770 1ミリ秒 2 60 断続 10 85.2 10.4 3.7 860 1ミリ秒 3 80 断続 10 84.4 11.9 3.3 850 5ミリ秒 4 100 断続 10 84.6 11.5 2.8 780 5ミリ秒 5 140 断続 10 82.6 12 2.8 680 2ミリ秒 6 150 断続 10 75.7 20.4 3.5 660 2ミリ秒 7 200 断続 10 22.9 73.2 3.6 290 2ミリ秒 8 20 断続 10 87.0 8.3 4.3 400 1ミリ秒 9 4 連続 15 79.9 12.8 7.1 40
Table 1 shows the plating conditions, the composition of the plating film and
And coercive force, the samples according to this example (sample numbers 1 to
In the case of 6), good magnetic properties are obtained.
Excellent magnetic properties as compared with the comparative example (sample numbers 7 to 9)
Has been obtained.Table 1 Sample Current density Energization method Film thicknessPlating film composition (wt%) Coercive forceNo (A / dm) Energizing time (μm) Co Ni P (Oe) 140 Intermittent 10 84.0 11.5 4.3 770 1 ms 260 Intermittent 10 85.2 10.4 3.7 860 1 ms 380 Intermittent 10 84.4 11.9 3.3 8505 ms 4 100 Intermittent 10 84.6 11.5 2.8 7805 ms 5 140 Intermittent 10 82.6 12 2.8 6802 ms 6 150 Intermittent 10 75.7 20.4 3.5 6602 ms 7 200 Intermittent 10 22.9 73.2 3.6 2902 ms 8 20 Intermittent 10 87.0 8.3 4.3 4001 ms 9 4 continuous 15 79.9 12.8 7.1 40

【0016】例2. CoSO4・7H2O 120g/l NiSO4・6H2O 80g/l NH4Cl 60g/l NaH2PO2 30g/l 湿潤剤 2g/l 光沢剤 1g/l を配合した水溶液5lをめっき液としPH3.0,液温
50℃,で直径6mmのSUS304に電解めっきによ
りCo−Ni−P合金被膜を形成した。下地処理は実施
例1の場合と同様に行った。第二表にめっき条件とめっ
き被膜の組成および保磁力を示す。
Example 2 CoSO 4 · 7H 2 O 120g / l NiSO 4 · 6H 2 the O 80g / l NH 4 Cl 60g / l NaH 2 PO 2 30g / l wetting agent 2 g / l solution 5l blended brightener 1 g / l and the plating solution A Co—Ni—P alloy film was formed on SUS304 having a diameter of 6 mm by electroplating at a pH of 3.0 and a liquid temperature of 50 ° C. The underlayer treatment was performed in the same manner as in Example 1. Table 2 shows the plating conditions, the composition of the plating film, and the coercive force.

【0017】例1の場合と同様良好な磁気特性が得られ
ている。 第二表 試料 電流密度 通電方式 膜厚 めっき膜組成(wt%) 保磁力No (A/dm2) 通電時間 (μm) Co Ni P (Oe) 10 50 断続 10 86.3 9.6 3.8 860 1ミリ秒 11 50 断続 20 86.4 9.1 4.4 910 1ミリ秒 12 50 断続 30 86.6 9.2 4.1 850 1ミリ秒 以上の実施例は非磁性のFe−Cr−Ni系合金基材上
にめっき膜を形成した場合であるが、Cu,Al等の基
材についても同様の結果が得られている。また、本例を
実施する場合には、Co−Ni−P合金めっき膜を保護
する保護膜を必要とする場合が多いが、この場合Crめ
っき、NiPめっき等の保護膜を用途に応じて形成する
ことが可能であることが確認済みである。
As in the case of Example 1, good magnetic properties were obtained.
ing.Table 2 Sample Current density Energization method Film thicknessPlating film composition (wt%) Coercive forceNo (A / dm 2 ) Energizing time (μm) Co Ni P (Oe) 10 50 intermittent 10 86.3 9.6 3.8 860 1 ms 11 50 Intermittent 20 86.4 9.1 4.4 910 1 ms 12 50 Intermittent 30 86.6 9.2 4.1 850 1 ms The above embodiment is based on a non-magnetic Fe-Cr-Ni alloy base material.
The case where a plating film is formed on
Similar results were obtained for the material. Also, this example
If implemented, protect Co-Ni-P alloy plating film
In many cases, a protective film is required.
A protective film such as NiP plating is formed according to the application.
Has been confirmed to be possible.

