JPS5944506B2 - Geothermal steam turbine control device - Google Patents

Geothermal steam turbine control device

Info

Publication number
JPS5944506B2
JPS5944506B2 JP5315080A JP5315080A JPS5944506B2 JP S5944506 B2 JPS5944506 B2 JP S5944506B2 JP 5315080 A JP5315080 A JP 5315080A JP 5315080 A JP5315080 A JP 5315080A JP S5944506 B2 JPS5944506 B2 JP S5944506B2
Authority
JP
Japan
Prior art keywords
steam
pressure
control signal
signal
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5315080A
Other languages
Japanese (ja)
Other versions
JPS56148689A (en
Inventor
光久 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5315080A priority Critical patent/JPS5944506B2/en
Publication of JPS56148689A publication Critical patent/JPS56148689A/en
Publication of JPS5944506B2 publication Critical patent/JPS5944506B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、地熱蒸気タービン特tこ2段の気水分離器を
有する地熱蒸気タービンの制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a geothermal steam turbine, particularly for a geothermal steam turbine having a two-stage steam/water separator.

地熱エネルギを利用する発電のうち最も実用的なものは
、地下から噴出する蒸気を直接タービンに流入させて発
電する方法であるが、この場合地熱エネルギの有効利用
が重要となる。
The most practical method of power generation using geothermal energy is to generate electricity by directly flowing steam emitted from underground into a turbine, but in this case, effective use of geothermal energy is important.

一般に、地下から噴出するのは蒸気と熱水とであり、こ
のうち蒸気のみを分離してタービンに流入させるととも
に、残りの熱水からはこれをさらに気水分離器に入れて
低圧の蒸気を取り出し、この低圧蒸気をタービンの途中
段落に流入させることによって、地熱エネルギを有効に
利用することが行なわれている。
Generally, steam and hot water are ejected from underground, and only the steam is separated and flowed into the turbine, and the remaining hot water is further sent to a steam separator to produce low-pressure steam. Geothermal energy is effectively utilized by extracting the low-pressure steam and flowing it into an intermediate stage of a turbine.

このようなものを2段フラッシュ蒸気タービンという。This type of turbine is called a two-stage flash steam turbine.

ところで、上記2段の気水分離器には蒸気タービンに安
定した蒸気を供給するため圧力制御装置が設けられてい
る。
Incidentally, the two-stage steam/water separator is provided with a pressure control device in order to supply stable steam to the steam turbine.

しかし、従来この圧力制御装置はタービンとは関係なく
独立した制御装置であり、タービン側の負荷変動により
圧力が大きく変動したり、また地熱の噴出蒸気と熱水と
の割合が変化した時にはエネルギを有効に利用すること
ができず、地熱エネルギの一部を無駄にせざるを得ない
ことが多かった。
However, in the past, this pressure control device was an independent control device unrelated to the turbine, and when the pressure fluctuated greatly due to load fluctuations on the turbine side, or when the ratio of geothermal steam and hot water changed, the energy was reduced. In many cases, some of the geothermal energy had to be wasted because it could not be used effectively.

すなわち、第1図は一般的な2段フラッシュ形地熱ター
ビンの系統図であって、地熱井戸1から噴出した蒸気お
よび熱水は、第1段の気水分離器2で蒸気とドレンとに
分離され、その蒸気は高圧主蒸気止め弁3および高圧加
減弁4を経てタービン5に供給される。
That is, FIG. 1 is a system diagram of a general two-stage flash type geothermal turbine, in which steam and hot water ejected from a geothermal well 1 are separated into steam and condensate in a first-stage steam-water separator 2. The steam is supplied to the turbine 5 via the high pressure main steam stop valve 3 and the high pressure regulating valve 4.

一方、第1段の気水分離器2で分離されたドレンは、ド
レン水位調整弁6を経て第2段の気水分離器7に供給さ
れる。
On the other hand, the drain separated by the first-stage steam-water separator 2 is supplied to the second-stage steam-water separator 7 via a drain water level adjustment valve 6.

