JPS5944385B2 - Coated cemented carbide parts - Google Patents

Coated cemented carbide parts

Info

Publication number
JPS5944385B2
JPS5944385B2 JP14308077A JP14308077A JPS5944385B2 JP S5944385 B2 JPS5944385 B2 JP S5944385B2 JP 14308077 A JP14308077 A JP 14308077A JP 14308077 A JP14308077 A JP 14308077A JP S5944385 B2 JPS5944385 B2 JP S5944385B2
Authority
JP
Japan
Prior art keywords
coated
cemented carbide
carbide member
weight
diboride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14308077A
Other languages
Japanese (ja)
Other versions
JPS5474816A (en
Inventor
正明 飛岡
直治 藤森
毅 浅井
孝春 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14308077A priority Critical patent/JPS5944385B2/en
Priority to US05/940,617 priority patent/US4239536A/en
Publication of JPS5474816A publication Critical patent/JPS5474816A/en
Publication of JPS5944385B2 publication Critical patent/JPS5944385B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 Ti、Zに、Hf、V、Nb、Ta、Cに、Mo、Wの
一種もしくはそれ以上の炭化物および/又は炭窒化物の
一種もしくはそれ以上を、主として鉄族金属の一種もし
くはそれ以上で結合した。
Detailed description of the invention Ti, Z, Hf, V, Nb, Ta, C, Mo, W, one or more carbides and/or carbonitrides, mainly iron group metals. Combined with one or more of the following:

超硬合金部材を母材とし、その表面により耐摩耗性に富
んだTiC、TiNなどを被覆した被覆超硬合金部材は
、表面の耐摩耗性と、母材の強靭性を兼ねそなえており
、従来から用いられていた超硬合金部材より、より優れ
た切削工具として広く実用に供している。本発明の目的
は、この被覆超硬合金部材の一層優れたものを提供する
ことにある。被覆物質に要求される最大の特性は、実際
に切削加工時に、工具刃先がさらされるような非常な高
温下(通常1000℃近傍)に於て、硬度が高いことが
挙げられる。かかる見地から考えると、高温硬度の著し
く高い、Ti、Zr、Hfの二硼化物が特にTiB2が
最も好ましいことになるが、実際には被削材たる鉄とこ
れら二硼化物とが反応し、クレーター摩耗が著しく進行
してしまい、好ましくなかつた。この鉄との反応をいか
におさえるかを種々検討したところ、Ti,Zr,Hf
の窒化物、特にTlNが鉄との反応性が乏しく、クレー
タ一摩耗が非常に少いことに着目した。しかしながらT
iNは高温硬度が乏しい為に、TiNとTiB2との中
間的な性質を示すものを用いれば、高温硬度と鉄との反
応性の両面を満足すると考えた。TiNとTiB2との
状態を実際に、化学蒸着法を用いて各種試作を行なつて
検討したところ通常1000℃近傍ではTi(BN)と
TiB2の二相混在領域、およびTi(BN)の一相領
域が存在することが判明した。
Coated cemented carbide parts have a cemented carbide component as a base material and coat the surface with highly wear-resistant TiC, TiN, etc., and have both the wear resistance of the surface and the toughness of the base material. It is widely used as a cutting tool superior to conventional cemented carbide members. An object of the present invention is to provide an even more excellent coated cemented carbide member. The most important property required of the coating material is high hardness under extremely high temperatures (usually around 1000° C.) to which the cutting edge of a tool is exposed during actual cutting. From this point of view, diborides of Ti, Zr, and Hf, which have extremely high hardness at high temperatures, are most preferable, especially TiB2, but in reality, these diborides react with iron, which is the work material, and Crater wear progressed significantly, which was not desirable. After various studies on how to suppress this reaction with iron, we found that Ti, Zr, Hf
We focused on the fact that nitrides, especially TIN, have poor reactivity with iron and cause very little crater wear. However, T
Since iN has poor high-temperature hardness, it was thought that using a material exhibiting properties intermediate between TiN and TiB2 would satisfy both high-temperature hardness and reactivity with iron. When we actually investigated the state of TiN and TiB2 by making various prototypes using the chemical vapor deposition method, we found that in the vicinity of 1000°C, there is usually a two-phase mixed region of Ti(BN) and TiB2, and a single phase of Ti(BN). It turns out that there is an area.

