JPS5943813A - Device for deoxidizing in steel bath - Google Patents

Device for deoxidizing in steel bath

Info

Publication number
JPS5943813A
JPS5943813A JP15419682A JP15419682A JPS5943813A JP S5943813 A JPS5943813 A JP S5943813A JP 15419682 A JP15419682 A JP 15419682A JP 15419682 A JP15419682 A JP 15419682A JP S5943813 A JPS5943813 A JP S5943813A
Authority
JP
Japan
Prior art keywords
furnace
aluminum
molten
steel
melting furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15419682A
Other languages
Japanese (ja)
Other versions
JPS6233285B2 (en
Inventor
Hirohiko Sugita
裕彦 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKI KINZOKU KAKO KK
Original Assignee
SEIKI KINZOKU KAKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIKI KINZOKU KAKO KK filed Critical SEIKI KINZOKU KAKO KK
Priority to JP15419682A priority Critical patent/JPS5943813A/en
Publication of JPS5943813A publication Critical patent/JPS5943813A/en
Publication of JPS6233285B2 publication Critical patent/JPS6233285B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To deoxidize efficiently the molten steel in a metallurgical reaction vessel by submerging deeply the other end part of a conduit for transferring molten Al connected to an Al melting furnace into the molten steel in said vessel. CONSTITUTION:The other end part 6b of a conduit 6 for transferring molten Al connected to an Al melting furnace 2 is submerged deeply into the molten steel C in a metallurgical reaction vessel 1. Thereupon, a furnace cover 4 is mounted in the furnace 2 and an inert gas is introduced through a supply pipe 5 and is pressurized to feed the motlen Al (B) in the furnace 2 together with the inert gas into the vessel 1. When the molten Al (B) is incorporated into the molten steel (C), the molten Al (B) and the oxygen in the steel (C) binds with each other and the oxidation reaction is accelerated. The resulted alumina (D) is floated and removed together with the other slag.

Description

【発明の詳細な説明】 本発明は、鋼浴中膜酸処理装置に関する。[Detailed description of the invention] The present invention relates to a film acid treatment device in a steel bath.

銑鉄から鋼に精錬する場合、溶銑中の不要な諸元素を酸
化除去して成分調整すると共にその高い酸化反応熱によ
って溶融状態を維持するために、溶銑中に多量の酸素を
吹き込むものであるが、この酸化精錬の過程に於ける前
記の吹き込み酸素は、溶銑中の不要な諸元素の除去、即
ち脱炭、脱硫及び脱燐などを行なう一方、その他の大部
分の酸素は鋼浴中に含まれたまま多量に残留することに
なる。
When refining pig iron into steel, a large amount of oxygen is blown into the hot metal in order to adjust the composition by oxidizing and removing unnecessary elements in the hot metal, and to maintain the molten state using the high heat of the oxidation reaction. The above-mentioned blown oxygen in this oxidation refining process removes unnecessary elements in the hot metal, such as decarburization, desulfurization, and dephosphorization, while most of the other oxygen is contained in the steel bath. A large amount will remain as it is.

然るに、この鋼中酸素は鋼塊を造る段階に於いて必ずし
沌必要としないばかりか、川jjiによってはむしろ有
害となるものであり、特にキルド鋼又はセミキルド鋼を
造塊する上で脱酸処理は必要不可欠である。
However, this oxygen in steel is not necessarily necessary at the stage of making steel ingots, and may even be harmful depending on the river, and in particular, when making killed steel or semi-killed steel, deoxidizing Processing is essential.

而して、鋼中酸素は鋼中に含まれているマンガン及びシ
リコンと反応するのでその一部は脱酸反応を行なうが、
これだけでは脱酸が不充分であるから、従来は脱酸剤と
して強制脱酸力を有するアルミニウム材を使用し、これ
を鋼浴中に投入して脱酸処理を行なっている。
The oxygen in the steel reacts with the manganese and silicon contained in the steel, so some of it undergoes a deoxidation reaction.
Since this alone is insufficient for deoxidizing, conventionally an aluminum material having forced deoxidizing power is used as a deoxidizing agent, and this is put into a steel bath to perform deoxidizing treatment.

このアルミニウム祠は、1kgインゴット、或いはブリ
ケット状やショット状の脱酸用アルミニウム加工品を使
用しており、この脱酸用アルミニウム加工品を酸化精錬
終了後の鋼浴中に投入すると、鋼中酸素と結合して酸化
反応を促してアルミナになるので、これを除滓すること
によって脱酸が行われるものである。
This aluminum shrine uses 1 kg ingots, briquettes, or shots of deoxidizing aluminum processed products. When this deoxidizing aluminum processed product is put into a steel bath after oxidation refining, oxygen in the steel is released. It combines with alumina to promote an oxidation reaction to form alumina, and deoxidation is performed by removing the slag.

しかしながら、上記の脱酸用アルミニウム加工品を製造
する場合、多くの製造工数を要し且つ各種機械設備を必
要とするので製造コストが極めて高くつき、1だ脱酸用
アルミニウム加]二品の炉内投入作業に多くの時間と手
数を要するなどの不利を招来していた。
However, when manufacturing the above-mentioned deoxidizing aluminum processed products, it requires a large number of manufacturing steps and various mechanical equipment, making the manufacturing cost extremely high. This resulted in disadvantages, such as requiring a lot of time and effort for in-house input work.

しかも、前記脱酸用アルミニウム加工品は固形物である
から、これを鋼浴中に投入すると加工品の表面形状及び
大きさの差異に基因して酸化反応時間にバラツキを生じ
、捷たこのアルミニウム加工品が溶融して鋼中酸素と反
応するのに比較的時間が掛かると共に、大量に投入され
た脱酸用アルミニウム加工品のうちの一部は酸化反応の
遅れと相俟て完全に溶解されないままスラグと共に除去
されるので、アルミニウムの歩留りは低いものであった
Moreover, since the deoxidizing aluminum processed product is a solid substance, when it is put into a steel bath, the oxidation reaction time will vary due to differences in the surface shape and size of the processed product. It takes a relatively long time for the processed product to melt and react with the oxygen in the steel, and some of the aluminum processed products used in large quantities for deoxidation are not completely melted due to the delay in the oxidation reaction. Since the aluminum was removed along with the slag, the yield of aluminum was low.

