JPS5943871A - Vessel for storing material to be evaporated - Google Patents

Vessel for storing material to be evaporated

Info

Publication number
JPS5943871A
JPS5943871A JP15423482A JP15423482A JPS5943871A JP S5943871 A JPS5943871 A JP S5943871A JP 15423482 A JP15423482 A JP 15423482A JP 15423482 A JP15423482 A JP 15423482A JP S5943871 A JPS5943871 A JP S5943871A
Authority
JP
Japan
Prior art keywords
evaporation
boat
evaporated
emissivity
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15423482A
Other languages
Japanese (ja)
Inventor
Akira Nishiwaki
彰 西脇
Yasuo Morohoshi
保雄 諸星
Hitoshi Mitsutake
均 三竹
Hiroyuki Moriguchi
博行 森口
Hiroyuki Nomori
野守 弘之
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP15423482A priority Critical patent/JPS5943871A/en
Publication of JPS5943871A publication Critical patent/JPS5943871A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To provide a titled vessel which enables stable evaporation and eliminates uneven evaporation as well as uneven film thickness and characteristics of the film deposited by evaporation by providing an opening smaller than the evaporation area for heating and evaporating a material to be evaporated and decreasing a radiation rate. CONSTITUTION:A material 3 to be evaporated in a vapor deposition boart 4 of a vapor source 1 in a vacuum deposition device disposed therein with a substrate 2 to be deposited thereon with a film by evaporation oppositely to the source 1 is heated and evaprorated by heaters 5, 6 and the vapor is scattered through an opening 9 toward the substrate 2. The opening 9 is constituted smaller than the evaporation area of the material 3 and the boat 4 is constituted of wall parts 7, 8 having low radiation rates such as Al or the like having <=0.4, more preferably <= radiation rate and having specularly finished surfaces. The heat radiation from the parts 7, 8 is decreased and the material 3 is uniformly heated. It is also possible to decrease the radiation rate of the materials 7, 8 by covering or coating a material having <=0.4 radiation rate on said parts.

Description

【発明の詳細な説明】 本発明は、例えばセレン及びテルルからなる蒸発材料を
加熱、蒸発させる際に使用され、前記蒸発材料がその蒸
発面積より小さい開口を通して外方へ導出されるように
構成された蒸発材料収容器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used to heat and evaporate an evaporation material made of, for example, selenium and tellurium, and is configured such that the evaporation material is led out through an opening smaller than the evaporation area of the evaporation material. The present invention relates to an evaporation material container.

この種の蒸発材料収容器(以下、蒸着ボートと称する。This type of evaporation material container (hereinafter referred to as a evaporation boat).

)として、蒸発材料の蒸発面積とほぼ同一サイズの上部
開口を有したいわゆるオープンボートが知られている。
), a so-called open boat having an upper opening approximately the same size as the evaporation area of the evaporation material is known.

しかし、このようなオープンボートでは、蒸着速度の制
御が困蛯であり、しかも突沸が多い等の実用上の問題が
大きい。°また、このようなオープンボートを仮に低幅
射率の材料で形成したとしても、上記したことがら使用
が不可能である。
However, in such an open boat, it is difficult to control the deposition rate, and there are serious practical problems such as frequent bumping. Further, even if such an open boat were made of a material with a low emissivity, it would be impossible to use it due to the above-mentioned reasons.

一方、オープンボートの欠点を解消したボートとして、
いわゆるクヌードセンセル型と称されるものがある。こ
れは、上部開口を蒸発面積より狭く絞ることにより、蒸
着速度が効果的に制御され、突沸で飛出した蒸発物が上
部開口に至るまでの間に壁部に付着して外方(即ち被蒸
着基体側)へ飛翔することはない等の点で、非常に優れ
たものである。
On the other hand, as a boat that eliminates the drawbacks of open boats,
There is a so-called Knudsensel type. By constricting the upper opening to be narrower than the evaporation area, the evaporation rate is effectively controlled, and the evaporated matter that flies out due to bumping adheres to the wall before reaching the upper opening. It is very superior in that it does not fly to the deposition substrate side).