上記第2段気水分離器7の圧力は第1段気水分離器2の
圧力より低くしてあり、そのため上記第2段気水分離器
7に流入したドレンの一部はそこで蒸発して低圧蒸気と
なり、低圧主蒸気止め弁8および低圧加減弁9を経て前
記タービン5の途中段落に供給される。
The pressure of the second-stage steam-water separator 7 is lower than the pressure of the first-stage steam-water separator 2, so that a part of the condensate flowing into the second-stage steam-water separator 7 evaporates there. This becomes low-pressure steam and is supplied to an intermediate stage of the turbine 5 via a low-pressure main steam stop valve 8 and a low-pressure regulator valve 9.

タービン5において膨張して仕事を行なった蒸気は復水
器10で復水せしめられ、環元井戸11から地中に戻さ
れる。
The steam that has expanded and performed work in the turbine 5 is condensed in a condenser 10 and returned to the ground through a ring well 11.

この場合、上記復水器10には、復水の一部をポンプ1
2を介してクーリングタワー13に送りそこで冷却され
た水を冷却水として供給される。
In this case, a part of the condensate is transferred to the condenser 10 by the pump 1.
2 to the cooling tower 13, where the water is cooled and supplied as cooling water.

また、第2段の気水分離器7で分離されたドレンは水位
調整弁14を経て環元井戸13によって地中に戻される
Further, the drain separated by the second-stage steam-water separator 7 is returned to the ground by the ring source well 13 via the water level adjustment valve 14.

ところで、第1段の気水分離器2の蒸気圧力は、その第
1段の気水分離器2からの蒸気供給導管に設けられた第
1の逃し弁15を圧力検出調整装置16により開度制御
することにより、蒸気の一部を大気中に放出したり、或
は高圧蒸気の一部を減圧弁17を介して第2の気水分離
器7からの低圧蒸気中に合流せしめることによって制御
される。
By the way, the steam pressure of the first-stage steam-water separator 2 is determined by adjusting the opening degree of the first relief valve 15 provided in the steam supply conduit from the first-stage steam-water separator 2 by the pressure detection adjustment device 16. By controlling, a part of the steam is released into the atmosphere, or a part of the high pressure steam is combined with the low pressure steam from the second steam separator 7 via the pressure reducing valve 17. be done.

同様に、第2段の気水分離器7の圧力は、その気水分離
器からの蒸気供給導管に設けられた第2の逃し弁18を
圧力検出調整装置19によって開閉することによって制
御される。
Similarly, the pressure in the second stage steam separator 7 is controlled by opening and closing a second relief valve 18 provided in the steam supply conduit from the steam separator by means of a pressure sensing and regulating device 19. .

タービン5の高圧加減弁4および低圧加減弁9は、調速
装置20によって制御され、その回転数および負荷の制
御が行なわれ、第2図に示すように、それぞれ回転数負
荷制御信号に応じてその弁開度がほぼ直線的に制御され
、気水分離器の圧力制御とは無関係に制御される。
The high pressure regulating valve 4 and the low pressure regulating valve 9 of the turbine 5 are controlled by a speed governor 20 to control their rotation speed and load, and as shown in FIG. The valve opening degree is controlled almost linearly and is controlled independently of the pressure control of the steam/water separator.

すなわち、気水分離器の蒸気圧力は、タービン側の蒸気
流入量が変化した時でも一定になるように両逃し弁15
および18によって制御され、一方タービンは一定圧力
の蒸気を前提として負荷要求によって加減弁の開閉制御
が行なわれている。
In other words, the steam pressure in the steam separator is maintained constant even when the amount of steam inflow to the turbine side changes.
and 18, and on the other hand, the turbine is controlled to open and close the regulating valve according to the load request on the premise of steam at a constant pressure.

したがって、両逃し弁15.18からは常に成程度の蒸
気が放出されており、その分蒸気エネルギを無駄にして
捨ててることになる。
Therefore, a certain amount of steam is always being released from both relief valves 15 and 18, and that amount of steam energy is wasted and wasted.

また、タービン負荷しゃ断等負荷に急に急激な変化があ
った場合には、圧力が上昇してから圧力制御系が作動す
るため、圧力の過渡的変化が大きすぎ、気水分離器にと
ってもタービンにとっても好ましくない。
In addition, if there is a sudden change in the load such as turbine load cutoff, the pressure control system will operate after the pressure has increased, so the transient change in pressure will be too large and the turbine Very undesirable.