本発明は、上記従来の諸欠点を解消した画期的な鋼浴中
膜酸処理装置の提供を目的とするものである。
The object of the present invention is to provide an innovative film acid treatment device in a steel bath that eliminates the above-mentioned conventional drawbacks.

第1図の実施例について説明すれば、(1)は酸化精錬
後の脱酸処理を必要とする溶鋼(C)全収容せる冶金反
応容器であって、該冶金反応容器(1)は、例えば転炉
、塩基性電気炉、塩基性平炉、或いは取鍋であってもよ
く、その種類については問わない。
To explain the embodiment of FIG. 1, (1) is a metallurgical reaction vessel that can accommodate all of the molten steel (C) that requires deoxidation treatment after oxidation refining, and the metallurgical reaction vessel (1) is, for example, It may be a converter furnace, a basic electric furnace, a basic open hearth furnace, or a ladle, and the type thereof is not limited.

(2)は脱酸用アルミニウム塊(A)を溶解するだめの
アルミニウム溶解炉であって、該溶解炉(2)の底壁部
中央に炉底孔部(3)を貫通して設けると共に、同溶解
炉(2)の上端開口部に炉蓋(4)を気密的に着脱自在
に装着して炉内を密閉しである。(5)は前記炉蓋(4
)に接続した不活性ガス供給管であって、該不活性ガス
供給管(5)は炉内に連通していて、該供給管(5)を
通じてアルゴンガスまたは窒素ガスなどの不活性ガスを
炉内へ圧力供給するように構成しである。
(2) is an aluminum melting furnace for melting the deoxidizing aluminum ingot (A), and is provided with a furnace bottom hole (3) in the center of the bottom wall of the melting furnace (2), and A furnace cover (4) is removably attached to the upper opening of the melting furnace (2) in an airtight manner to seal the inside of the furnace. (5) is the furnace lid (4
), the inert gas supply pipe (5) is connected to the inside of the furnace, and the inert gas such as argon gas or nitrogen gas is supplied to the furnace through the supply pipe (5). It is configured to supply pressure to the inside.

(6)は前記炉底孔部(3)に一端部(6a)を嵌着し
て連結した溶融アルミニウム移送用導管であって、該導
管(6)の他端部(6b)を前記冶金反応容器(1)の
内底部近傍に臨ませて溶鋼(C)中に深く投入しである
。(7)は炉底孔部の前記導管(6)の一端開口部(6
a)に着脱自在に嵌着したストッパー棒、(8)は前記
溶融アルミニウム移送用導管(6)の外周部に沿って設
けた加熱ヒーターである。尚、この加熱ヒーター(8)
の構造等については具体的に限定しない。
(6) is a molten aluminum transfer conduit whose one end (6a) is fitted and connected to the furnace bottom hole (3), and the other end (6b) of the conduit (6) is connected to the metallurgical reaction. The steel was poured deeply into the molten steel (C) facing near the inner bottom of the container (1). (7) is one end opening (6) of the conduit (6) in the furnace bottom hole.
(a) is a stopper rod removably fitted, and (8) is a heating heater provided along the outer periphery of the molten aluminum transfer conduit (6). In addition, this heating heater (8)
There are no specific limitations on the structure, etc.

上記の構成に於いて、冶金反応容器(1)の内部に収容
せる溶鋼(C)を脱酸処理する場合、先ず、ストッパー
棒(7)によって炉底孔部を閉塞し、アルミニウム溶解
炉(2)の内部に脱酸用アルミニウム塊(A)を装入し
た後これを溶解して、脱酸用アルミニウム塊(A)を溶
融状態にしておく。
In the above configuration, when deoxidizing the molten steel (C) stored inside the metallurgical reaction vessel (1), first, the bottom hole of the furnace is closed with the stopper rod (7), and the aluminum melting furnace (2 ) The deoxidizing aluminum ingot (A) is charged into the inside of the aluminum ingot (A) and then melted to keep the deoxidizing aluminum ingot (A) in a molten state.

一方、冶金反応容器(1)の内部には、溶銑中の不要な
諸元素の酸化除去、特に脱炭、脱硫、及び脱燐などを行
って成分調整された溶鋼(C1が収容されており、との
鋼浴中には酸化精錬の過程に於いて多量に吹き込まれた
酸素の大部分が残留していて、鋼浴中の酸素による高い
酸化反応熱によって鋼は溶融状態に保たれている。
On the other hand, inside the metallurgical reaction vessel (1), molten steel (C1) whose composition has been adjusted by performing oxidation removal of unnecessary elements in the hot metal, especially decarburization, desulfurization, and dephosphorization, is stored. Most of the oxygen that was blown into the steel bath during the oxidation refining process remains in the steel bath, and the steel is kept in a molten state by the high heat of oxidation reaction caused by the oxygen in the steel bath.

そこで、アルミニウム溶解炉(2)の上端開口部に炉蓋
(4)を装着して炉内を密閉し、該炉蓋(4)に連結さ
れた不活性ガス供給管(5)を通じてアルゴンガス等の
不活性ガスを炉内へ送シ込み、それと同時にストッパー
棒(7)を外して炉底孔部を開放する。
Therefore, a furnace lid (4) is attached to the upper opening of the aluminum melting furnace (2) to seal the inside of the furnace, and argon gas etc. are passed through an inert gas supply pipe (5) connected to the furnace lid (4). Inert gas is fed into the furnace, and at the same time, the stopper rod (7) is removed to open the bottom hole of the furnace.

アルミニウム溶解炉(2)の内部の溶融アルミニウム(
B)は前記不活性ガスによる炉内圧力によって順次溶融
アルミニウム移送用導管(6)の内部へ圧送されるが、
その際、該導管(6)は加熱ヒーター(8)によってア
ルミニウムの溶融温度以上の高温に常時加熱されている
から、該導管(6)の内部の溶融アルミニウム(B)は
溶融状態に保たれた捷寸導盾(6)を通じてその他端部
(6b)の開口部から冶金反応容器(1)の内部の溶鋼
(C)中に深く送り込まれる。
Molten aluminum inside the aluminum melting furnace (2)
B) is sequentially pressure-fed into the molten aluminum transfer conduit (6) by the pressure inside the furnace due to the inert gas,
At that time, since the conduit (6) was constantly heated to a high temperature higher than the melting temperature of aluminum by the heater (8), the molten aluminum (B) inside the conduit (6) was kept in a molten state. It is fed deeply into the molten steel (C) inside the metallurgical reaction vessel (1) through the cutting guide shield (6) and from the opening at the other end (6b).

