JPS5945218B2 - photomask - Google Patents

photomask

Info

Publication number
JPS5945218B2
JPS5945218B2 JP52051406A JP5140677A JPS5945218B2 JP S5945218 B2 JPS5945218 B2 JP S5945218B2 JP 52051406 A JP52051406 A JP 52051406A JP 5140677 A JP5140677 A JP 5140677A JP S5945218 B2 JPS5945218 B2 JP S5945218B2
Authority
JP
Japan
Prior art keywords
photoresist
photomask
transparent
liquid crystal
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52051406A
Other languages
Japanese (ja)
Other versions
JPS53136968A (en
Inventor
修司 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52051406A priority Critical patent/JPS5945218B2/en
Publication of JPS53136968A publication Critical patent/JPS53136968A/en
Publication of JPS5945218B2 publication Critical patent/JPS5945218B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造時に使用する写真食刻用のホ
トマスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photomask for photolithography used in the manufacture of semiconductor devices.

近年の半導体技術の進歩は目ざましく、LSIは高集積
化の一途をたどつている。
Semiconductor technology has made remarkable progress in recent years, and LSIs are becoming more and more highly integrated.

高集積度化LSIを得るための重要なプロセスとして、
ホトリソプロセスが有り、マスクパターン形状を忠実に
半導体素材上に再現させる必要があるが、段差を有する
半導体素材基板上に小面積の開孔部を忠実に形成する事
は相当困難を供なう問題である。例えば、第1図の如く
Si基板1、多結晶Si2及びSi酸化膜3より構成さ
れた半導体素材の、高さレベルの異なる位置A、、B点
でSi酸化膜3に開孔4、5を設けてSi基板1、多結
晶Si2の表面を露出させるプロセスにおいては、第2
図、第3図の如く、該半導体基板1の表面Si酸化膜3
上に、例えばポジタイプ(以下ポジタイプレジストの例
で説明する)のホトレジスト6を塗布した後、ホトマス
ク1を用いて紫外光照射によりパターン露光を施こし、
しかる後ホトレジストの現像及びSi酸化膜のエッチン
グ処理によつて第1図の如くSi酸化膜に開孔部を形成
している。この時ホトレジストを塗付する基板表面が凹
凸の段差を有した形状の場合、その上に塗布するホトレ
ジストは凹凸形状の段差を忠実に再現することはなく、
凹部に塗付されたホトレジストは、凸部上のホトレジス
ト膜厚より厚く形成され、ホトレジストの表面は第2図
の如く、ほぼ平滑に近い状態となり、特にポジタイプの
ホトレジストでは著しい傾向を示す。以上の如く膜厚の
異なつたホトレジスト6にホトマスク1のパターンを露
光させる場合、第3図のA点でのマスクパターンを忠実
に再現させるには、A点における膜厚TAなるホトレジ
ストを完全に分解させるに足りる光照射エネルギーで露
光することになるが、この時露光量が過剰になれば、S
i酸化膜表面での反射光などにより、パターン形状周辺
の部分までホトレジストが分解され、パターン形状が忠
実に再現出来なくなる。
As an important process for obtaining highly integrated LSI,
There is a photolithography process, and it is necessary to faithfully reproduce the mask pattern shape on the semiconductor material, but it is quite difficult to faithfully form small-area openings on the semiconductor material substrate with steps. That's a problem. For example, as shown in FIG. 1, openings 4 and 5 are formed in the Si oxide film 3 at points A and B at different height levels of a semiconductor material composed of a Si substrate 1, polycrystalline Si 2, and a Si oxide film 3. In the process of exposing the surfaces of the Si substrate 1 and polycrystalline Si2, the second
As shown in FIG. 3, the surface Si oxide film 3 of the semiconductor substrate 1
For example, after coating a positive type photoresist 6 (described below as an example of a positive type resist), pattern exposure is performed by ultraviolet light irradiation using a photomask 1,
Thereafter, openings are formed in the Si oxide film as shown in FIG. 1 by developing the photoresist and etching the Si oxide film. At this time, if the surface of the substrate to which the photoresist is applied has a shape with uneven steps, the photoresist applied thereon will not faithfully reproduce the uneven steps.
The photoresist applied to the concave portions is thicker than the photoresist film on the convex portions, and the surface of the photoresist becomes almost smooth as shown in FIG. 2, which is a remarkable tendency especially in the case of positive type photoresists. When exposing the pattern of the photomask 1 to the photoresist 6 having different film thicknesses as described above, in order to faithfully reproduce the mask pattern at point A in FIG. However, if the amount of exposure becomes excessive at this time, the S
The photoresist is decomposed to the periphery of the pattern shape due to reflected light from the surface of the i-oxide film, making it impossible to faithfully reproduce the pattern shape.