さらに、地中から噴出する蒸気と熱水の比率が変化した
時、例えば高圧蒸気の量が増加し、低圧蒸気の量が減少
したような状態のときには、高圧蒸気の逃し量を増加さ
せるか、減圧弁17を手動調整して低圧ラインに蒸気を
流してできるだけ蒸気を有効に使用する必要がある。
Furthermore, when the ratio of steam and hot water ejected from underground changes, for example when the amount of high-pressure steam increases and the amount of low-pressure steam decreases, the amount of high-pressure steam released should be increased or It is necessary to manually adjust the pressure reducing valve 17 to allow steam to flow through the low pressure line to use the steam as effectively as possible.

したがって、前者の場合蒸気の無駄が多くなり、後者の
場合には発生蒸気の量が変化する毎に減圧弁17を手動
調整する必要があり、その操作が繁雑である等の不都合
がある。
Therefore, in the former case, a large amount of steam is wasted, and in the latter case, it is necessary to manually adjust the pressure reducing valve 17 every time the amount of generated steam changes, resulting in inconveniences such as complicated operation.

本発明はこのような点に鑑み、気水分離器の蒸気圧力制
御とタービンの制御装置とを組み合わせ、地熱エネルギ
を有効に利用できるとともに、制御性のよい地熱タービ
ン制御装置を提供することを目的とする。
In view of these points, an object of the present invention is to provide a geothermal turbine control device that combines steam pressure control of a steam-water separator and a turbine control device to effectively utilize geothermal energy and has good controllability. shall be.

以下、第3図および第4図を参照して本発明の一実施例
について説明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4.

なお、第1図と同一部分については同一符号を付し、そ
の詳細な説明は省略する。
Note that the same parts as in FIG. 1 are denoted by the same reference numerals, and detailed explanation thereof will be omitted.

第3図において、符号21は制御回路であって、この制
御回路21には、第1段気水分離器2の圧力検出調整装
置16からの蒸気圧力制御信号16a、第2段気水分離
器7の圧力検出調整装置19からの蒸気圧力制御信号1
9a、および調速装置20からのタービン回転数負荷制
御信号20aがそれぞれ印加され、この制御回路21か
らの出力信号によって高圧加減弁4、低圧加減弁9、減
圧弁17、および第2段気水分離器7の逃し弁18を制
御するようにしである。
In FIG. 3, reference numeral 21 is a control circuit, and this control circuit 21 includes a steam pressure control signal 16a from the pressure detection and adjustment device 16 of the first stage steam separator 2, a steam pressure control signal 16a from the pressure detection adjustment device 16 of the first stage steam water separator 2, Steam pressure control signal 1 from pressure detection adjustment device 19 of 7
9a, and a turbine rotational speed load control signal 20a from the speed governor 20 are respectively applied, and the output signal from the control circuit 21 controls the high pressure regulating valve 4, the low pressure regulating valve 9, the pressure reducing valve 17, and the second stage air/water. The relief valve 18 of the separator 7 is controlled.

上記制御回路21は第4図に示すように構成されている
The control circuit 21 is constructed as shown in FIG.

すなわち、タービンの回転数と回転数設定値との差を増
幅し、また系統併入後は負荷設定信号を加えた加減弁開
度要求信号であるタービン回転数負荷制御信号20aは
、第1の低値優先回路22に印加され、またその第1の
低値優先回路22には蒸気圧力制御信号16aが印加さ
れており、両信号の低値信号が高圧加減弁4への制御信
号として出力される。
In other words, the turbine rotation speed load control signal 20a, which is a control valve opening request signal that amplifies the difference between the turbine rotation speed and the rotation speed setting value and adds the load setting signal after joining the system, is the first The steam pressure control signal 16a is applied to the low value priority circuit 22, and the steam pressure control signal 16a is applied to the first low value priority circuit 22, and the low value signal of both signals is output as a control signal to the high pressure regulating valve 4. Ru.

上記第1の低値優先回路22からの出力信号はまた、関
数23を経て第2の低値優先回路24に加えられ、さら
にその第2の低値優先回路24には前記第2段気水分離
装置の蒸気圧力制御信号19aと後述する減算器25の
出力信号との加算信号が印加されており、両信号の低値
信号が低圧加減弁9への制御信号として出力するように
しである。
The output signal from the first low value priority circuit 22 is also applied to a second low value priority circuit 24 via a function 23, and the second low value priority circuit 24 is further supplied with the second stage air water. A sum signal of a steam pressure control signal 19a of the separation device and an output signal of a subtracter 25, which will be described later, is applied, and the low value signal of both signals is outputted as a control signal to the low pressure regulating valve 9.