ところが、ボート外面、特に蒸発材料と接している壁部
外面からの熱輻射率が05〜0.7 と太きいために、
蒸発源の長さ方向において温度分布のばらつきが大きく
、また蒸発源の高さ方向においても温度分布のばらつき
が大きくなることが判明した。こうした温度分布のばら
つきによって蒸発ムラが生じ、これが蒸着膜の膜厚や特
性のノ、うを招き、製品の歩留り若しくは収率が低下し
てしまう。
However, because the thermal radiation rate from the outer surface of the boat, especially the outer surface of the wall in contact with the evaporation material, is as high as 0.5 to 0.7,
It was found that the variation in temperature distribution is large in the length direction of the evaporation source, and the variation in temperature distribution is also large in the height direction of the evaporation source. Such variations in temperature distribution cause uneven evaporation, which leads to defects in the thickness and characteristics of the deposited film, and reduces the yield of the product.

本発明は、上記の如き蒸着ボートの特長を生かしつつそ
の欠点を解消すべくなされたものであって、冒頭に述べ
た蒸発材料収容器において輻射率が0.4以下(望まし
くは0.1以下)であることを特徴とする蒸発材料収容
器に係るものである。
The present invention has been made in order to take advantage of the features of the evaporation boat as described above while eliminating its drawbacks. ) This relates to an evaporative material container characterized by the following.

本発明によれば、容器の輻射率を0.4以下と小さくし
ているため、外方への熱放出が大幅に減少し、特に蒸発
源の長さ方向、更には深さ方向での温度分布のばらつき
が減少し、これによって安定した蒸発を可能となし、蒸
発ムラ、及び蒸着膜の膜厚、特性のムラをなくし、収率
を大きく向上させることができる。
According to the present invention, since the emissivity of the container is reduced to 0.4 or less, the heat released to the outside is significantly reduced, and the temperature in the length direction and even depth direction of the evaporation source is particularly reduced. Variations in distribution are reduced, thereby making stable evaporation possible, eliminating uneven evaporation, and unevenness in the thickness and properties of the deposited film, and greatly improving yield.

本発明においては、容器全体が輻射率0.4以下の材料
によって形成されたり、或いは輻射率が0.4以下のカ
バー材が少くとも外面に被覆されたり、更には輻射率が
0.4以下の材料が少なくとも外面に塗布されることが
望ましい。
In the present invention, the entire container is formed of a material with an emissivity of 0.4 or less, or at least the outer surface is coated with a cover material with an emissivity of 0.4 or less, or furthermore, the container is made of a material with an emissivity of 0.4 or less. It is desirable that the material is applied to at least the outer surface.

こうした低輻射率(輻射熱量の小さい)の構成材料とし
ては、鏡面加工されたM、黄銅、Cr、α、Au、 F
e、、Mo、 Ni、 Pt、 Ta、 W等が挙げら
れる。これ等は成形等によって容器形状に仕上げられて
よいし、或いは上記の塗布の場合には溶射、蒸着等の表
面塗装によって被着されてもよい。
Constituent materials with low emissivity (small amount of radiant heat) include mirror-finished M, brass, Cr, α, Au, F.
e, Mo, Ni, Pt, Ta, W, etc. These may be finished into a container shape by molding or the like, or in the case of the above coating, may be applied by surface coating such as thermal spraying or vapor deposition.