一方B点ではA点のホトレジスト膜厚TAに対応した適
正露光量で露光した場合、B点でのホトレジスト膜厚T
BはTB>TAなる関係を有しているため、光照射によ
り分解された領域6Bはホトレジスト底面まで到達して
いないことになる。したがつてホトレジストを現像処理
した後においてもB点では未分解レジストが残存し該ホ
トレジストをSi酸化膜のエッチングマスクとすると、
B点でのSi酸化膜は開孔されないことになる。一方B
点でのホトレジスト膜厚TBを基準として露光量を決定
した場合頃ホトレジスト膜厚の薄いA点では過剰露光と
なり、Si基板及びSiO2反射光を含めた光照射によ
るホトレジストの組成が分解される領域6Aは第4図の
如くなり、該ホトレジスト6をSi酸化膜3のエツチン
グマスクとしてSi酸化膜3に開孔4,5を形成した場
合、Si酸化膜3の開孔部寸法は第5図に示すように、
B点ではマスクパターン寸法を概略再現させ得るが、A
点ではマスクパターン寸法より拡大された開孔部が形成
される。特に最近増々盛んになる半導体素子の高密度、
高集積度化を図るにはマスクパターンの忠実な再現が重
要な要因であり、上記の問題は高密度化を妨げる原因の
一つとなる。なお、上の従米例はポジレジストを用いた
場合であるが、ネガレジストを使用した際にも同じ問題
が生じる。
On the other hand, at point B, if exposure is performed with an appropriate exposure amount corresponding to the photoresist film thickness TA at point A, the photoresist film thickness at point B T
Since B has the relationship TB>TA, the region 6B decomposed by light irradiation does not reach the bottom surface of the photoresist. Therefore, even after the photoresist is developed, undecomposed resist remains at point B, and if this photoresist is used as an etching mask for the Si oxide film,
The Si oxide film at point B will not be opened. On the other hand B
When the exposure amount is determined based on the photoresist film thickness TB at point A, overexposure occurs at point A, where the photoresist film thickness is thin, and the composition of the photoresist is decomposed by light irradiation including the Si substrate and SiO2 reflected light in area 6A. When openings 4 and 5 are formed in the Si oxide film 3 using the photoresist 6 as an etching mask for the Si oxide film 3, the dimensions of the openings in the Si oxide film 3 are as shown in FIG. like,
At point B, the mask pattern dimensions can be roughly reproduced, but at point A
At the points, openings are formed that are larger than the mask pattern dimensions. In particular, the high density of semiconductor devices, which has become increasingly popular recently,
Faithful reproduction of mask patterns is an important factor in achieving high integration, and the above problem is one of the causes that hinder high density. Note that although the above example uses a positive resist, the same problem occurs when a negative resist is used.

その一例が第6図に示したもので、ネガレジスト6は光
照射による重合硬化でパターンを形成するため、第6図
A点で過剰露光が生じた際のマスクの陰影部(非重合部
)に対する反射散乱光の影響は、ポジレジストの場合と
は逆になり、Si基板1上のSi酸化膜3の開孔部は、
ホトマスク7のパターンより小さくなり、極端な場合は
開孔されないことがある。以上の如くポジレジスト、ネ
ガレジストのいずれにしても凹凸を有する基板上では、
ホトマスクのパターンを忠実に再現させ得ないことにな
る。
An example of this is shown in FIG. 6. Since the negative resist 6 forms a pattern by polymerization and curing by light irradiation, the shadowed area (non-polymerized area) of the mask when overexposure occurs at point A in FIG. The influence of reflected and scattered light on the photoresist is opposite to that of the positive resist, and the opening of the Si oxide film 3 on the Si substrate 1 is
The hole is smaller than the pattern of the photomask 7, and in extreme cases, the hole may not be opened. As mentioned above, whether it is a positive resist or a negative resist, on a substrate with unevenness,
This means that the photomask pattern cannot be faithfully reproduced.

本発明は、ホトレジストの膜厚に差異を有し、適正露光
条件の異なる2領域からなるホトレジスト膜に対し、夫
々の領域に対し適正な露光量を与えることを可能とした
ホトマスクを提案するものである。以下本発明を図面と
ともに実施例に基いて説明する。
The present invention proposes a photomask that makes it possible to give an appropriate amount of exposure to each area of a photoresist film that is made up of two areas with different photoresist film thicknesses and different appropriate exposure conditions. be. The present invention will be described below based on examples together with drawings.