また、前記蒸気圧力制御信号16aと第1の低値優先回
路22の出力信号とが減算器25で合流せしめられ、蒸
気圧力制御信号16aの値から第1の低値優先回路22
からの出力信号の値を減じた信号によって減圧弁17が
制御される。
Further, the steam pressure control signal 16a and the output signal of the first low value priority circuit 22 are combined in a subtracter 25, and the value of the steam pressure control signal 16a is converted to the output signal of the first low value priority circuit 22.
The pressure reducing valve 17 is controlled by a signal obtained by subtracting the value of the output signal from.

しかして、回転数負荷制御信号20aより蒸気圧力制御
信号16aの方が小さいときには、第1の低値優先回路
22の出力は蒸気圧力制御信号16aとなり、高圧加減
弁4は蒸気圧力制御信号によって制御される。
Therefore, when the steam pressure control signal 16a is smaller than the rotation speed load control signal 20a, the output of the first low value priority circuit 22 becomes the steam pressure control signal 16a, and the high pressure regulating valve 4 is controlled by the steam pressure control signal. be done.

つまり第4段気水分離器2の圧力が高くなれば高圧加減
弁4が開いて圧力制御が行なわれる。
That is, when the pressure of the fourth stage steam/water separator 2 becomes high, the high pressure regulating valve 4 opens and pressure control is performed.

一方、このとき減算器25への入力信号は両方とも蒸気
圧力制御信号16aとなるため、減算器25からの出力
は0であり、減圧弁17は全閉状態に制御される。
On the other hand, since both input signals to the subtractor 25 at this time become the steam pressure control signal 16a, the output from the subtractor 25 is 0, and the pressure reducing valve 17 is controlled to be fully closed.

また、回転数負荷制御信号20aが蒸気圧力制御信号1
6aより小さい時は、第1の低値優先回路22からの回
転数負荷制御信号20aが出力し、その信号によって高
圧加減弁4が制御され、一方両信号の差だけ減算器25
の出力が増加し、この分減圧弁17が開かれ第1段気水
分離器2の圧力制御が行なわれることとなる。
Further, the rotation speed load control signal 20a is the steam pressure control signal 1.
When it is smaller than 6a, the rotation speed load control signal 20a from the first low value priority circuit 22 is output, and the high pressure regulating valve 4 is controlled by this signal, while the subtractor 25 is output by the difference between both signals.
The output increases, the pressure reducing valve 17 is opened by this amount, and the pressure of the first stage steam separator 2 is controlled.

同様にして、第2段気水分離器7の蒸気圧力制御信号1
9aと減算器25からの出力信号との加算信号と、回転
数負荷制御信号20aから関数を経由した信号のうち低
い力の信号によって低圧加減弁9が制御され、また、第
2の低値優先回路24からの出力信号と、蒸気圧力制御
信号19aおよび減算器25からの出力信号の加算信号
とが減算器26で減算され、その差信号によって第2段
気水分離器7の第2の逃し弁18の制御が行なわれる。
Similarly, the steam pressure control signal 1 of the second stage steam separator 7
9a and the output signal from the subtractor 25, and a signal with a lower force among the signals passed through the function from the rotational speed load control signal 20a, the low pressure regulating valve 9 is controlled. The output signal from the circuit 24 and the sum signal of the steam pressure control signal 19a and the output signal from the subtracter 25 are subtracted by the subtracter 26, and the difference signal is used to control the second relief of the second stage steam/water separator 7. Control of valve 18 is performed.

このように、蒸気圧力制御信号19aには減算器25か
らの出力信号が加算器27で加えられているので、減圧
弁17が開いた時に第1段気水分離器2の蒸気ラインか
ら第2段気水分離器7の蒸気ラインに流入する蒸気流量
が先行的に制御信号として第2段気水分離器の蒸気圧力
制御信号に加えられることとなり、それによって過渡特
性が改善される。
In this way, since the output signal from the subtracter 25 is added to the steam pressure control signal 19a by the adder 27, when the pressure reducing valve 17 opens, the output signal from the steam line of the first stage steam separator 2 to the second The steam flow rate flowing into the steam line of the stage steam/water separator 7 is added in advance as a control signal to the steam pressure control signal of the second stage steam/water separator, thereby improving the transient characteristics.

