JPS5943619A - Piezoelectric ceramic element - Google Patents

Piezoelectric ceramic element

Info

Publication number
JPS5943619A
JPS5943619A JP57154203A JP15420382A JPS5943619A JP S5943619 A JPS5943619 A JP S5943619A JP 57154203 A JP57154203 A JP 57154203A JP 15420382 A JP15420382 A JP 15420382A JP S5943619 A JPS5943619 A JP S5943619A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
angle
piezoelectric
polarized
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57154203A
Other languages
Japanese (ja)
Other versions
JPH0145770B2 (en
Inventor
Kikuo Wakino
喜久男 脇野
Toshio Ogawa
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP57154203A priority Critical patent/JPS5943619A/en
Publication of JPS5943619A publication Critical patent/JPS5943619A/en
Publication of JPH0145770B2 publication Critical patent/JPH0145770B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02031Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain very simply a piezoelectric ceramic element having various characteristics, by designating an angle formed between a polarized axis of the polarized piezoelectric ceramic and an opposite direction of a pair of counter electrodes as a prescribed angle. CONSTITUTION:First, the polarized piezoelectric ceramic block 14 is prepared. The polarized axis of the piezoelectric ceramic block 14 is in the direction as expressed by the arrow A. Further, electrodes 15, 16 are electrodes formed for polarization processing. Then, the piezoelectric ceramic block 14 is sliced along a direction C having (90 deg.-theta) angle to the polarized axis A, that is, cut off. Further, the counter electrodes 12, 13 are formed on a pair of opposite surfaces in the slicing direction C of the piezoelectric ceramic 11 obtained through slicing, that is, on a pair of opposite surfaces of the piezoelectric ceramic 11 by an electrode forming method. Thus, the piezoelectric ceramic element 10 having various piezoelectric characteristics is obtained.

Description

【発明の詳細な説明】 イニの発明4J、DE電セラミクス素子に1司し、Hj
に分極軸方向に待i鮫を有する圧電セラミクス振動索子
に関する。
[Detailed Description of the Invention] Ini's invention 4J is based on DE electroceramics element, Hj
The present invention relates to a piezoelectric ceramic vibrator having a polarization axis in the direction of the polarization axis.

従来の圧電し・ラミクス素J−1”(’は、第1図に斜
視図(・示づように分極方向く第一1図の矢印Xで示1
゜)に平行な振動t−ド(厚み縦J1肋)、または第2
図に斜視図7゛示Jように方便方向に垂直な振わJl」
−ド〈厚み覆べり振動)のみが利用されてき/二。しか
し4fがL)、圧電セラミクスを構成する材料の組成に
よっては、これらの振動モードを利用できない場合があ
った。たとえば、いわゆる17丁系すなわちPb  (
Zr 、Ti )09系圧電セラミクス素子では、p 
b −T’ i Os側の組成やp bzr Os側の
組成でポアソン比の関係から通常の方法により厚み縦振
動でエネルギ閉じ込めを実現プることは不可能であった
。同様に、1−丁張“りなわちチタン酸鉛系セラミクス
では、厚みリペリ振動の基本波を閉込めることは司能で
あったが、厚み縦振動の基本波を閉込めることは不可能
であり、したがって厚み縦振動を利用づるととができな
かった。結果として、従来の圧電セラミクスでは、利用
振動モードおよび組成によって、誘電率、電気−機械結
合係数、機械的品質係数などの圧電定数が大きく制限さ
れていた。
Conventional piezoelectric/lamix element J-1''(' is a perspective view in Fig. 1).
゜) Vibrating t-do (thickness longitudinal J1 rib) parallel to
As shown in the perspective view 7, the swing is perpendicular to the convenient direction.
-Only the thickness overlapping vibration has been used/2. However, depending on the composition of the material constituting the piezoelectric ceramic (4f is L), these vibration modes may not be available. For example, the so-called 17-piece series, or Pb (
Zr, Ti) In the 09-based piezoelectric ceramic element, p
Due to the Poisson's ratio relationship between the composition on the b -T' i Os side and the composition on the p bzr Os side, it has been impossible to achieve energy confinement by thickness longitudinal vibration using the usual method. Similarly, in lead titanate ceramics, it is possible to confine the fundamental wave of thickness longitudinal vibration, but it is impossible to confine the fundamental wave of thickness longitudinal vibration. As a result, in conventional piezoelectric ceramics, piezoelectric constants such as permittivity, electromechanical coupling coefficient, and mechanical quality factor vary depending on the vibration mode and composition used. It was severely restricted.