冶金反応容器(1)の内部に収容せる酸化精錬終了後の
溶鋼(C)中に溶融アルミニウム(B)が混入すると、
溶融アルミニウム(B)と鋼中酸素が結合して酸化反応
を促進し、アルミナとなって浮上分離するので、他のス
ラグ(D)と共に除去される。
When molten aluminum (B) mixes into the molten steel (C) after oxidation refining, which is housed inside the metallurgical reaction vessel (1),
The molten aluminum (B) and the oxygen in the steel combine to promote an oxidation reaction, become alumina, and float and separate, so that it is removed together with other slag (D).

第2図の実施例は、前記溶融アルミニウム移送用導管(
6)の任意の個所に不活性ガス供給用分岐管(9)を分
岐接続した構造であって、前記導管(6)を通じて送給
される溶融アルミニウム(B)を、不活性ガス供給用分
岐管(9)から送り込んだアルゴンガス等の不活性圧力
ガスによって圧力助送しながら、冶金反応容器(1)内
の溶鋼(C)中に吐出して脱酸処理するものである。こ
の不活性ガスは、前記導管(6)を通じて送られる溶融
アルミニウム(B)に対して圧力助送する作用と共に・
、溶鋼(C)中に送り込まれた溶融アルミニウム(I3
)を鋼浴中において拡散する作用とを併用するものであ
って、該不活性ガスを溶融アルミニウム(B)と同時に
溶鋼(C)中に送り込むと、不活性ガスのみ鋼中諸元素
とは全く反応せずにそのまま浮上して外部へ放出される
。尚、この実施例の如く溶融アルミニウム移送用導管(
6)に不活性ガス供給用分岐管(9)を分岐接続して溶
融アルミニウム(B)を圧力助送する場合、第1図の実
施例に於ける炉蓋(4)及びこの炉蓋(4)に接続せる
不活性ガス供給管(5)は不要である。
The embodiment of FIG.
6) has a structure in which an inert gas supply branch pipe (9) is branched and connected to an arbitrary location of the conduit (6), and the molten aluminum (B) sent through the conduit (6) is connected to the inert gas supply branch pipe The molten steel (C) in the metallurgical reaction vessel (1) is deoxidized by being discharged into the molten steel (C) in the metallurgical reaction vessel (1) while being pressure-assisted by an inert pressure gas such as argon gas sent from (9). This inert gas has the effect of providing pressure support to the molten aluminum (B) sent through the conduit (6).
, molten aluminum (I3) fed into molten steel (C)
) in the steel bath, and when the inert gas is fed into the molten steel (C) at the same time as the molten aluminum (B), the inert gas alone has no effect on the elements in the steel. It floats up without reacting and is ejected to the outside. In addition, as in this example, the molten aluminum transfer conduit (
When molten aluminum (B) is conveyed under pressure by branching and connecting an inert gas supply branch pipe (9) to 6), the furnace lid (4) and this furnace lid (4) in the embodiment shown in FIG. ) is not required.

第3図乃至第6図は、前記アルミニウム溶解炉の熱源と
して、別設せる任意の炉から発生している多量の高熱ガ
スを利用して脱酸用アルミニウム塊(A)を溶解する実
施例を示すものである。
FIGS. 3 to 6 show an embodiment in which a large amount of high-temperature gas generated from an arbitrary separately installed furnace is used as the heat source of the aluminum melting furnace to melt the deoxidizing aluminum ingot (A). It shows.

第3図の実施例に於いて、00は炉である。この炉αO
の種類については問わない。0υは前記炉Q(Thの頂
部開口上方に配設した集熱フードである。0りは一端部
を前記集熱フード0υの排気口部に接続し、他端部をア
ルミニウム溶解炉Q3の外炉壁(15)の高熱ガス供給
口Q乃に接続した送気ダクト、(F)は前記送気ダクト
(2)に取付けたファンである。前記アルミニウム溶解
炉a3り脱酸用アルミニウム塊(Alを収容するための
内炉壁α→と、該内炉壁0局の外周部を包囲する外炉壁
(国とから構成されており、この内炉壁α→と外炉壁(
15)によって囲まれた空隙部に内炉壁加熱用高熱室a
Qを形成すると共に、前記外炉壁(15)の一端部には
高熱ガス供給口αηを、回外炉壁(15)の他端部にガ
ス排出口(I8)を設けである。
In the embodiment of FIG. 3, 00 is a furnace. This furnace αO
There is no question about the type of 0υ is a heat collecting hood placed above the top opening of the furnace Q (Th. 0 is connected at one end to the exhaust port of the heat collecting hood 0υ, and the other end is connected to the outside of the aluminum melting furnace Q3. An air duct (F) is connected to the high-temperature gas supply port Q of the furnace wall (15), and (F) is a fan attached to the air duct (2). It consists of an inner furnace wall α→ for accommodating the inner furnace wall α→, and an outer furnace wall surrounding the outer periphery of the inner furnace wall α→, and an outer furnace wall
15) A high heat chamber a for heating the inner furnace wall is installed in the cavity surrounded by
A high-temperature gas supply port αη is provided at one end of the outer furnace wall (15), and a gas discharge port (I8) is provided at the other end of the supination furnace wall (15).

尚、前記内炉壁a4に設けたストッパー棒(7)、溶融
アルミニウム移送用導管(6)、不活性ガス供給用分岐
管(9)、加熱ヒータ(8)、及び冶金反応容器(1)
すどの構造は、第2図の実施例と同様である。
In addition, the stopper rod (7) provided on the inner furnace wall a4, the molten aluminum transfer conduit (6), the inert gas supply branch pipe (9), the heater (8), and the metallurgical reaction vessel (1)
The structure of the door is similar to the embodiment shown in FIG.