以下、本発明を実施例について、図面参照下に詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

第1図は真空蒸着装置の要部を概略的に示すものであっ
て、ペルジャー(図示せず)内に蒸発源1と対向して被
蒸着J、%体2(例えば回転可能なアルミニウムドラム
)が配されている。蒸発源1は、蒸発材料3(例えばセ
レン−テルル合金)を収容する蒸着ボート4からなって
いる。このボート4は上下2段に配された各2つのヒー
ターランプ5.6を容する土壁部7と、蒸発材料3を容
する下壁部8とによって構成され、土壁部7には蒸発材
料3の蒸発面積より小さい上部開口9から制御された状
態で蒸気が外方(即ち基体2側)へ飛翔するようになっ
ている。これはいわゆるクヌードセンセル型蒸発源と称
されるものである。
FIG. 1 schematically shows the main parts of a vacuum evaporation apparatus, in which an evaporation source 1 is placed in a pelger (not shown), and a body 2 to be evaporated (for example, a rotatable aluminum drum) is placed facing the evaporation source 1. are arranged. The evaporation source 1 consists of a evaporation boat 4 containing an evaporation material 3 (for example a selenium-tellurium alloy). This boat 4 is composed of a clay wall section 7 that houses two heater lamps 5 and 6 arranged in upper and lower stages, and a lower wall section 8 that houses the evaporative material 3. Steam is allowed to fly outward (ie, toward the base 2) in a controlled manner from the upper opening 9, which is smaller than the evaporation area of the material 3. This is what is called a Knudsencell type evaporation source.

この蒸発源においては、本発明に従って、ボート壁部7
及び8(換言すればボート全体)が輻射率(ε)0.4
以下、特に0.1以下の高度研磨面を有するアルミニウ
ムによって形成されている。この低輻射率の材料によっ
て、特に蒸発材料3に接する壁部をはじめ全体の熱放出
が著しく少なくなる。
In this evaporation source, according to the invention, the boat wall 7
and 8 (in other words, the entire boat) has an emissivity (ε) of 0.4
Hereinafter, it is made of aluminum having a highly polished surface of 0.1 or less. Due to this low emissivity material, the overall heat release, especially from the wall portion in contact with the evaporative material 3, is significantly reduced.

第2図は、ボートの壁部本体17及び18自体は通常の
熱処理されたステスレス鋼で形成されるが、その外面に
上記した如き低輻射率材のカバー材10が施された例を
示している。このように構成しても、ボート外面からの
輻射による放出熱量が著しく少なくなる。第3図は、第
2図と同様のカバー材10が設けられているが、蒸発材
料3の収容部の形状が異なったボートを示している。
FIG. 2 shows an example in which the boat wall main bodies 17 and 18 themselves are made of ordinary heat-treated stainless steel, but the outer surface of the boat is covered with a cover material 10 made of a low emissivity material as described above. There is. Even with this configuration, the amount of heat released by radiation from the outer surface of the boat is significantly reduced. FIG. 3 shows a boat provided with a cover material 10 similar to that in FIG. 2, but with a different shape of the container for the evaporative material 3.

第4図の例では、第2図と同様の壁部17.18の外面
に上記した如き低輻射率材料加が溶射又は蒸着によって
塗布されている。
In the example of FIG. 4, a low emissivity material as described above is applied by thermal spraying or vapor deposition to the outer surface of wall portions 17, 18 similar to those of FIG.

第2図〜第4図の例においては、ボートからの熱放出に
よる温度分布のばらつきをカバー材10又は塗布層加に
よって防止している。なお、これらの低輻射率材はボー
トの内面に及んでいてもよい。
In the examples shown in FIGS. 2 to 4, variations in temperature distribution due to heat release from the boat are prevented by the cover material 10 or by adding a coating layer. Note that these low emissivity materials may extend to the inner surface of the boat.