また、従来の圧電ヒラミクス素子の周波数温度特性につ
いても、素子を構成する材料の組成と利用する振動℃−
ドにより一義的に定まつ−Cしよっていた。したがって
、任意の周波数温度特性の圧電セラミクス素子を作るに
は、無数の種類の組成で素子を試作・実験しなければな
らず、到底実施できるものではなかった。
Furthermore, regarding the frequency-temperature characteristics of conventional piezoelectric helical elements, the composition of the material constituting the element and the vibration used
-C was uniquely defined by the code. Therefore, in order to create a piezoelectric ceramic element with arbitrary frequency-temperature characteristics, it is necessary to prototype and experiment with elements with countless types of compositions, which has never been possible.

それゆえに、この発明の主たる目的は、従来の圧電しラ
ミクス素子では得られなかった様々な圧電定数を有する
圧電セラミクス素子を提供でることにある。
Therefore, the main object of the present invention is to provide a piezoelectric ceramic element having various piezoelectric constants that cannot be obtained with conventional piezoelectric ceramic elements.

この腎明の他の目的は、周波数温度特性が改善されたa
電セラミクス素子を提供することである。
Another purpose of this kidney light is that the frequency temperature characteristics are improved.
An object of the present invention is to provide an electroceramic element.

この発明は、要約すれは、分IM ffi理された)1
電セラミクスど、この圧電セラミクスを挾んて”形成・
された1対の対向電極とを備える圧電セラミクス素子に
J3いて、圧電セラミクスの分極軸と、1対の電極の対
向方向とのなり角度θが、 06くθく900 であることを特徴とする、圧電セラミクス素子である。
This invention is summarized as follows:1.
Electroceramics are formed by sandwiching this piezoelectric ceramics.
J3 is a piezoelectric ceramic element having a pair of opposing electrodes, and is characterized in that the angle θ between the polarization axis of the piezoelectric ceramic and the opposing direction of the pair of electrodes is 06×θ×900. , a piezoelectric ceramic element.

第3図は、この発明をより具体的に説明づるための略図
的側面図である。第3図を参照し−C1この発明の圧電
セラミクス素子10は、分極処理された圧電セラミクス
11と、この圧電セラミクス11を挾んで形成された1
対の対向電極12.13とを備えるが、圧電セラミクス
11の分14;軸(第3図において矢印Δで示す方向)
ど、1ズ・1の対向電極12.13の対向方向(第3図
に矢印口で示す方向)とのなづ角度θが、Oo<D<9
00にされ−(いる。
FIG. 3 is a schematic side view for explaining the invention more specifically. Referring to FIG. 3, the piezoelectric ceramic element 10 of the present invention includes a polarized piezoelectric ceramic 11 and a 1
A pair of opposing electrodes 12 and 13 are provided, and a portion 14 of the piezoelectric ceramic 11; axis (direction shown by arrow Δ in FIG. 3)
The angle θ between the opposing electrodes 12 and 13 of 1 zu 1 (the direction shown by the arrow in FIG. 3) is Oo<D<9
It was set to 00-(there.