上記の構成に於いて、アルミニウム溶解炉03を稼動す
る場合、先ず溶解炉α騰の内炉壁(14)の内部に脱酸
用アルミニウム塊(A)を装入した後、ファン(F)を
作動させればよい。別設炉θOの稼動によって炉内から
は1000°C以上の高熱ガスが多量に発生してイルノ
テ、この高熱ガスは集熱フード(+1)へ送うれ、ファ
ン(F)の送風作用によって送気ダクト02を介して溶
解炉03の外炉壁(15)の高熱ガス供給口(171へ
強制的に送シ込まれる。溶解炉0.10内炉壁加熱用高
熱室θQに送られた高熱ガスは該高熱室OQを通過する
間に内炉壁θ4)を加熱し、その彼処炉壁(15)のガ
ス排出口(国を通じて外部へ排出される。
In the above configuration, when operating the aluminum melting furnace 03, first the deoxidizing aluminum ingot (A) is charged inside the inner furnace wall (14) of the melting furnace α, and then the fan (F) is turned on. All you have to do is activate it. Due to the operation of the separate furnace θO, a large amount of high-temperature gas of over 1000°C is generated from inside the furnace. The high-temperature gas is forcibly sent to the high-temperature gas supply port (171) of the outer wall (15) of the melting furnace 03 through the duct 02.The high-temperature gas is sent to the high-temperature chamber θQ for heating the inner furnace wall of the melting furnace 0.10. The gas heats the inner furnace wall θ4) while passing through the high-temperature chamber OQ, and is discharged to the outside through the gas outlet (the country) of the furnace wall (15).

高熱ガスが前記内炉壁加熱用高熱室0・を通過する間に
溶解炉の内部を高温に加熱するが、前記内炉壁θaの内
部に装入された脱酸用アルミニウム塊(A)の溶融点(
659°C)は比較的低いので、前記高熱ガスの熱量に
よって溶解され、溶融アルミニウム(B)が得られる。
While the high-temperature gas passes through the high-temperature chamber 0 for heating the inner furnace wall, the inside of the melting furnace is heated to a high temperature. Melting point (
659°C) is relatively low, the aluminum is melted by the heat of the high-temperature gas, and molten aluminum (B) is obtained.

この溶融アルミニウム(B)は、第2図の実施例と同様
に、溶融アルミニウム移送用導管(6)を通じて冶金反
応容器(1)内の溶鋼(Cj中に送り込まれ鋼中酸素を
脱酸する。
Similar to the embodiment shown in FIG. 2, this molten aluminum (B) is sent into the molten steel (Cj) in the metallurgical reaction vessel (1) through the molten aluminum transfer conduit (6) to deoxidize the oxygen in the steel.

第4図の実施例は第3図の変形実施例であって、アルミ
ニウム溶解炉(29)の炉壁胴部に螺旋状の高熱ガス通
過用通孔(30)を設け、該通孔(an)の一端開口部
に前記送気ダクト04の連結端部を接続し、同通孔(3
0)の他端開口部に排出ガスを外部へ導ひくだめの排気
ダクト0υの連結端部を接続した構造であって、前記針
θOから集熱フードθυ及び送気ダクト04全介して送
られて来た高熱ガスが溶解炉(2:+iの螺旋状の前記
通孔(測を通過する間に炉壁内部−を加熱するので、炉
内のアルミニウム塊(A)は溶解される。
The embodiment shown in FIG. 4 is a modified embodiment of the one shown in FIG. Connect the connecting end of the air supply duct 04 to one end opening of the same through hole (3
0) It has a structure in which the connecting end of the exhaust duct 0υ that guides and draws the exhaust gas to the outside is connected to the other end opening, and the exhaust gas is sent from the needle θO through the heat collection hood θυ and the air supply duct 04. The high-temperature gas heated inside the furnace wall while passing through the melting furnace (2:+i spiral through holes) melts the aluminum ingot (A) inside the furnace.

尚、溶解された溶融アルミニウム(+3) f7冶金反
応容器(1)に送り込んで鋼中酸素を脱酸するための構
造は、第2図の実施例と同様である。
The structure for feeding the molten aluminum (+3) into the F7 metallurgical reaction vessel (1) to deoxidize the oxygen in the steel is the same as the embodiment shown in FIG.

第5図の実施例は、アルミニウム溶解炉(19)の内部
に装入せる脱酸用アルミニウム塊(A)を炉o1がら導
いた高熱ガスによって直接加熱してこれを溶解する構造
である。即ち、溶解炉09)の炉内底部の湯溜り部(2
0)よシ若干上方の炉壁部に高熱ガス供給口(21)を
設けて、該高熱ガス供給口(21)を前記送気ダク) 
O’21に接続すると共に、同溶解炉(19)の他壁上
部にガス排出口(2匂を設け、また同溶解炉(19)の
炉底壁部に陽性出口(23Iを設けて、該陽性出口(2
3)を、開閉自在なストッパー(24)を介して前記溶
融アルミニウム移送用導管(6)に接続したものである
。前記針01から発生した多量の高熱ガスは、集熱フー
ドθυ及び送気ダクト0急を介して溶解炉(19)の高
熱ガス供給口(21)へ送シ込まれ、炉内室(20を通
過してガス排出口(2りから外部へ排出されるので、溶
解炉(19)の内部ノ炉底湯溜り部(イ))に装入せる
脱酸用アルミニウム塊(A)は前記高熱ガスによる炉内
室(25)の通過の間に直接加熱されて溶解される。
The embodiment shown in FIG. 5 has a structure in which a deoxidizing aluminum ingot (A) charged into an aluminum melting furnace (19) is directly heated and melted by high-temperature gas led from the furnace o1. That is, the melting furnace 09) has a melting pot (2) at the bottom of the furnace.
0) A high-temperature gas supply port (21) is provided in the furnace wall slightly above the furnace wall, and the high-temperature gas supply port (21) is connected to the air supply duct).
In addition to connecting to O'21, a gas outlet (2 gas outlets) is provided on the upper part of the other wall of the melting furnace (19), and a positive outlet (23I is provided on the bottom wall of the melting furnace (19)). Positive exit (2
3) is connected to the molten aluminum transfer conduit (6) via a stopper (24) that can be opened and closed. A large amount of high-temperature gas generated from the needle 01 is sent to the high-temperature gas supply port (21) of the melting furnace (19) through the heat collection hood θυ and the air supply duct 0, and is then pumped into the furnace interior (20). The deoxidizing aluminum ingot (A) to be charged into the internal furnace bottom sump (A) of the melting furnace (19) is discharged from the gas exhaust port (2) to the outside through the high-temperature gas. During its passage through the furnace chamber (25), it is directly heated and melted.