状態図の大略を図1に示す。実際にこの考えにしたがつ
て試作したところ、予想どおりの効果が得られた。なお
TiB2の量の制限に関し、TiB2が総量の50%を
越えてしまうと、被削材たる鉄との反応が無視し得なく
なり、好ましくない。又、Ti(BN)に関し、その非
金属構成元素の一部を炭素と置換しても、本質的な効果
の差は認められなかつた。
A schematic state diagram is shown in FIG. When we actually produced a prototype based on this idea, we obtained the expected effect. Regarding the limit on the amount of TiB2, if TiB2 exceeds 50% of the total amount, the reaction with iron, which is the work material, cannot be ignored, which is not preferable. Furthermore, regarding Ti (BN), even if some of its non-metal constituent elements were replaced with carbon, no essential difference in effect was observed.

以上Tiを例にとつて述べたが、Zr,Hfに関しても
同様の効果があることが認められた。
Although the above description has been made using Ti as an example, it has been found that Zr and Hf have similar effects.

又、少量の不純物、添加物の存在によつてもほとんど効
果に差が認められなかつた。又、前記被覆層はいわゆる
多重被覆超硬合金の如く、複数被覆層の一層として用い
ることにより相乗的効果が現われ、特に被覆超硬合金部
材の表面を耐酸化性に、最も富む酸化アルミニウムにて
被覆すると、切削工具として耐酸化性が著しく改善され
より一層好ましい効果が得られた。
Furthermore, there was almost no difference in effectiveness even with the presence of small amounts of impurities and additives. In addition, when the coating layer is used as a single layer of multiple coating layers, such as in a so-called multi-coated cemented carbide, a synergistic effect appears. In particular, the surface of the coated cemented carbide member is made oxidation resistant, and aluminum oxide, which is the richest in aluminum oxide, provides a synergistic effect. When coated, the oxidation resistance of the cutting tool was significantly improved and even more favorable effects were obtained.

なお本発明を製造するには、化学蒸着法によることが最
も好ましいものの、イオンプレーテイング、スパツタリ
ング、真空蒸着などの物理蒸着法、プラズマスプレー、
フレームスプレー等のメタライジング等によつても製造
可能である。以下実施例にて詳しく説明する。
Although it is most preferable to use a chemical vapor deposition method to produce the present invention, physical vapor deposition methods such as ion plating, sputtering, and vacuum evaporation, plasma spraying,
It can also be manufactured by metallizing, such as flame spraying. This will be explained in detail in Examples below.

実施例 1 1SOP−30超硬合金部材(型番SNU432)を三
塩化ホウ素、四塩化チタン、窒素、水素混合気流中にて
1000℃に加熱保持した。
Example 1 A 1SOP-30 cemented carbide member (model number SNU432) was heated and maintained at 1000° C. in a mixed gas flow of boron trichloride, titanium tetrachloride, nitrogen, and hydrogen.

冷却後表面をX一線回析にて分析した結果TiB23O
重量%Ti(BN)70重量%の二相が混在することが
判つた。このチツプと比較の為市販のTiC被覆チツプ
とで、以下の条件にて切削テストを行なつた。にて、切
削テストを行なつた結果、本発明のチツプはクレータ一
摩耗0.04m7!L,ブランク摩耗0.18mmであ
つたのに比して、市販のTiC被覆チツプではクレータ
一摩耗0.141L1L1ブランク摩耗0.36mmで
あつた〇実施例 2 実施例1と全く同じ超硬合金部材をメタン、三塩化ホウ
素、四塩化チタン、窒素、水素混合気流中にて1000
℃に加熱保持した。
After cooling, the surface was analyzed by X-ray diffraction and the result was TiB23O.
It was found that two phases of 70% by weight Ti(BN) were present. A cutting test was conducted using this chip and a commercially available TiC-coated chip for comparison under the following conditions. As a result of cutting tests, the chip of the present invention had a crater wear of 0.04 m7! L, blank wear was 0.18 mm, whereas with the commercially available TiC coated chip, crater wear was 0.141 L1 L1 blank wear was 0.36 mm. Example 2: Exactly the same cemented carbide member as Example 1. 1000 in a mixed stream of methane, boron trichloride, titanium tetrachloride, nitrogen, and hydrogen.
The temperature was maintained at ℃.