上記した如き低輻射率材の適用によって、上記した各ボ
ートの側面形状を示す第5図(この図では例示的に第1
図のボートに対応した側面が示されている。)において
、ボート1の長さ方向での左端側の点A、中間点B、右
端側の点Cの各温度間での最高温度と最低温度との差(
ΔT)は数℃程度と非常に小さくなる。従って、例えば
、ボート1の長さ3mに対し、1つの温度測定点(例え
中間点B)に熱電対を配して1つの温度制御系を用いれ
ば、所望の温度制御を行なうことが充分可能であり、蒸
着膜として感光体膜を形成する場合にはその感度ムラを
なくし、特性を良好にすることができる。これに反し、
従来のボートでは上記のΔTが20数℃〜30数℃と大
きくなり、既述した如き蒸発ムラ等の問題が生じてし寸
う。
By applying the low emissivity materials as described above, the side shape of each of the boats described above is shown in FIG.
A side view corresponding to the boat shown is shown. ), the difference between the maximum temperature and the minimum temperature (
ΔT) becomes extremely small, on the order of several degrees Celsius. Therefore, for example, if one temperature control system is used by placing a thermocouple at one temperature measurement point (for example, intermediate point B) for the length of boat 1, which is 3 m, it is possible to perform desired temperature control. Therefore, when the photoreceptor film is formed as a vapor deposited film, the sensitivity unevenness can be eliminated and the characteristics can be improved. On the contrary,
In conventional boats, the above-mentioned ΔT is as large as 20-odd degrees Celsius to 30-odd degrees Celsius, and problems such as uneven evaporation as described above are likely to occur.

また、蒸発材料の深さ方向における温度分布については
、第6図に示すように、蒸発材料(合金融液)3の液面
温度をTA、LI−面温度をTB、壁部8の外面温度を
Tcとしたところ、第6A図の従来例(輻射率0.5以
上と犬)の場合にはTA(330℃)>> TB (3
00℃) >’rC(295℃)と温度分布のばらつき
が大きくなる。しかし、本発明に従って壁材8として低
輻射率材を用いた場合(第613図)には、TA (3
02℃) =:=TB (300°G ) +Tc (
299℃)となり、深さ方向でも温度が均一化している
Regarding the temperature distribution in the depth direction of the evaporation material, as shown in FIG. is Tc, and in the case of the conventional example in Figure 6A (emissivity of 0.5 or more and dog), TA (330°C) >> TB (3
00°C)>'rC (295°C), the variation in temperature distribution increases. However, when a low emissivity material is used as the wall material 8 according to the present invention (FIG. 613), TA (3
02℃) =:=TB (300℃) +Tc (
299°C), and the temperature is also uniform in the depth direction.

即ち、従来例ではTA −TBが大であって、蒸発の進
行に伴なって蒸発温度が330℃から300°Ctで3
0℃も変化するので蒸発ムラが生じるが、本例ではrA
−TBが2℃程度でちって、安定な蒸発が可能となる。
That is, in the conventional example, TA - TB is large, and as the evaporation progresses, the evaporation temperature increases from 330°C to 300°Ct.
Since 0°C also changes, uneven evaporation occurs, but in this example, rA
-TB dries up at about 2°C, allowing stable evaporation.

第7図は、上記した方法で得られたSe −i、”e蒸
着膜のTe9度プロファイルを示す。この蒸着に当って
は、Te含有量が13,5重量%の5e−Te合金を蒸
発材料として用い、これを300℃に加熱し、ペルジャ
ー内の真空度を10  Torr以下とした。
Figure 7 shows the Te9 degree profile of the Se-i,"e deposited film obtained by the method described above. During this deposition, a 5e-Te alloy with a Te content of 13.5% by weight was evaporated. This was used as a material and heated to 300° C., and the degree of vacuum in the Pelger was set to 10 Torr or less.