尚、溶解された溶融アルミニウム(B) k冶金反応容
器(1)に送り込んで鋼中酸素を脱酸するための構造は
、第2図の実施例と同様である。
The structure for feeding the molten aluminum (B) into the metallurgical reaction vessel (1) to deoxidize the oxygen in the steel is the same as the embodiment shown in FIG.

第6図は前記第5図の変形実施例であって、前記針00
から集熱フードθ刀及び送気ダクト0りを介して送られ
て来た高熱ガスなアルミニウム溶解炉−の上端開口部か
ら直接炉内に吐出して、該溶解炉(イ)の内部に装入せ
る脱酸用アルミニウム塊(A)を溶解する構造である。
FIG. 6 shows a modified embodiment of FIG. 5, in which the needle 00
The high-temperature gas sent from the aluminum melting furnace through the heat collection hood and the air duct is discharged directly into the furnace from the upper end opening, and is loaded into the inside of the melting furnace (a). It has a structure that dissolves the deoxidizing aluminum lump (A) that is introduced into the tank.

尚、(271は前記溶解炉(加)の周囲を包囲する状態
に設けたガス漏洩防止用防壁体であって、該防壁体9′
7)には、前記溶解炉(26)の内部に吐出された高熱
ガスを加熱後排出するためのガス排出口(281が設け
られている。
In addition, (271) is a gas leakage prevention wall provided to surround the periphery of the melting furnace (Ka), and this wall 9'
7) is provided with a gas discharge port (281) for discharging the high-temperature gas discharged into the interior of the melting furnace (26) after heating.

第7図の実施例は、アルミニウム溶解炉α1に収容され
た溶融アルミニウム(B)中に耐熱性浸漬ポンプ(P)
を深く浸漬し、該ポンプ(P)に接続された溶融アルミ
ニウム移送用導管(6)の他端部(611) f冶金反
応容器(1)内の溶鋼(C)中に深く没入した構造であ
って、前記耐熱性浸漬ポンプCP)によって吸引された
溶融アルミニウム(B)を冶金反応容器(1)内の溶鋼
(C)中に強制的に送シ込んで鋼中酸素を脱酸するもの
である0本実施例におけるその他の構造は、第3図の実
施例と同様である。
In the embodiment shown in FIG. 7, a heat-resistant immersion pump (P) is placed in molten aluminum (B) housed in an aluminum melting furnace α1.
The other end (611) of the molten aluminum transfer conduit (6) connected to the pump (P) is deeply immersed in the molten steel (C) in the metallurgical reaction vessel (1). The molten aluminum (B) sucked by the heat-resistant immersion pump CP) is forcibly pumped into the molten steel (C) in the metallurgical reaction vessel (1) to deoxidize the oxygen in the steel. 0 The other structures in this embodiment are the same as those in the embodiment shown in FIG.

尚、アルミニウム溶解炉の内部の溶融アルミニウム(B
)を冶金反応容器(1)内の溶鋼(C)中に深く送シ込
む手段として、第1図の如くアルゴンガスオたは窒素ガ
スなどの不活性ガスをアルミニウム溶解炉(2)の内部
に供給し炉内圧力を高めて溶融アルミニウム移送用導管
(6)全通して溶融アルミニウム(B)を圧送する構造
と、第2図乃至第6図の如く溶融アルミニウム移送用導
管(6)に不活性ガス供給用分岐管(9)を接続して、
該分岐管(9)より供給される不活性圧力ガスによって
溶融アルミニウム(B)を圧力助送する構造と、第7図
の如く耐熱性浸漬ポンプ(P)によって溶融アルミニウ
ム(B)を吸引移送する構造とがあるが、各実施例に於
いて上記の溶融アルミニウム(B)移送手段を相互に置
換変更することは任意に可能である。
It should be noted that the molten aluminum inside the aluminum melting furnace (B
) into the molten steel (C) in the metallurgical reaction vessel (1), an inert gas such as argon gas or nitrogen gas is supplied into the interior of the aluminum melting furnace (2) as shown in Figure 1. A structure in which molten aluminum (B) is pumped through the entire molten aluminum transfer conduit (6) by increasing the pressure inside the furnace, and an inert gas supply to the molten aluminum transfer conduit (6) as shown in Figures 2 to 6. Connect the branch pipe (9) for
It has a structure in which the molten aluminum (B) is pressure-assisted by an inert pressure gas supplied from the branch pipe (9), and the molten aluminum (B) is suction-transferred by a heat-resistant immersion pump (P) as shown in Fig. 7. Although there is a structure, it is possible to arbitrarily replace the above-mentioned molten aluminum (B) transfer means in each embodiment.

また、前記溶融アルミニウム移送用導管(6)の外周部
に設けた加熱ヒーター(8)は、前記導管(6)の内部
を通過する溶融アルミニウム(+3)の溶融状態を保つ
上で有効であるが、アルミニウム溶解炉から冶金反応容
器(1)へ移送する段階に於いて溶融アルミニウム(B
)が凝固する虞れのない場合は、前記加熱ヒーター(8
)を設けることは必ずしも要しない。従って、この加熱
ヒーター(8)の存否は、上記各実施例に於いて相互の
置換変更が任意に可能であり、第1図乃至第6図の実施
例に於いて加熱ヒーター(8)を設けない構造、或いは
第7図の実施例に於いて加熱ヒーター(8)を設けた構
造であっても、それぞれ実施可能である。
Further, the heater (8) provided on the outer periphery of the molten aluminum transfer conduit (6) is effective in maintaining the molten state of the molten aluminum (+3) passing through the inside of the conduit (6). , molten aluminum (B) is transferred from the aluminum melting furnace to the metallurgical reaction vessel (1).
) is not likely to solidify, the heating heater (8
) is not necessarily required. Therefore, the presence or absence of this heating heater (8) can be arbitrarily changed in mutual substitution in each of the above embodiments, and the heating heater (8) is provided in the embodiments shown in FIGS. 1 to 6. It is also possible to implement a structure in which the heater (8) is not provided, or a structure in which a heater (8) is provided in the embodiment shown in FIG.