【0018】[0018]

【発明の効果】本発明は、非磁性の鉄・クロム・ニッケ
ル系合金の基材上に下地層を形成させ、該下地層の上
に、コバルトが75乃至87重量%,ニッケルが8.5
乃至22重量%,Pが2.5乃至4.5重量%よりな
り、厚さが0.05乃至50μmであるコバルト・ニッ
ケル・燐合金製磁性膜が形成させるので、従来のコバル
ト・ニッケル・燐合金磁性膜に比して、高保磁力のめっ
き膜を再現性良く得ることができるので、磁性膜の歩留
まりを向上することができる。したがって、本発明は、
磁気ディスク、磁気テープ、磁気式エンコーダ等の磁気
記録媒体に利用して大きな効果が期待できる。
According to the present invention, an underlayer is formed on a nonmagnetic iron-chromium-nickel alloy base material, and 75 to 87% by weight of cobalt and 8.5% of nickel are formed on the underlayer.
To 22% by weight, P being 2.5 to 4.5% by weight, and a magnetic film made of a cobalt-nickel-phosphorus alloy having a thickness of 0.05 to 50 μm. Compared with the alloy magnetic film, a plated film having a high coercive force can be obtained with high reproducibility, so that the yield of the magnetic film can be improved. Therefore, the present invention
A great effect can be expected when used for magnetic recording media such as magnetic disks, magnetic tapes, and magnetic encoders.

フロントページの続き (72)発明者 深谷 玲子 宮城県仙台市宮城野区東十番丁六十五番 地チサンマンション榴ケ岡1002号 (56)参考文献 特開 平3−199391(JP,A)Continuation of the front page (72) Inventor Reiko Fukaya Chisun Mansion Higaoka 1002, Higashijubancho 65-65, Miyagino-ku, Sendai City, Miyagi Prefecture (56) References JP-A-3-199391 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コバルトが75乃至87重量%、ニッケ
ルが8.5乃至22重量%、燐が2.5乃至4.5重量
%よりなり、厚さが0.05μm乃至50μmであるこ
とを特徴とする磁気記録媒体用コバルトニッケル燐合金
磁性膜。
1. The method according to claim 1, wherein cobalt is 75 to 87% by weight, nickel is 8.5 to 22% by weight, phosphorus is 2.5 to 4.5% by weight, and the thickness is 0.05 μm to 50 μm. Cobalt nickel phosphorus alloy magnetic film for a magnetic recording medium.
【請求項2】 非磁性の鉄・クロム・ニッケル系合金の
基材上に下地層が形成されており、該下地層の上に、コ
バルトが75乃至87重量%,ニッケルが8.5乃至2
2重量%,Pが2.5乃至4.5重量%よりなり、厚さ
が0.05乃至50μmであるコバルト・ニッケル・燐
合金製磁性膜が形成されていることを特徴とする磁気記
録媒体。
2. An underlayer is formed on a nonmagnetic iron / chromium / nickel alloy base material, and 75 to 87% by weight of cobalt and 8.5 to 2% by weight of nickel are formed on the underlayer.
A magnetic recording medium comprising a magnetic film made of a cobalt-nickel-phosphorus alloy having a thickness of 0.05 to 50 .mu.m and a P content of 2.5 to 4.5 wt%. .
【請求項3】 液のpHが2.0乃至4.5であって、
コバルト塩濃度が0.1乃至0.72モル/リットル、
ニッケル塩濃度が0.04乃至0.31モル/リットル
及び燐酸塩の濃度が0.09乃至0.5モル/リットル
を含むメッキ用電解液に、温度40乃至60℃で、電流
密度30乃至150A/dm2の電解電流及び通電時間
が0.5ミリ秒乃至10ミリ秒の通電を、パルス的に繰
り返すことにより、非磁性基材上に、コバルトが75乃
至87重量%、ニッケルが8.5乃至22重量%及び燐
が2.5乃至4.5重量%よりなり、厚さが0.05乃
至50μmであるコバルト・ニッケル・燐合金膜を形成
することを特徴とする磁気記録媒体の製造方法。
3. The pH of the liquid is 2.0 to 4.5,
A cobalt salt concentration of 0.1 to 0.72 mol / l,
A plating electrolyte containing a nickel salt concentration of 0.04 to 0.31 mol / l and a phosphate concentration of 0.09 to 0.5 mol / l at a temperature of 40 to 60 ° C. and a current density of 30 to 150 A / Dm 2 of the electrolytic current and the energization time of 0.5 to 10 milliseconds are repeated in a pulsed manner, so that 75 to 87% by weight of cobalt and 8.5% of nickel are deposited on the nonmagnetic substrate. Forming a cobalt-nickel-phosphorus alloy film having a thickness of 0.05 to 50 .mu.m with a thickness of 0.05 to 50 .mu.m. .
JP4078491A 1991-02-14 1991-02-14 Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same Expired - Lifetime JP2662904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4078491A JP2662904B2 (en) 1991-02-14 1991-02-14 Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4078491A JP2662904B2 (en) 1991-02-14 1991-02-14 Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06120028A JPH06120028A (en) 1994-04-28
JP2662904B2 true JP2662904B2 (en) 1997-10-15