このような構成を有りるこの発明の圧電セラミクス素子
10を作成する手順を第4図に従って説明する。まず、
分極処理された圧電セラミクスブロック14を用意する
。この圧電セラミクスブ【」ツク14の分極軸は矢印Δ
で示す方向にある。また15.16は分tfi処理のた
め(、二形成さ4tた電極である。次いで、圧電セラミ
クスブ1」ラクト1を分極軸△と角度90°−θ(後述
するスライス角)をなす方向Cに沿ってスライス″?J
なゎち切断する。
The procedure for producing the piezoelectric ceramic element 10 of the present invention having such a configuration will be explained with reference to FIG. first,
A polarized piezoelectric ceramic block 14 is prepared. The polarization axis of this piezoelectric ceramic block 14 is indicated by the arrow Δ
It is in the direction shown. In addition, 15.16 is the electrode that was formed (2 and 4t) for the TFI process.Next, the piezoelectric ceramic block 1' was moved in the direction C that made an angle of 90°-θ (slice angle to be described later) with the polarization axis △. Slice along”?J
Nawachi cut it off.

そして第5図に示すように、スライスして得られた圧電
セラミクス11のスライス方向Cの面、つまり圧電セラ
ミクス11の1対の対向面一1−に公知の電極形成方法
により、対向電極12.13を形成することによって圧
電セラミクス素子1oを得ることができる。
Then, as shown in FIG. 5, counter electrodes 12. are formed on the surfaces of the piezoelectric ceramic 11 obtained by slicing in the slicing direction C, that is, on the pair of opposing surfaces 1-1- of the piezoelectric ceramic 11, by a known electrode forming method. By forming 13, the piezoelectric ceramic element 1o can be obtained.

したがって、圧電セラミクス11の分極軸と1月の対向
電極12,1ζ3の対向方法どのなす角度θは、圧電セ
ラミクス11を切り出すスライス角(90’〜θ)と相
関関係にあるということができろ。
Therefore, it can be said that the angle θ formed by the polarization axis of the piezoelectric ceramic 11 and the opposing method of the opposing electrodes 12, 1ζ3 has a correlation with the slice angle (90' to θ) at which the piezoelectric ceramic 11 is cut out.

この発明に用いら11.るII電セラミクスとしては、
Pi)  (Zr 、 T i )03系セラミクス、
1つbl−io、系セラミクスなど分極処理が可能な圧
電セラミクス全てを用いることができる。
11. Used in this invention. As II electric ceramics,
Pi) (Zr, Ti)03 series ceramics,
All piezoelectric ceramics that can be polarized, such as BL-IO and ceramics, can be used.

友通旦」− P b Z I’ o、s2 −T’ i o/Jg 
Os 十〇 −5重量%のCr2O3の組成の粉体を調
合し、湿式混合ミルで20時間混合し、脱水箋850°
Oに2時間保持して仮焼を行なった。次に、バインダを
加えて粉砕−M粒した後に、35mmx 35mmx 
12mmの大きさのブロックに成形した。このようにし
゛C成形したブロックを、1250℃で2時間保持し焼
成したつ焼きトげられたセラミックブ(]ツクは、30
mmx 3 Qv++x 1Qmmの人ささを有してい
た。焼成したセラミックブしコックの両面に、800 
’CT’分極処理用銀電極を形成し、次にε30℃て3
 K V 、−’mmの直流電弄を印加し−(1時間保
持することにより分極処理を行なった。次に、分極軸方
向と角度90’−0をなり一方向に廿ラミックブロック
をスライスした。なJ3、分極軸と対向電極とのなJ角
度θとして、36.30o、45’ 、60” J:i
cJ:び85°の5種類の角度を設定し、ぐれU41の
角度θに対応する試料を青た。イれらの各試料に真空蒸
着法で、直径1へ・2n+n+の対向電極を形成(〕た
Friend Tsudan” - P b Z I' o, s2 - T' io/Jg
Os 10 Powder with a composition of -5% by weight of Cr2O3 was prepared, mixed in a wet mixing mill for 20 hours, and dehydrated at 850°.
Calcination was carried out by holding in O for 2 hours. Next, after adding a binder and crushing it into M grains, 35 mm x 35 mm x
It was molded into a block with a size of 12 mm. The thus-formed block was held at 1250°C for 2 hours and fired to produce a ceramic block with a temperature of 30°C.
It had a size of mmx 3 Qv++x 1Qmm. 800 on both sides of the fired ceramic cock.
Form a silver electrode for 'CT' polarization treatment, and then
Polarization was performed by applying a DC voltage of KV, -'mm and holding it for 1 hour.Next, the ramic block was sliced in one direction at an angle of 90'-0 to the polarization axis direction. J3, J angle θ between the polarization axis and the counter electrode is 36.30o, 45', 60'' J:i
Five types of angles, cJ: and 85°, were set, and the sample corresponding to the angle θ of the groove U41 was blue. A counter electrode with a diameter of 1 to 2n+n+ was formed on each of these samples by vacuum evaporation.