第7図が本発明のホトマスクの一実施例を示す断面略図
、第8図が同平面図であつて、第7図は第8図のA−A
断面の局部拡大図である。
FIG. 7 is a schematic cross-sectional view showing one embodiment of the photomask of the present invention, and FIG. 8 is a plan view of the same.
It is a local enlarged view of a cross section.

構成は第7図に示す如くガラス基板8の表面に、クロム
或は酸化クロムなどによる通常のマスクパターン9を形
成し、同ガラス基板8の裏面には、SnO2、In2O
3、或はSnO2+In2O,(5%)などによる透明
パターン電極10をマスクパターン9の透過窓11のう
ち、透過光量を規制すべき透過窓12の反対面に、ホト
エツチング等の手段によつて位置調整をして形成してお
く。
As shown in FIG. 7, the structure is such that a normal mask pattern 9 made of chromium or chromium oxide is formed on the surface of a glass substrate 8, and a mask pattern 9 made of chromium or chromium oxide is formed on the back surface of the glass substrate 8.
3. Alternatively, a transparent pattern electrode 10 made of SnO2+In2O (5%) or the like is positioned on the opposite side of the transmission window 12 of the transmission window 11 of the mask pattern 9 where the amount of transmitted light should be regulated by means such as photoetching. and form it.

また、同電極10は第8図の如く、電極間を電極材料と
同一材料などの配線材料13で接続し、ガラス基板8上
の全電極に電圧が印加される構造としてある。透明パタ
ーン電極10の対向面には、SnO2、In2O3、S
nO2+In2O3(5%)などの透明電極14を全面
に形成したガラス板15を数μ〜数10μの間隙16を
設けて配置し、ガラス基板8とガラス板15の間隙16
には動的散乱モード(以下DSMと略す)の液晶17を
、長軸がガラス壁面に垂直になるように液晶分子を配向
させて注入した構造とする。上記の如き構成を有したホ
トマスクの透明電極14側より光を照射すると、透明電
極14、透明パターン電極10間に電圧を印加しない場
合は、入射光18は若干の減衰はあるが、ほぼ入射光量
18に等しい透過光19が透過窓11,12から得られ
る。
Further, as shown in FIG. 8, the electrode 10 has a structure in which the electrodes are connected by a wiring material 13 made of the same material as the electrode material, and a voltage is applied to all the electrodes on the glass substrate 8. On the opposite surface of the transparent pattern electrode 10, SnO2, In2O3, S
A glass plate 15 on which a transparent electrode 14 such as nO2+In2O3 (5%) is formed on the entire surface is arranged with a gap 16 of several microns to several tens of microns, and the gap 16 between the glass substrate 8 and the glass plate 15 is
In this example, a dynamic scattering mode (hereinafter abbreviated as DSM) liquid crystal 17 is injected with the liquid crystal molecules oriented so that the long axis is perpendicular to the glass wall surface. When light is irradiated from the transparent electrode 14 side of a photomask having the above configuration, when no voltage is applied between the transparent electrode 14 and the transparent pattern electrode 10, the incident light 18 is slightly attenuated, but the amount of incident light is almost the same. A transmitted light 19 equal to 18 is obtained from the transmission windows 11,12.

透明電極14と透明パターン電極10間に交流電圧(直
流電圧でも可)を印加すると両電極間に位置する液晶は
配向に乱れが生じ、入射光18は散乱を起こし反射光1
8Iとなるなどして、透過光量19Iは減衰し、電界を
かけていない正規配向部を透過する透過光量19との間
の透過光量に差異が生ずることになる。
When an AC voltage (DC voltage is also acceptable) is applied between the transparent electrode 14 and the transparent pattern electrode 10, the alignment of the liquid crystal located between the two electrodes is disturbed, and the incident light 18 is scattered and the reflected light 1
8I, the amount of transmitted light 19I is attenuated, and a difference occurs in the amount of transmitted light between the amount of transmitted light 19 that passes through the normally aligned portion to which no electric field is applied.