第5図に示した蒸発源の長さ方向において、従来装置で
は最高温度(Th)、中間温度(TM )及び最低温度
(TL )の各部分からは第7図に実線で示す如き蒸着
膜の厚み方向のTe9度分布が得られ、温度のばらつき
によって蒸着膜中のTe濃度が場所的に著しく不均一に
なっていることが分った。しかしながら、本発明に従っ
て、ボートを例えば輻射率0.06の材料で形成したり
、或いは被覆または塗布したとき(第1図〜第4図参照
)には、第7図に破線で示す如く、温度分布のばらつき
が非常に小さいために蒸着膜のTe濃度が場所的にみて
非常に均一となり、そのばらつきは±1チ以内に抑えら
れることが分った。
In the length direction of the evaporation source shown in FIG. 5, in the conventional apparatus, the vapor deposited film as shown by the solid line in FIG. A Te 9 degree distribution in the thickness direction was obtained, and it was found that the Te concentration in the deposited film was significantly non-uniform locally due to temperature variations. However, in accordance with the present invention, when the boat is formed, coated or coated (see FIGS. 1-4) with a material having an emissivity of 0.06, for example, the temperature rises as shown by the dashed line in FIG. It was found that the Te concentration in the deposited film was very uniform in terms of location because the distribution variation was very small, and the variation was suppressed to within ±1 inch.

以上、本発明を例示したが、上述の例は本発明の技術的
思想に基いて更に変形が可能である。
Although the present invention has been illustrated above, the above-mentioned example can be further modified based on the technical idea of the present invention.

例えば、蒸着ボートの形状や構造を神々変更でき、上述
した蒸発利料を別の容器に収容してこれを蒸発源の空間
内に配置してもよい。この場合でも、蒸発源の外壁は本
発明に従って低輻射率材料で形成することができる。ま
た、使用する蒸発材料はSe −Teに限らず、Se 
−S、 Fe−Ni 、 AgBr −I等でもよい。
For example, the shape and structure of the evaporation boat can be changed, and the above-mentioned evaporation charge may be accommodated in a separate container and placed within the space of the evaporation source. Even in this case, the outer wall of the evaporation source can be made of a low emissivity material according to the invention. In addition, the evaporation material used is not limited to Se-Te, but Se
-S, Fe-Ni, AgBr-I, etc. may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであって、第1図は真
空蒸着装置の要部概略図、 第2図、第3図、第4図は他の各側による蒸発源の各断
面図、 第5図は蒸発源の側面図、 第6A図は従来例による蒸発材料及びボートの一部分の
拡大断面図、 第6B図は本実施例における第6A図と同様の拡大断面
図、 第7図は得られた蒸着膜中のTe濃度プロファイルを示
す図、 である。 なお、図面に示された符号においそ、 1・・・・蒸発源 2・・・・被蒸着基体 3・・・・蒸発材料 4・・φ・蒸着ボート 5.6・・ヒーター 7.8・・低輻射率の壁部 9・・・・上部開口 10・・・・低輻射率のカバー材 加・・・・低輻射率の塗布層 である。 代理人 弁理土掻 坂   宏 第219 弔310
The drawings show an embodiment of the present invention, and FIG. 1 is a schematic diagram of the main parts of a vacuum evaporation apparatus, and FIGS. 2, 3, and 4 are sectional views of the evaporation source from each side. , FIG. 5 is a side view of the evaporation source, FIG. 6A is an enlarged sectional view of the evaporation material and a part of the boat according to the conventional example, FIG. 6B is an enlarged sectional view similar to FIG. 6A in this embodiment, and FIG. 1 is a diagram showing the Te concentration profile in the obtained deposited film. The symbols shown in the drawings are as follows: 1... Evaporation source 2... Evaporation target substrate 3... Evaporation material 4... φ Vapor deposition boat 5.6... Heater 7.8... -Low emissivity wall portion 9...Top opening 10...Low emissivity cover material addition...Low emissivity coating layer. Attorney Hiroshi Dokaki Saka No. 219 Condolences No. 310

Claims (1)