以上のようにして準備された各試[1についで、減衰は
一周波数持性を調べたところ、第1表(こ示づ結果が行
られた。
For each trial [1] prepared as described above, the attenuation was investigated for its one-frequency stability, and the results are shown in Table 1.

第1表 O:使用可能△、レスポンス右りx : Is>出不用
第1表かlう明らかなように、角度θがIl、 5°以
不の角度で、厚み組j族動モー1〜(丁り七−ド)を利
用3することl〕でさ、角度が30°以上で、〃みリベ
リ振動1m−−1〜(丁Sモード)を利用し得ることが
理解される。な4−3、第1表τΔて示す「レスポンス
右り]の状態は、振動IJ検出司1)ピであるが、利用
し1qるほどの振動ではない状態を示す一0参11まで
に、θ−60° (スライス角305〉の場合の減食量
−周波数特性を第6図【こ、ならびにθ−30° (ス
ライス角60°)の場合の減衰最−周波数特性を第7図
にそれぞれグラフで示づ。
Table 1 O: Usable △, response right direction It is understood that it is possible to utilize the Libery vibration 1 m-1 ~ (the S mode) when the angle is 30 degrees or more. 4-3, the "response right" state shown by τΔ in Table 1 indicates that the vibration IJ detector 1) is strong, but the vibration is not strong enough to use 1q. Figure 6 shows the amount of food loss vs. frequency characteristic when θ-60° (slice angle 305〉), and Figure 7 shows the attenuation maximum frequency characteristic when θ-30° (slice angle 60°). Shown in

次に、各角度θの試料について、誘電損失l’anδ、
誘電率ε、電気機械結合係数に、機械的量l′!係数Q
m、周波数定数fc、共振周波数温度係数Cfr、反共
振周波数温度係数Cfaを測定した。この結果を、第2
表に示す。
Next, for the sample at each angle θ, the dielectric loss l'anδ,
The dielectric constant ε, the electromechanical coupling coefficient, and the mechanical quantity l'! Coefficient Q
m, frequency constant fc, resonant frequency temperature coefficient Cfr, and anti-resonant frequency temperature coefficient Cfa were measured. Apply this result to the second
Shown in the table.

第2表 角度θ(スライス角90°−θ)と圧電特性(厚み縦・
すべり振1り[:直径1mmの対向Fri極での厚み縦
振動モードの圧電定数1<、5弓  〃7)    厚
みすべり振動モードの圧電定数1−anδ;誘電損失、
ε:誘電率、1(:電気機械結合係数Qm  ;懇緘的
品質係数、fc;周波数定数Crr ;共振周波数温度
係数、Cra;反共振周波数温度係数第2表から明らか
なように、この実施例の圧電セラミクス素子では、角度
θ(スライス角度90°−θ)を適宜変更することによ
り、様々な圧電特性の圧電セラミクス素子を、組成を変
えることなく実現できることが理解されるであろう。し
たがって、従来の圧電セラミクス素子のように、組成を
微妙に多段階に変えて試作・実験づる必要【よもはやな
い。
Table 2 Angle θ (slice angle 90° - θ) and piezoelectric properties (thickness longitudinal/
Shear vibration 1 [: Piezoelectric constant of thickness longitudinal vibration mode with opposing Fri poles of 1 mm diameter 1 <, 5 bows 〃7) Piezoelectric constant of thickness shear vibration mode 1-anδ; Dielectric loss,
ε: dielectric constant, 1 (: electromechanical coupling coefficient Qm; friendly quality factor, fc; frequency constant Crr; resonant frequency temperature coefficient, Cra; anti-resonant frequency temperature coefficient, as is clear from Table 2, this example It will be understood that piezoelectric ceramic elements with various piezoelectric characteristics can be realized without changing the composition by appropriately changing the angle θ (slice angle 90° − θ). Unlike conventional piezoelectric ceramic elements, it is no longer necessary to subtly change the composition in multiple stages and conduct prototype production and experiments.