本発明は上述のように構成されているので、先ずタービ
ン起動前は回転数負荷制御信号20aが0であることに
よって、高圧加減弁4および低圧加減弁9はともに全開
となっている。
Since the present invention is configured as described above, first, before starting the turbine, the rotation speed load control signal 20a is 0, so that both the high pressure regulating valve 4 and the low pressure regulating valve 9 are fully open.

また、第1段気水分離器2の蒸気圧力制御信号16aに
よって減圧弁17が開かれ、蒸気を第2段気水分離器ラ
インに逃すことにより圧力制御が行なわれ、第2段気水
分離器7において発生する蒸気と減圧弁17を経て流入
する蒸気は第2の逃し弁18から放出され、第2段気水
分離器7の蒸気圧力が制御されている。
Further, the pressure reducing valve 17 is opened by the steam pressure control signal 16a of the first stage steam water separator 2, and pressure control is performed by releasing steam to the second stage steam water separator line. The steam generated in the steam separator 7 and the steam flowing in through the pressure reducing valve 17 are released from the second relief valve 18, and the steam pressure in the second stage steam separator 7 is controlled.

この状態からタービンが起動され、回転数が上昇し負荷
をとって行く過程では、回転数負荷制御信号20aが除
々に上昇し、第1の低値優先回路22および第2の低値
優先回路24を経て高圧加減弁4および低圧加減弁9に
それぞれ開信号が与えられ、両加減弁4,9が開かれて
行く。
From this state, the turbine is started, and in the process of increasing the rotation speed and taking on the load, the rotation speed load control signal 20a gradually increases, and the first low value priority circuit 22 and the second low value priority circuit 24 An opening signal is applied to the high pressure regulating valve 4 and the low pressure regulating valve 9, respectively, and both regulating valves 4 and 9 are opened.

この時点では2つの低値優先回路は回転数負荷制御信号
20aからの信号が優先しており、この信号によって上
述のように高圧加減弁4および低圧加減弁9が開くと、
その号笛1段気水分離器2の蒸気ラインから第2段気水
分離器の蒸気ラインへ、或は第2段気水分離器から大気
へ流出する蒸気流量が少なくてすむようになるが、流出
流量が増加して固気水分離器の圧力が低下し、蒸気圧力
制御信号のみによって減圧弁17や第2の逃し弁18の
開度が閉方向に作動される以前に、両加減弁4,9への
出力信号が減算器25および26に印加されているので
、両派算器25.26からの出力信号によって減圧弁1
7および第2の逃し弁18が閉方向に制御され、すなわ
ち圧力制御に先行して回転数負荷制御信号20aにより
両弁が制御され、過渡的偏差の発生が最小にとどめられ
る。
At this point, the two low value priority circuits are prioritized by the signal from the rotational speed load control signal 20a, and when this signal opens the high pressure regulating valve 4 and the low pressure regulating valve 9 as described above,
The flow rate of steam flowing from the steam line of the first-stage steam-water separator 2 to the steam line of the second-stage steam-water separator or from the second-stage steam-water separator to the atmosphere can be reduced. When the outflow flow rate increases and the pressure of the solid-gas/water separator decreases, the opening degrees of the pressure reducing valve 17 and the second relief valve 18 are operated in the closing direction only by the steam pressure control signal. , 9 are applied to the subtractors 25 and 26, the output signals from both subtractors 25 and 26 cause the pressure reducing valve 1 to
7 and the second relief valve 18 are controlled in the closing direction, ie both valves are controlled by the speed load control signal 20a prior to pressure control, so that the occurrence of transient deviations is kept to a minimum.