冷却後実施例1と同様の方法で分析したところTiB2
3O重量%、Tl(BNC)70重量%の二相が混在す
ることが判つた。このチツプを実施例1と同じ条件にて
切削テストを行なつたところ、クレータ一摩耗0.10
關、ブランク摩耗0.1711であつた。実施例 3実
施例1と全く同じ超硬合金部材を、実施例1と同様の工
程で各種被覆した。
After cooling, analysis was performed in the same manner as in Example 1, and TiB2
It was found that two phases of 30% by weight and 70% by weight of Tl(BNC) were present. When this chip was subjected to a cutting test under the same conditions as in Example 1, the crater wear was 0.10.
The blank wear was 0.1711. Example 3 The same cemented carbide member as in Example 1 was coated with various coatings in the same steps as in Example 1.

それ等を以下の条件にて切削テストを行い、クレータ一
摩耗が0,15mmもしくはブランク摩耗が0.40m
mになるをもつて寿命と判定した。その結果と被覆層の
組成を表−1にあわせて示す。表中、A,B,Cが本発
明品であり、D,E,F,Gは比較例である。実施例
4実施例1と全く同じ30(fl)TlB2−70%T
i(BN)被覆超硬合金部材を三塩化アルミニウム、水
素、二酸化炭素混合気流中にて85『Cに加熱保持する
ことによつて酸化アルミニウムを被覆した。
A cutting test was performed on them under the following conditions, and the crater wear was 0.15 mm or the blank wear was 0.40 mm.
It was determined that the lifespan reached the end of m. The results and the composition of the coating layer are shown in Table 1. In the table, A, B, and C are products of the present invention, and D, E, F, and G are comparative examples. Example
4 Exactly the same as Example 1 30 (fl) TlB2-70%T
The i(BN) coated cemented carbide member was coated with aluminum oxide by heating and holding at 85°C in a mixed flow of aluminum trichloride, hydrogen, and carbon dioxide.

本発明のチツプと比較の為実施例1のチツプおよび市販
のTlC被覆チツプとで以下の条件にて切削テストを行
なつた。
For comparison, a cutting test was conducted using the chip of the present invention, the chip of Example 1, and a commercially available TLC-coated chip under the following conditions.

切削剤は使用せず 本発明チツプは、41分間切削可能であつたのに比して
、実施例1のチツプおよび市販のTlC被覆チツプはい
ずれもクレータ一摩耗の為、それぞれ9分間、4分間し
か切削出来なかつた。
The tip of the present invention without using any cutting agent could cut for 41 minutes, whereas the tip of Example 1 and the commercially available TLC-coated tip could cut for 9 minutes and 4 minutes, respectively, due to crater wear. The only thing I could do was cut it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は10000CにおけるTiN−TiB2凝似二
元素の状態図である。
FIG. 1 is a phase diagram of TiN-TiB2 condensed two elements at 10,000C.

Claims (1)