本発明に係る鋼浴中膜酸処理装置は以上の如き構成であ
るから、下記の優れた諸効果を顕著に発揮するものであ
る。
Since the steel bath film acid treatment apparatus according to the present invention has the above-mentioned configuration, it significantly exhibits the following excellent effects.

a) アルミニウム溶解炉に溶融アルミニウム移送用導
管の一端部を接続し、同導管の他端部な冶金反応容器に
収容せる溶鋼中に深く没入して、溶融状態のアルミニウ
ムを直接鋼浴中に送り込むのテ、従来の如きアルミニウ
ムインゴットやブリケット状またはショット状などの脱
酸用アルミニウム加工品を製造する必要がない。
a) Connect one end of a molten aluminum transfer conduit to an aluminum melting furnace, immerse the conduit deeply into molten steel contained in a metallurgical reaction vessel at the other end, and feed molten aluminum directly into the steel bath. Therefore, there is no need to produce deoxidizing aluminum processed products such as aluminum ingots, briquettes, or shots as in the past.

1))  それ故、脱酸用アルミニウム加工品な製造す
るのに必要な各種機械設備が不要であることは勿論、そ
の製造作業及び脱酸用アルミニウム加工品の冶金反応容
器内への投入作業などが全く不要であるから、脱酸処理
に要する一連の作業工程の大巾な簡略化と、省力化及び
省人化を実現すると共に、脱酸処理工程の完全自動化を
可能にし、一連の脱酸処理作業に於いて大巾な゛コスト
ダウンを促し得る。
1)) Therefore, it goes without saying that the various mechanical equipment required to manufacture deoxidizing aluminum processed products is unnecessary, as well as the work of manufacturing them and putting the deoxidizing aluminum processed products into the metallurgical reaction vessel. Since there is no need for a series of deoxidation processes, it is possible to greatly simplify the series of work processes required for deoxidation treatment, save labor and manpower, and also make it possible to fully automate the deoxidation process. This can lead to significant cost reductions in processing operations.

C)  Lかも、溶融アルミニウム移送用導管を通じて
酸化精錬後の鋼浴中に溶融アルミニウムを直接送り込む
ので、この溶融アルミニウムは鋼中酸素と素早く反応し
てアルミナになる。それ故、従来の如き固形状の脱酸用
アルミニウム加工品の表面形状や大きさの差異に基因す
る酸化反応時間のバラツキを招来しないは勿論、酸化反
応時間を大巾に短縮すると−1(に、鋼浴中に送り込ま
れる脱酸用アルミニウムが溶融状態であるからアルミニ
ウムの歩留りを大巾に向上し、経済的に極めて有利であ
る。
C) Since the molten aluminum is directly fed into the steel bath after oxidation refining through the molten aluminum transfer conduit, the molten aluminum quickly reacts with oxygen in the steel to form alumina. Therefore, it goes without saying that variations in oxidation reaction time due to differences in surface shape and size of solid aluminum deoxidizing products as in the past do not occur, and if the oxidation reaction time is drastically shortened, -1 ( Since the deoxidizing aluminum fed into the steel bath is in a molten state, the yield of aluminum is greatly improved, which is extremely advantageous economically.

d) アルミニウムの溶解炉の上端間「」部に炉蓋全装
着して炉内を密閉すると共に、該炉内に不活性ガスを供
給して炉内圧力を高めて炉内の溶融アルミニウムを圧送
する構造、またはアルミニウム溶解炉の内部に装着した
耐熱性浸漬ポンプにょって溶融アルミニウムを移送する
構造では、アルミニウム溶解炉から冶金反応容器内部の
溶鋼中への溶融アルミニウムの移送がスムーズに行われ
る。
d) Attach the entire furnace lid between the upper ends of the aluminum melting furnace to seal the inside of the furnace, and at the same time supply inert gas into the furnace to increase the pressure inside the furnace and pump the molten aluminum inside the furnace. In a structure in which molten aluminum is transferred by a heat-resistant immersion pump installed inside the aluminum melting furnace, the molten aluminum is smoothly transferred from the aluminum melting furnace to the molten steel inside the metallurgical reaction vessel.

e) 溶融アルミニウム移送用導管に不活性ガス供給用
分岐管を接続して、該分岐管から供給されるアルゴンガ
ス等の不活性圧力ガスによって脱酸用溶融アルミニウム
を圧力助送する構造では、この不活性ガスは、鋼浴中へ
移送せる脱酸用溶融アルミニウムに対して圧力助送する
作用と共に、鋼浴中に送り込まれた溶融アルミニウムを
鋼浴中において拡散する作用とを併有する。それ故、拡
散された溶融アルミニウムは鋼浴中に分布混入せる酸素
とそれぞれ結合して酸化反応するので、溶融アルミニウ
ムの脱酸効果は極めて顕著であゆ、且つアルミニウムの
歩留シの向上を一層助長するものである。
e) In a structure in which an inert gas supply branch pipe is connected to the molten aluminum transfer pipe, and the molten aluminum for deoxidation is pressure-assisted by an inert pressure gas such as argon gas supplied from the branch pipe, this The inert gas has the function of pressurizing the deoxidizing molten aluminum to be transferred into the steel bath, as well as the function of diffusing the molten aluminum sent into the steel bath. Therefore, the diffused molten aluminum combines with the oxygen distributed in the steel bath and undergoes an oxidation reaction, so the deoxidizing effect of the molten aluminum is extremely significant and further helps improve the aluminum yield. It is something to do.