【特許請求の範囲】 1、蒸発材料を加熱、蒸発させる際に使用され、前記蒸
発材料がその蒸発面積より小さい開口を通して外方へ導
出されるように構成された蒸発材料収容器において、輻
射率が0.4以下であることを特徴とする蒸発材料収容
器。 2、輻射率が0.4以下の材料によって形成されている
、特許請求の範囲の第1項に記載した蒸発材料収容器。 3、輻射率が0.4以下のカバー材が少くとも外面に被
覆されている、特許請求の範囲の第1項に記載した蒸発
材料収容器。 4、輻射率が0.4以下の材料が少なくとも外面に塗布
されている、特許請求の範囲の第1項に記載した蒸発材
料収容器。 5、輻射率が0.1以下である、特許請求の範囲の第1
項〜第4項のいずれか1項に記載した蒸発材料収容器。
[Claims] 1. In an evaporation material container used when heating and evaporating an evaporation material and configured such that the evaporation material is led out through an opening smaller than the evaporation area, the emissivity An evaporative material storage container characterized in that: is 0.4 or less. 2. The evaporation material container according to claim 1, which is made of a material having an emissivity of 0.4 or less. 3. The evaporative material container according to claim 1, wherein at least the outer surface is coated with a cover material having an emissivity of 0.4 or less. 4. The evaporative material container according to claim 1, wherein at least the outer surface is coated with a material having an emissivity of 0.4 or less. 5. The first claim in which the emissivity is 0.1 or less
The evaporative material container described in any one of Items 1 to 4.
JP15423482A 1982-09-04 1982-09-04 Vessel for storing material to be evaporated Pending JPS5943871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15423482A JPS5943871A (en) 1982-09-04 1982-09-04 Vessel for storing material to be evaporated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15423482A JPS5943871A (en) 1982-09-04 1982-09-04 Vessel for storing material to be evaporated

Publications (1)

Publication Number Publication Date
JPS5943871A true JPS5943871A (en) 1984-03-12

Family

ID=15579776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15423482A Pending JPS5943871A (en) 1982-09-04 1982-09-04 Vessel for storing material to be evaporated

Country Status (1)

Country Link
JP (1) JPS5943871A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239611A (en) * 1991-02-14 1993-08-24 Hilmar Weinert Series evaporator
CN110656309A (en) * 2018-06-28 2020-01-07 佳能特机株式会社 Heating device, evaporation source and evaporation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239611A (en) * 1991-02-14 1993-08-24 Hilmar Weinert Series evaporator
CN110656309A (en) * 2018-06-28 2020-01-07 佳能特机株式会社 Heating device, evaporation source and evaporation device
CN110656309B (en) * 2018-06-28 2024-03-15 佳能特机株式会社 Evaporation source and evaporation device

Similar Documents

Publication Publication Date Title
US2772318A (en) Apparatus for vaporization of metals and metalloids
JPS5943871A (en) Vessel for storing material to be evaporated
JPH0254426B2 (en)
US3927638A (en) Vacuum evaporation plating apparatus
US3984585A (en) Vacuum evaporation plating method
US3901647A (en) Low radiation open-boat crucibles
JPS6043913B2 (en) Crucible for evaporation source
JPS6299459A (en) Evaporating source for vacuum deposition
US3344768A (en) Powder evaporation apparatus
JPH0619569Y2 (en) Molecular beam cell PBN crucible
GB1103211A (en) Improvements in and relating to vapour deposition and evaporation sources
JPS6113551Y2 (en)
US3274372A (en) Solid vaporization
JPS62160461A (en) Heating source for manufacturing electrophotographic sensitive body
JP2003222472A (en) Crucible
JPS5943872A (en) Vessel for storing material to be evaporated
JPH0534426B2 (en)
JPS5943868A (en) Vapor depositing method
JPS62160460A (en) Vaporization source for vacuum vapor deposition
JPS5819471A (en) Evaporation source for vapor-depositing selenium
JPS59113180A (en) Vapor deposition device
JPS5967368A (en) Construction of evaporating source
JPH07111585B2 (en) Vacuum evaporation source container for electrophotographic photoreceptor
JPS6116343B2 (en)
JPS6338569A (en) Evaporating device for vacuum deposition