なお、第2段気水分離器7の圧力制御に対しては、低圧
加減弁9からタービンに流入する蒸気の他に、第1段気
水分離器の蒸気ラインから減圧弁1γを経て流れて来る
蒸気量の変化も外乱要因となるが、この信号も加算器2
7に先行制御信号として入っているので、これによる過
渡的偏差も防止される。
For pressure control of the second-stage steam-water separator 7, in addition to steam flowing into the turbine from the low-pressure regulating valve 9, steam flowing from the steam line of the first-stage steam-water separator via the pressure-reducing valve 1γ is used. The upcoming change in the amount of steam also becomes a disturbance factor, but this signal is also
7 as a preliminary control signal, transient deviations caused by this are also prevented.

ところで、タービン負荷上昇に伴なって、タービンへの
流入蒸気量が増加し、減圧弁17および第2の逃し弁1
8の流量が減少し、やがて減圧弁17および第2の逃し
弁18が全閉となり、固気水分離器で発生した蒸気が全
てタービンに流入するようになる。
By the way, as the turbine load increases, the amount of steam flowing into the turbine increases, and the pressure reducing valve 17 and the second relief valve 1
8 decreases, and eventually the pressure reducing valve 17 and the second relief valve 18 are fully closed, and all the steam generated in the solid-air water separator begins to flow into the turbine.

この時はつまり蒸気圧力制御信号16a、19aが回転
数・負MIJ御信号20aより低値となり、第1の低値
優先回路22および第2の低値優先回路24を経た上記
両蒸気圧力制御信号によってそれぞれ高圧、低圧両加減
弁4,9が制御されるようになる。
At this time, the steam pressure control signals 16a and 19a have lower values than the rotational speed/negative MIJ control signal 20a, and both the steam pressure control signals have passed through the first low value priority circuit 22 and the second low value priority circuit 24. Both the high pressure and low pressure regulating valves 4 and 9 are respectively controlled by the above.

このようにして通常運転中はこの状態で制御されており
、地熱蒸気は有効に利用される。
In this way, the system is controlled in this state during normal operation, and geothermal steam is effectively utilized.

−力、この通常運転中に地熱発生蒸気と熱水の割合が大
きく変化した場合、例えば蒸気量が増加して第1段気水
分離器2の蒸気が増え、第2段気水分離器7の蒸気が減
少すると、蒸気圧力制御信号16aが増加し、これがタ
ービンの限界以上になると、第1の低値優先回路22か
らは回転数・負荷制御信号20aが高圧加減弁4に印加
され、高圧加減弁4は回転数・負荷制御信号によって制
御されるようになる。
- If the ratio of geothermally generated steam and hot water changes significantly during this normal operation, for example, the amount of steam increases and the steam in the first stage steam water separator 2 increases, and the second stage steam water separator 7 When the steam in The control valve 4 is controlled by the rotation speed/load control signal.

一方、減圧弁17は減算器25からの出力信号によって
開方向に匍]御され、第1段気水分離器2の圧力制御が
行なわれ、上記減圧弁17を経た蒸気が第2段気水分離
器7からの蒸気とともに低圧加減弁9を経てタービンに
流入する。
On the other hand, the pressure reducing valve 17 is controlled in the opening direction by the output signal from the subtractor 25, the pressure of the first stage steam separator 2 is controlled, and the steam passing through the pressure reducing valve 17 is transferred to the second stage steam water separator 2. Together with the steam from the separator 7, it flows into the turbine via the low pressure regulating valve 9.

この場合、上記減圧弁17を流れる蒸気によって第2段
気水分離器7の圧力も影響を受けるが、減圧弁開度信号
が先行信号として蒸気圧力制御信号19aに加えられて
いるので、減圧弁の開動作とともに低圧加減弁9および
第2の逃し弁18が制御され、過度的な偏差の発生が防
止される。
In this case, the pressure in the second stage steam separator 7 is also affected by the steam flowing through the pressure reducing valve 17, but since the pressure reducing valve opening signal is added to the steam pressure control signal 19a as a preceding signal, the pressure reducing valve The low pressure regulating valve 9 and the second relief valve 18 are controlled together with the opening operation, thereby preventing excessive deviation from occurring.

逆に、熱水の割合が増加し、第2段気水分離器7の蒸気
が増加して蒸気圧力制御信号19aの要求信号が関数2
3で定められた限界値以上になると、低圧加減弁9は回
転数・負荷制御信号によって制御されるようになるとと
もに、減算器26を経た蒸気圧力制御信号19aによっ
て第2の逃し弁18が開放され、不要の蒸気が放出され
る。
Conversely, the proportion of hot water increases, the steam in the second stage steam-water separator 7 increases, and the request signal of the steam pressure control signal 19a changes to the function 2.
3, the low pressure regulating valve 9 is controlled by the rotation speed/load control signal, and the second relief valve 18 is opened by the steam pressure control signal 19a passed through the subtractor 26. and unnecessary steam is released.