第9図は液晶に印加する電圧と透過率の関係を示した特
性例で、この特性からもわかる如く、電極間の印加電圧
を調整することにより透過光量は相当広範囲にわたつて
制御することが可能になる。上記のホトマスクを第4図
の如くホトレジスト膜厚が異なり、ホトレジストの分解
に必要な適正露光量に差異を有するホトレジスト上にパ
ターンを形成する際に使用すれば、ホトレジスト膜厚が
TAなるA領域の露光を、本発明のホトマスクの透過窓
12で、膜厚がTBなるB領域の露光を透過窓11で施
こし、B領域の露光量を基準としてA領域の露光量を、
液晶の透過率で制御して露光すれば夫々の領域のホトレ
ジストは適正露光量で露光され凹凸段差でレジスト膜厚
が異なつた試料に対してもパターンマスクに忠実なホト
レジストマスクパターンを形成することができる。
Figure 9 is a characteristic example showing the relationship between the voltage applied to the liquid crystal and the transmittance. As can be seen from this characteristic, the amount of transmitted light can be controlled over a fairly wide range by adjusting the voltage applied between the electrodes. It becomes possible. If the above photomask is used to form a pattern on photoresist which has different photoresist film thicknesses and different appropriate exposure doses required for decomposing the photoresist as shown in Fig. 4, the photoresist film thickness will be TA in area A. Exposure is performed using the transmission window 12 of the photomask of the present invention, and the exposure of the B area with a film thickness of TB is performed using the transmission window 11, and the exposure amount of the A area is determined based on the exposure amount of the B area.
By controlling the exposure using the transmittance of the liquid crystal, the photoresist in each region is exposed to the appropriate amount of light, and a photoresist mask pattern that is faithful to the pattern mask can be formed even on a sample where the resist film thickness differs due to uneven steps. can.

なお透過光量を制御する液晶はDSM以外に、液晶層の
両面に偏光板を配してツイステツドネマチツク型液晶を
用いれば、低電圧範囲で制御することができる。
In addition to the DSM, the amount of transmitted light can be controlled in a low voltage range by using a twisted nematic type liquid crystal with polarizing plates arranged on both sides of the liquid crystal layer.

但しこの場合は印加電圧に対する透過度の変化が、DS
Mに比較してシャープであり、またホトマスクの構造が
若干複雑になる欠点もある。以上本発明のホトマスクの
構造実施例を、ポジレジストを用いて開孔部を形成する
ためのホトマスクを例とし説明したが、ネガレジストを
用いる場合にも基本思想は同一であり、透明パターン電
極間を接続する配線等を配慮して設計すれば、本実施例
と同様に有用性の高いホトマスクとなすことができる。
However, in this case, the change in transmittance with respect to the applied voltage is
It is sharper than M, and also has the disadvantage that the structure of the photomask is slightly more complicated. The structural embodiment of the photomask of the present invention has been described above using a photomask for forming openings using a positive resist as an example, but the basic idea is the same when using a negative resist, and the gap between the transparent pattern electrodes is If the wiring and the like to be connected are designed with consideration, it is possible to obtain a highly useful photomask similar to this embodiment.

以上説明したように本発明のホトマスクは、凹凸部を有
する半導体基板の凸部での光の量を液晶の配向を乱すこ
とによつて制御できるので、同一露光条件でマスクパタ
ーンに忠実な開孔部が形成できる。
As explained above, the photomask of the present invention can control the amount of light at the convex portions of a semiconductor substrate having convex and convex portions by disturbing the alignment of the liquid crystal. can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は従来のホトマスクを説明するための断
面図、第7図、第8図は本発明の一実施例を示す構造断
面図および平面図、第9図はDSM型液晶の印加電圧と
透過率の関係を示した特性図である。 1・・・・・・半導体基板、3・・・・・・開口部が形
成されるSi酸化膜、6・・・・・・ホトレジスト、6
A,6B・・・・・・ホトレジストの可溶領域、7・・
・・・・従来のホトマスク、8・・・・・・ガラス基板
、9・・・・・・マスクパターン、10・・・・・・透
明パターン電極、13・・・・・・透明パターン電極接
続配線、14・・・・・・透明電極、15・・・・・・
ガラス板、17・・・・・・液晶、18・・・・・・入
射光、 19,19″・・・・・・透過光。
1 to 6 are cross-sectional views for explaining conventional photomasks, FIGS. 7 and 8 are structural cross-sectional views and plan views showing one embodiment of the present invention, and FIG. 9 is a DSM type liquid crystal. FIG. 3 is a characteristic diagram showing the relationship between applied voltage and transmittance. DESCRIPTION OF SYMBOLS 1...Semiconductor substrate, 3...Si oxide film in which an opening is formed, 6...Photoresist, 6
A, 6B...Soluble area of photoresist, 7...
... Conventional photomask, 8 ... Glass substrate, 9 ... Mask pattern, 10 ... Transparent pattern electrode, 13 ... Transparent pattern electrode connection Wiring, 14...Transparent electrode, 15...
Glass plate, 17...Liquid crystal, 18...Incoming light, 19,19''...Transmitted light.