Family

ID=12590252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4078491A Expired - Lifetime JP2662904B2 (en) 1991-02-14 1991-02-14 Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2662904B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383288C (en) * 2004-01-15 2008-04-23 中南大学 Method for preparing Fe-Ni, Fi-Ni-Cr alloy foil
US20120080317A1 (en) * 2010-09-30 2012-04-05 Seagate Technology Llc ELECTRODEPOSITION OF CoNiP FILMS

Also Published As

Publication number Publication date
JPH06120028A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
CA1135411A (en) Thin film head having negative magnetostriction
US5484494A (en) Amorphous alloy and method for its production
CN100371989C (en) Soft magnetic thin film and magnetic recording head
US4880514A (en) Method of making a thin film magnetic disk
US4017265A (en) Ferromagnetic memory layer, methods of making and adhering it to substrates, magnetic tapes, and other products
US4150172A (en) Method for producing a square loop magnetic media for very high density recording
US4587178A (en) Magnetic recording medium
US3715793A (en) Plated super-coat and electrolyte
KR890004257B1 (en) Magnetic recording carrier and its method of producing
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
JP2662904B2 (en) Cobalt-nickel-phosphorus alloy magnetic film, magnetic recording medium therefor, and method of manufacturing the same
US4735853A (en) Magnetic recording medium having an amorphous, nonmagnetic nickel-tungston-phosphorus underlayer
Inagaki et al. Ferrite thin films for high recording density
JP3201763B2 (en) Soft magnetic thin film
US3578571A (en) Method of electrodepositing a magnetic alloy and electrolyte therefor
US3549418A (en) Magnetic recording films of cobalt
JP3514800B2 (en) Soft magnetic thin film and method of manufacturing the same
EP0205239A2 (en) Thin film magnetic disc
JP2508462B2 (en) Soft magnetic thin film
US5182009A (en) Plating process
JP2963230B2 (en) Manufacturing method of magnetic recording medium
JPH03162710A (en) Magnetic recording medium
JPH0515790B2 (en)
JPH025003B2 (en)
JPH0758647B2 (en) Crystalline soft magnetic thin film

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110620

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110620