また、通常運転中にタービン負荷しゃ断或は大きな負荷
変動で回転数が異常上昇するような事態が起ると、回転
数・負荷制御信号20aによって両加減弁4,9が閉鎖
方向に制御され、同時にその信号によって減圧弁17お
よび第2の逃し弁18が開かれ圧力制御が行なわれる。
Furthermore, if a situation occurs during normal operation in which the rotational speed abnormally increases due to turbine load cutoff or large load fluctuation, both the control valves 4 and 9 are controlled in the closing direction by the rotational speed/load control signal 20a. At the same time, the signal opens the pressure reducing valve 17 and the second relief valve 18 to perform pressure control.

以上説明したように、本発明においては、第1段気水分
離器の圧力制御信号とタービン回転数・負荷制御信号と
の低値信号によって高圧加減弁制御信号を出力する第1
の低値優先回路と、上記第1段気水分離器の圧力制御信
号と上記低値優先回路からの出力信号との差によって減
圧弁を制御する減圧弁制御装置と、第2段気水分離器の
圧力制御信号と第1の低値優先回路からの低圧加減弁開
度要求信号との低値信号によって低圧加減弁制御信号を
出力する第2の低値優先回路と、第2段気水分離器の圧
力制御信号と第2の低値優先回路からの出力との差によ
って第2段気水分離器の逃し弁を制御する逃し弁開度制
御装置とを設けたので、回転数制御と圧力制御とが効果
的に組合わされ、地中から噴出する蒸気と熱水の比率の
変化時或は負荷しゃ断時等においても、減圧弁をその都
度手動調整したり、或は多量の蒸気を無駄に放出するよ
うなこともなく、地熱蒸気を有効に利用でき、また過度
的に制御偏差が生ずることもなく、常に安定した制御を
行なうことができる等の効果を奏する。
As explained above, in the present invention, the first stage steam separator outputs the high pressure regulating valve control signal based on the low value signal of the pressure control signal of the first stage steam/water separator and the turbine speed/load control signal.
a low value priority circuit, a pressure reducing valve control device that controls a pressure reducing valve based on the difference between the pressure control signal of the first stage steam water separator and the output signal from the low value priority circuit, and a second stage steam water separator. a second low value priority circuit that outputs a low pressure regulating valve control signal based on a low value signal of the pressure control signal of the container and a low pressure regulating valve opening request signal from the first low value priority circuit; A relief valve opening control device is provided to control the relief valve of the second stage steam/water separator based on the difference between the pressure control signal of the separator and the output from the second low value priority circuit. Effectively combined with pressure control, even when the ratio of steam and hot water ejected from underground changes or when load is cut off, the pressure reducing valve can be manually adjusted each time, or a large amount of steam can be wasted. Geothermal steam can be used effectively without being released into the atmosphere, and stable control can always be performed without excessive control deviations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の地熱蒸気タービン制御装置の系統図、第
2図は加減弁の開度と回転数・負荷制御信号との関係線
図、第3図は本発明の地熱蒸気タービンの制御装置の系
統図、第4図は制御回路の詳細系統図である。 1・・・・・・地熱井戸、2・・・・・・第1段気水分
離器、4・・・・・・高圧加減弁、5・・・・・・ター
ビン、7・・・・・・第2段気水分離器、9・・・・・
・低圧加減弁、15・・・・・・第1の逃し弁、16・
・・・・・圧力検出調整装置、17・・・・・・減圧弁
、18・・・・・・第2の逃し弁、21・・・・・・制
御回路、22・・・・・・第1の低値優先回路、24・
・・・・・第2の低値優先回路。
Fig. 1 is a system diagram of a conventional geothermal steam turbine control device, Fig. 2 is a relationship diagram between the opening degree of the control valve and the rotation speed/load control signal, and Fig. 3 is a geothermal steam turbine control device of the present invention. FIG. 4 is a detailed system diagram of the control circuit. 1... Geothermal well, 2... First stage steam water separator, 4... High pressure regulating valve, 5... Turbine, 7...・・Second stage steam separator, 9・・・・
・Low pressure regulating valve, 15...First relief valve, 16.
... Pressure detection adjustment device, 17 ... Pressure reducing valve, 18 ... Second relief valve, 21 ... Control circuit, 22 ... first low value priority circuit, 24.
...Second low value priority circuit.