f)別設炉から発生せる多量の高熱ガスを導いてアルミ
ニウム溶解炉の炉壁を加熱し、該炉壁から伝達される高
熱によってアルミニウム溶解炉内部の脱酸用アルミニウ
ム塊を溶解する構造では、アルミニウムの溶融点が比較
的低いことと相俟て、アルミニウム溶解炉に別途加熱手
段を必要とせず、排熱利用によってその省エネルギ効果
は極めて顕著である。
f) A structure in which a large amount of high-temperature gas generated from a separate furnace is introduced to heat the furnace wall of the aluminum melting furnace, and the deoxidizing aluminum lump inside the aluminum melting furnace is melted by the high heat transmitted from the furnace wall. Coupled with the relatively low melting point of aluminum, there is no need for a separate heating means in the aluminum melting furnace, and the energy saving effect is extremely significant by utilizing waste heat.

g) 別設炉から発生せる多量の高熱ガスを導いてアル
ミニウム溶解炉の内部に直接吹き込んで炉内の脱酸用ア
ルミニウム塊を加熱し溶解する構造ではアルミニウム塊
の直接加熱によって溶解時間が大巾に短縮され、且つ排
熱の効率的な利用によって上記f)の効果を一層助長す
るものである。
g) In a structure in which a large amount of high-temperature gas generated from a separate furnace is directly blown into the interior of the aluminum melting furnace to heat and melt the deoxidizing aluminum ingot inside the furnace, the melting time is significantly increased due to the direct heating of the aluminum ingot. The above-mentioned effect (f) is further promoted by the efficient use of waste heat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第7図は本発明に係るそれぞれの各−実施例
を示す概略説明図である。 (1)は冶金反応容器、(2103(19)偉i (2
91はアルミニウム溶解炉、(4)は炉蓋、(5)は不
活性ガス供給管、(6)は溶融アルミニウム移送用導管
、(7)はストッパー棒、(8)は加熱ヒーター、(9
)は不活性ガス供給用分岐管、00は炉、0υは集熱フ
ード、(6)は送気ダクト、04)は内炉壁、(l15
1は外炉壁、aQは内炉壁加熱用高熱室、αηは高熱ガ
ス供給口、(18)はガス排出口、勾)は湯溜り部、(
2+1は高熱ガス供給口、(2りはガス排出口、(24
)はストッパー、(30)は高熱ガス通過用通孔、(A
)は脱酸用アルミニウム塊、(B)は溶融アルミニウム
、(C1は溶鋼、(P)は耐熱性浸漬ポンプである。 第1図 第2図
1 to 7 are schematic explanatory diagrams showing respective embodiments of the present invention. (1) is a metallurgical reaction vessel, (2103(19) Weii (2
91 is an aluminum melting furnace, (4) is a furnace lid, (5) is an inert gas supply pipe, (6) is a molten aluminum transfer pipe, (7) is a stopper rod, (8) is a heating heater, (9
) is the inert gas supply branch pipe, 00 is the furnace, 0υ is the heat collection hood, (6) is the air supply duct, 04) is the inner furnace wall, (l15
1 is the outer furnace wall, aQ is the high-temperature chamber for heating the inner furnace wall, αη is the high-temperature gas supply port, (18) is the gas discharge port, slope) is the hot water pool, (
2+1 is the high temperature gas supply port, (2 is the gas discharge port, (24
) is a stopper, (30) is a high-temperature gas passage hole, (A
) is an aluminum ingot for deoxidizing, (B) is molten aluminum, (C1 is molten steel, and (P) is a heat-resistant immersion pump. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 アルミニウム溶解炉に接続した溶融アルミニウム移
送用導管の他端部な冶金反応容器内に収容せる溶鋼中に
深く没入させたことを特徴とする鋼浴中膜酸処理装置。 2・ 前記アルミニウム溶解炉の上端開口部に炉内密閉
用炉蓋をノ1′?脱自在に装着し、該炒蒸に、炉内に通
じる不活性ガス供給管が接続されている特許請求の範囲
第1項記載の鋼浴中膜酸処理装置。 3、 前記アルミニウム溶解炉の内底部に耐熱性浸漬ポ
ンプを設け、該ポンプに前記溶融アルミニウム移送用導
管が接続されている特許請求の範囲第1項記載の鋼浴中
膜酸処理装置。 4、 前記溶融アルミニウム移送用導管の外周に沿って
加熱ヒーターが設けられている特許請求の範囲第1項乃
至第3項のいずれかに記載の鋼浴中膜酸処理装置。 5、 アルミニウム溶解炉に接続した溶融アルミニウム
移送用導管に不活性ガス供給用分岐管を分岐接続し、該
導管の他端部を冶金反応容器内に収容せる溶鋼中に深く
没入させたことを特徴とする鋼浴中膜酸処理装置。 6゜ 前記溶融アルミニウム移送用導管の外周に沿って
加熱ヒーターが設けられている特許請求の範囲第5項記
載の鋼浴中膜酸処理装置。 7、 炉から発生せる多量の高熱ガスをアルミニウム溶
解炉の炉壁に導いてこの炉壁な加熱すべく設け、前記ア
ルミニウム溶解炉に接続した溶融アルミニウム移送用導
管の他端部を冶金反応容器内に収容せる溶鋼中に深く没
入させたことを特徴とする鋼浴中膜酸処理装置・ 8、 前記アルミニウム溶解炉を、高熱ガス供給口及び
ガス排出口を有する外炉壁と、脱酸用アルミニウム塊を
収容する内炉壁とからなし、前記外炉壁と内炉壁の間に
高熱ガスを通過し得る内炉壁加熱用高熱室が形成されて
いる特許請求の範囲第7項記載の鋼浴中膜酸処理装置。 9 前記アルミニウム溶解炉の炉壁部に高熱ガス通過用
通孔が設けられている特許請求の範囲第7項記載の鋼浴
中膜酸処理装置。 10  炉から発生せる多量の高熱ガスをアルミニウム
溶解炉の内部に導いて炉内を直接加熱すべく設け、?t
I記アルアルミニウム溶解炉続した溶融アルミニウム移
送用導管の他端部を冶金反応容器内に収容せる溶鋼中に
深ぐ没入させたこと?特徴とする鋼浴中膜酸処理装置。 11、前記アルミニウム溶解炉の炉内底部の湯溜り部よ
り上方の炉壁部に高熱ガス供給(」及びガス排出口が設
けられている特許請求の範囲第10項記載の鋼浴中膜酸
処理装置。 12、前記アルミニウム溶解炉の上端開口部から高熱ガ
スを直接炉内に吐出すべく設けられている特許請求の範
囲第10項記載の鋼浴中膜酸処理装置。
[Scope of Claims] 1. A film acid treatment device in a steel bath, characterized in that the other end of a conduit for transferring molten aluminum connected to an aluminum melting furnace is deeply immersed in molten steel contained in a metallurgical reaction vessel. 2. Place a furnace lid for sealing the inside of the furnace at the top opening of the aluminum melting furnace. 2. The steel bath film acid treatment apparatus according to claim 1, wherein the apparatus is removably mounted and an inert gas supply pipe leading into the furnace is connected to the steamer. 3. The steel bath film acid treatment apparatus according to claim 1, wherein a heat-resistant immersion pump is provided at the inner bottom of the aluminum melting furnace, and the molten aluminum transfer conduit is connected to the pump. 4. The steel bath film acid treatment apparatus according to any one of claims 1 to 3, wherein a heating heater is provided along the outer periphery of the molten aluminum transfer conduit. 5. A branch pipe for supplying inert gas is branch-connected to a molten aluminum transfer pipe connected to an aluminum melting furnace, and the other end of the pipe is deeply immersed in molten steel contained in a metallurgical reaction vessel. Film acid treatment equipment in steel bath. 6. The steel bath film acid treatment apparatus according to claim 5, wherein a heating heater is provided along the outer periphery of the molten aluminum transfer conduit. 7. A large amount of high-temperature gas generated from the furnace is guided to the furnace wall of the aluminum melting furnace to heat the furnace wall, and the other end of the molten aluminum transfer conduit connected to the aluminum melting furnace is connected to the metallurgical reaction vessel. 8. The aluminum melting furnace has an outer furnace wall having a high-temperature gas supply port and a gas discharge port, and a deoxidizing aluminum The steel according to claim 7, wherein a high-temperature chamber for heating the inner furnace wall is formed between the outer furnace wall and the inner furnace wall, through which high-temperature gas can pass, which is separated from the inner furnace wall for accommodating the lump. In-bath membrane acid treatment equipment. 9. A film acid treatment apparatus in a steel bath according to claim 7, wherein the furnace wall of the aluminum melting furnace is provided with a through hole for passage of high-temperature gas. 10 A large amount of high-temperature gas generated from the furnace is introduced into the aluminum melting furnace to directly heat the inside of the furnace. t
I: Is the other end of the molten aluminum transfer conduit connected to the aluminum melting furnace deeply immersed in the molten steel contained in the metallurgical reaction vessel? Features: Film acid treatment equipment in steel bath. 11. Film acid treatment in a steel bath according to claim 10, wherein the aluminum melting furnace is provided with a high-temperature gas supply and a gas discharge port on the furnace wall above the sump at the bottom of the furnace. Apparatus: 12. The steel bath film acid treatment apparatus according to claim 10, which is provided to discharge high-temperature gas directly into the furnace from the upper end opening of the aluminum melting furnace.
JP15419682A 1982-09-04 1982-09-04 Device for deoxidizing in steel bath Granted JPS5943813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15419682A JPS5943813A (en) 1982-09-04 1982-09-04 Device for deoxidizing in steel bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15419682A JPS5943813A (en) 1982-09-04 1982-09-04 Device for deoxidizing in steel bath