Claims (1)

【特許請求の範囲】[Claims] 1 表面にはマスクパターンが形成され裏面の所定位置
には第1の透明電極が形成された第1の透光性基板と、
前記第1の透光性基板と間隙を有して設置されるととも
に前記第1の透明電極と対向する位置に第2の透明電極
が形成された第2の透光性基板と、前記第1および第2
の透光性基板間に封入された液晶とからなり、前記第1
および第2の透明電極間に電圧を印加することによつて
前記液晶の所定部の配向を乱し、前記液晶の所定部とそ
の他の部分との光の透過量を異ならしめたことを特徴と
するホトマスク。
1. A first transparent substrate having a mask pattern formed on its front surface and a first transparent electrode formed at a predetermined position on its back surface;
a second transparent substrate installed with a gap from the first transparent substrate and on which a second transparent electrode is formed at a position facing the first transparent electrode; and the second
and a liquid crystal sealed between the transparent substrates, and the first
and applying a voltage between the second transparent electrodes to disturb the orientation of the predetermined portion of the liquid crystal, thereby making the amount of light transmitted between the predetermined portion and other portions of the liquid crystal different. Photomask.
JP52051406A 1977-05-04 1977-05-04 photomask Expired JPS5945218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52051406A JPS5945218B2 (en) 1977-05-04 1977-05-04 photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52051406A JPS5945218B2 (en) 1977-05-04 1977-05-04 photomask

Publications (2)

Publication Number Publication Date
JPS53136968A JPS53136968A (en) 1978-11-29
JPS5945218B2 true JPS5945218B2 (en) 1984-11-05

Family

ID=12886044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52051406A Expired JPS5945218B2 (en) 1977-05-04 1977-05-04 photomask

Country Status (1)

Country Link
JP (1) JPS5945218B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638888A (en) * 1979-09-07 1981-04-14 Hitachi Ltd Pattern forming method
JPS61289351A (en) * 1985-06-17 1986-12-19 Fujitsu Ltd Pattern variable type photomask
JPS63129619A (en) * 1986-11-20 1988-06-02 Toshiba Corp Pattern exposure method and mask for exposure and transfer of pattern
JP2799080B2 (en) * 1991-03-18 1998-09-17 株式会社日立製作所 Laser processing method and apparatus, transmission type liquid crystal element, wiring pattern defect correcting method and apparatus
KR100643684B1 (en) * 2005-11-04 2006-11-10 한국과학기술원 Polymer or resist pattern, and metal film pattern, metal pattern, and plastic mold using thereof, and methods of forming the sames
KR100817101B1 (en) 2007-04-04 2008-03-26 한국과학기술원 Polymer or resist pattern, and mold, metal film pattern, metal pattern using thereof, and methods of forming the sames
JP5649841B2 (en) * 2010-03-30 2015-01-07 学校法人トヨタ学園 Method and apparatus for exposing sample having three-dimensional shape

Also Published As

Publication number Publication date
JPS53136968A (en) 1978-11-29

Similar Documents

Publication Publication Date Title
JP2002189280A (en) Gray tone mask and method for producing the same
JPH075675A (en) Mask and preparation thereof
JPS5945218B2 (en) photomask
JP3228354B2 (en) Phase shift mask, phase shift mask blank, and method of manufacturing phase shift mask blank
JPH02211450A (en) Phase shift mask and its manufacture
JP4011668B2 (en) Manufacturing method of color filter with gap control function
US6621539B2 (en) Reflective type LCD and method of manufacturing the same
JPH06250376A (en) Phase shift mask and production of phase shift mask
KR100484517B1 (en) Grayton mask and manufacturing method thereof
US6261725B1 (en) Phase angle modulation of PSM by chemical treatment method
US20030039892A1 (en) Method of optical proximity correction
JPH04247456A (en) Mask for exposure
JPS60128448A (en) Photomask
JPH08248618A (en) Reticle
JPS647492B2 (en)
JPH086008A (en) Liquid crystal display device and its production
JP2000193968A (en) Light-reflecting substrate, its production and reflection type liquid crystal display device
JPH05341494A (en) Phase shift photomask and its formation method
JPS63157421A (en) Method of forming resist pattern
JPS6379379A (en) Manufacture of self-alignment type thin film transistor
JPH1020473A (en) Production of mask for exposure
JPH05109600A (en) Manufacture of semiconductor device
JPH0823687B2 (en) Photomask blank, photomask, and method of manufacturing photomask
JPS60140347A (en) Photomask
JPS6239014A (en) Formation of fine pattern