【特許請求の範囲】 1 Ti,Zr,Hfの一種もしくはそれ以上の二硼化
物50重量%以下とTi,Zr,Hfの一種もしくはそ
れ以上の硼窒化物及び/又は硼炭窒化物50重量%以上
から成る混合物または二硼化物を含まぬ上記化合物が超
硬合金部材に被覆層の一層として被覆されていることを
特徴とする被覆超硬合金部材。 2 Tiの二硼化物50重量%以下とTiの硼窒化物お
よび/又は硼炭窒化物50重量%以上から成る混合物ま
たは二硼化物を含まぬ上記Tiの化合物が超硬合金部材
に被覆層の一層として被覆されていることを特徴とする
特許請求の範囲第1項記載の被覆超硬合金部材。 3 Ti,Zr,Hfの一種もしくはそれ以上の二硼化
物50重量%以下とTi,Zr,Hfの一種もしくはそ
れ以上の硼窒化物および/又は硼炭窒化物50重量%以
上から成る混合物または二硼化物を含まぬ上記化合物が
超硬合金部材に被覆層の一層として被覆されており、か
つ被覆最外層としてAl_2O_3が被覆されているこ
とを特徴とする被覆超硬合金部材。 4 Tiの二硼化物50重量%以下とTiの硼窒化物お
よび/又は硼炭窒化物50重量%以上から成る混合物ま
たは二硼化物を含まぬ上記Tiの化合物が超硬合金部材
に被覆層の一層として被覆されており、かつ被覆最外層
としてAl_2O_3が被覆されていることを特徴とす
る特許請求の範囲の第3項記載の被覆超硬合金部材。
[Scope of Claims] 1 50% by weight or less of diboride of one or more of Ti, Zr, and Hf and 50% by weight of boronitride and/or borocarbonitride of one or more of Ti, Zr, and Hf A coated cemented carbide member, characterized in that the mixture consisting of the above or the above compound not containing diboride is coated on the cemented carbide member as one coating layer. 2. A mixture consisting of 50% by weight or less of Ti diboride and 50% by weight or more of Ti boronitride and/or borocarbonitride, or the above Ti compound containing no diboride is used as a coating layer on a cemented carbide member. The coated cemented carbide member according to claim 1, wherein the coated cemented carbide member is coated in a single layer. 3 A mixture or diboride consisting of 50% by weight or less of one or more diborides of Ti, Zr, and Hf and 50% or more of boronitride and/or borocarbonitride of one or more of Ti, Zr, and Hf. A coated cemented carbide member, characterized in that the compound containing no boride is coated on the cemented carbide member as one layer of the coating layer, and Al_2O_3 is coated as the outermost coated layer. 4 A mixture consisting of 50% by weight or less of Ti diboride and 50% by weight or more of Ti boronitride and/or borocarbonitride, or the above Ti compound containing no diboride is used as a coating layer on a cemented carbide member. The coated cemented carbide member according to claim 3, characterized in that the coated cemented carbide member is coated as a single layer and is coated with Al_2O_3 as the outermost coated layer.
JP14308077A 1977-09-09 1977-11-28 Coated cemented carbide parts Expired JPS5944385B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14308077A JPS5944385B2 (en) 1977-11-28 1977-11-28 Coated cemented carbide parts
US05/940,617 US4239536A (en) 1977-09-09 1978-09-08 Surface-coated sintered hard body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14308077A JPS5944385B2 (en) 1977-11-28 1977-11-28 Coated cemented carbide parts

Publications (2)

Publication Number Publication Date
JPS5474816A JPS5474816A (en) 1979-06-15
JPS5944385B2 true JPS5944385B2 (en) 1984-10-29

Family

ID=15330439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14308077A Expired JPS5944385B2 (en) 1977-09-09 1977-11-28 Coated cemented carbide parts

Country Status (1)

Country Link
JP (1) JPS5944385B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10222347C2 (en) * 2002-05-21 2003-11-27 Walter Ag TiBN coating for a cutting insert or a cutting tool
JP5293330B2 (en) * 2009-03-26 2013-09-18 三菱マテリアル株式会社 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5402515B2 (en) * 2009-10-19 2014-01-29 三菱マテリアル株式会社 Surface coated cutting tool
CN104136156B (en) * 2012-02-27 2016-07-06 住友电工硬质合金株式会社 Surface-coated cutting tool and manufacture method thereof

Also Published As

Publication number Publication date
JPS5474816A (en) 1979-06-15

Similar Documents

Publication Publication Date Title
US4284687A (en) Compound body
US4237184A (en) Stratified protecting coating for wearing pieces and hard metal cutting tools
US4019873A (en) Coated hard metal body
JP2663968B2 (en) Cutting tools
JP5385259B2 (en) Coated cutting tool and manufacturing method thereof
US8293359B2 (en) Multilayer CVD-coating and tool with such a coating
US20110188950A1 (en) Coated cutting tool and a method of making thereof
EP2959994B1 (en) Surface-coated cutting tool and process for producing same
JP4028891B2 (en) Multi-component hard layer manufacturing method and composite
JPS61264171A (en) Coated superalloy block having abrasion resistance and its production
JPS63195268A (en) Cutting tool made of surface coated sintered hard alloy
JP2001269801A (en) Surface-coated cemented carbide cutting tool with hard coating layer exhibiting excellent heat-resistant plastic deformation characteristic
JPH0765178B2 (en) Method for producing coated molding
JPS5944385B2 (en) Coated cemented carbide parts
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
KR102085536B1 (en) Coated cutting insert
CA1064787A (en) Wear resisting cemented carbide articles
JP6522985B2 (en) Coated tools
EP0198464B1 (en) Coated silicon nitride cutting tool and process for making
JPH068508B2 (en) Method for producing coating of boron carbide and coating obtained
JPS5948864B2 (en) Manufacturing method for coated cemented carbide parts
JPS5917176B2 (en) Sintered hard alloy with hardened surface layer
JPS6033603B2 (en) High-speed cutting tool coated with a hard layer
JP2757580B2 (en) Surface coated cutting tool and method of manufacturing the same