Claims (1)

【特許請求の範囲】 1 第1段気水分離器の圧力制御信号とタービン回転数
・負荷制御信号との低値信号によって高圧加減弁制御信
号を出力する第1の低値優先回路と、上記第1段気水分
離器の圧力制御信号と上記低値優先回路からの出力信号
との差によって減圧弁を制御する減圧弁制御装置と、第
2段気水分離器の圧力制御信号と上記低値優先回路から
の低圧加減弁開度要求信号との低値信号によって低圧加
減弁制御信号を出力する第2の低値優先回路と、第2段
気水分離器の圧力制御信号と第2の低値優先回路からの
出力信号との差によって第2段気水分離器の逃し弁を制
御する逃し弁開度制御装置とを有することを特徴とする
、地熱蒸気タービン制御装置。 2 第2段気水分離器の圧力制御信号には逃し弁制御信
号が先行制御信号として加えられていることを特徴とす
る特許請求の範囲第1項記載の地熱蒸気タービン制御装
置。
[Scope of Claims] 1. A first low-value priority circuit that outputs a high-pressure regulating valve control signal based on a low-value signal of the pressure control signal of the first stage steam-water separator and the turbine speed/load control signal; A pressure reducing valve control device that controls a pressure reducing valve based on the difference between the pressure control signal of the first stage steam water separator and the output signal from the low value priority circuit; A second low value priority circuit outputs a low pressure regulating valve control signal based on a low value signal that is combined with a low pressure regulating valve opening request signal from the value priority circuit; A geothermal steam turbine control device comprising: a relief valve opening control device that controls a relief valve of a second stage steam/water separator based on a difference between the output signal and the output signal from the low value priority circuit. 2. The geothermal steam turbine control device according to claim 1, wherein a relief valve control signal is added as a preliminary control signal to the pressure control signal of the second stage steam/water separator.
JP5315080A 1980-04-22 1980-04-22 Geothermal steam turbine control device Expired JPS5944506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315080A JPS5944506B2 (en) 1980-04-22 1980-04-22 Geothermal steam turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315080A JPS5944506B2 (en) 1980-04-22 1980-04-22 Geothermal steam turbine control device

Publications (2)

Publication Number Publication Date
JPS56148689A JPS56148689A (en) 1981-11-18
JPS5944506B2 true JPS5944506B2 (en) 1984-10-30

Family

ID=12934796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315080A Expired JPS5944506B2 (en) 1980-04-22 1980-04-22 Geothermal steam turbine control device

Country Status (1)

Country Link
JP (1) JPS5944506B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210852A (en) * 2018-06-04 2019-12-12 株式会社東芝 Control device, geothermal power generation facility and control method therefor

Also Published As

Publication number Publication date
JPS56148689A (en) 1981-11-18

Similar Documents

Publication Publication Date Title
JPS61101608A (en) Load control of steam turbine in complex cycle generation plant
JPS5944506B2 (en) Geothermal steam turbine control device
JP2918743B2 (en) Steam cycle controller
JPS628605B2 (en)
JPH07243304A (en) Extraction pressure control method for extraction turbine
JPS6239655B2 (en)
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JP2523493B2 (en) Turbin bypass system
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH0241720B2 (en)
JPH0128202B2 (en)
JP2645103B2 (en) Geothermal steam turbine bypass controller
JPH0122521B2 (en)
JPH04259605A (en) Stem turbine control device
JPH0270906A (en) Control of bleeding turbine and device thereof
JPS60198310A (en) Controller for turbine
JPS58148205A (en) Controller of geothermal steam turbine
JPH0435602B2 (en)
JPH07103808B2 (en) Load back-up method when the system frequency drops sharply
JPS61286592A (en) Flow control method for pump delivery
JPS6212361B2 (en)
JPH03215198A (en) Load controller for combined cycle plant
JPS60200004A (en) Method of controlling feed pump