Publications (2)

Publication Number Publication Date
JPS5943813A true JPS5943813A (en) 1984-03-12
JPS6233285B2 JPS6233285B2 (en) 1987-07-20

Family

ID=15578932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15419682A Granted JPS5943813A (en) 1982-09-04 1982-09-04 Device for deoxidizing in steel bath

Country Status (1)

Country Link
JP (1) JPS5943813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238322A (en) * 1986-04-09 1987-10-19 Sumitomo Metal Ind Ltd Deoxidizer for steel manufacture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725608A (en) * 1980-07-21 1982-02-10 Showa Electric Wire & Cable Co Method of producing foil conductor tape wire
JPS5773115A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Adding device for molten additive into molten steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725608A (en) * 1980-07-21 1982-02-10 Showa Electric Wire & Cable Co Method of producing foil conductor tape wire
JPS5773115A (en) * 1980-10-27 1982-05-07 Kawasaki Steel Corp Adding device for molten additive into molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62238322A (en) * 1986-04-09 1987-10-19 Sumitomo Metal Ind Ltd Deoxidizer for steel manufacture

Also Published As

Publication number Publication date
JPS6233285B2 (en) 1987-07-20

Similar Documents

Publication Publication Date Title
CS224701B1 (en) Method of refining of molten metals based on iron and equipment for execution of the method
CA1336136C (en) Process for feeding heat energy into a molten metal bath
EP0110809B1 (en) Process and installation for the treatment of steel in the ladle
RU2152437C1 (en) Process of metallurgical treatment of iron-carrying material and steel melting furnace
US6235084B1 (en) Method for decarburizing steels melts
UA41448C2 (en) Iron smelting process and plant according smelting process
US3650517A (en) Device for removing gas from molten metals contained in a ladle
JPS5943813A (en) Device for deoxidizing in steel bath
EP0011478B1 (en) Apparatus and process for the treatment of molten metal
KR100819126B1 (en) Method for producing stainless steels, in particular high-grade steels containing chromium and chromium-nickel
US4120696A (en) Process for the production of steel
US4456478A (en) Method of and apparatus for metallurgically treating molten metals
JPS5943812A (en) Method for deoxidizing steel bath
CN210560565U (en) Novel ladle refining furnace
US4094495A (en) Method and apparatus for the production of quality steels
US5762682A (en) Method and apparatus for processing ferrous materials
JPS6176607A (en) Steel making equipment by pre-refining of pig iron
CZ288467B6 (en) Process for producing steel in electric furnace with addition of molten pig iron
JPS61235506A (en) Heating up method for molten steel in ladle
US4511401A (en) Process for the treatment of molten metal
JPS6035408B2 (en) Continuous processing method and equipment for hot metal
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JPH0480316A (en) Method for decarburizing molten steel under reduced pressure
JPH05148528A (en) Apparatus and method for treating molten steel in manner of secondary metallurgy
JPS56114556A (en) Ladle degassing equipment