また、第2表に示した共振周波数温度係数C[1゛およ
び反共振周波数温度係数Cfaを、角度θを横軸として
、第8図にグラフで示づ。第8図から明らかなように、
共振周波数温度係数Cfrおよび反共振周波数温度係数
(Jaは、角度θを変更することにより、変化すること
が理解されるであろう。
Further, the resonant frequency temperature coefficient C[1'' and the anti-resonant frequency temperature coefficient Cfa shown in Table 2 are shown graphically in FIG. 8 with the angle θ as the horizontal axis. As is clear from Figure 8,
It will be appreciated that the resonant frequency temperature coefficient Cfr and the anti-resonant frequency temperature coefficient (Ja) change by changing the angle θ.

したがって、所望の共振周波数温度係数Cfrを有する
圧電セラミクス素子を極めて簡単に得ることができる。
Therefore, a piezoelectric ceramic element having a desired resonant frequency temperature coefficient Cfr can be obtained very easily.

また、角度θ60’の場合の厚みJべり振動モードでの
周波数温度変化を示づ第9図および角度087°の場合
の厚みすべり振動モードでの周波数温度変化を示す第1
0図から明らかなように、角度θを変えることにより、
周波数温度変化をも任意に選び得ることが理解されるで
あろう。
Figure 9 shows the frequency temperature change in the thickness J-shear vibration mode when the angle is 60', and Figure 1 shows the frequency temperature change in the thickness shear vibration mode when the angle is 087°.
As is clear from Figure 0, by changing the angle θ,
It will be appreciated that the frequency temperature change may also be chosen arbitrarily.

実施例2 −Y述の実施例゛1と同様の工程で、角度θが3°、3
0°、45°、60°おJ、び85°の5種類の月−電
セラミクス素子を、P b 、7y  l−a o、;
o T’ i 03+o、5重量%Ml102の組成で
作成した。このJ:うにし−で作成した圧電セラミクス
素子について、減表吊−周波数特性を調べたところ、第
3表に示J結宋が得られた。
Example 2 - In the same process as in Example 1 described in Y, the angle θ is 3°, 3
Five types of Tsukiden ceramic elements of 0°, 45°, 60°, J, and 85° were prepared as follows: P b , 7y l-a o;
o T' i 03+o, 5% by weight Ml102. When the piezoelectric ceramic element made of this J: sea urchin was examined for its reduced table suspension frequency characteristics, the J results shown in Table 3 were obtained.

第3表から明らかなように、角度03°から45°ぐ、
従来不可能であった「)−■−系セラミクスで厚み縦振
動し一ドを利用し行るごとが叩解されるであろう。
As is clear from Table 3, the angle ranges from 03° to 45°.
Conventionally, it would be possible to beat the ``)-■- type ceramics by vertically vibrating the thickness and making use of the same force.

実施例3 実施例1と同様にして、1〕71系セラミクス1なわら
Pb ZrxTi+−’X  Os +0.51fa%
Cr2Oを用いて、組成および角度θを変化さ+1℃圧
電セラミクス素子を作成し、振動−周波数特性を測定し
た。結果を、第4表に示づ。
Example 3 In the same manner as in Example 1, 1] 71 series ceramics 1 straw Pb ZrxTi+-'X Os +0.51fa%
Using Cr2O, piezoelectric ceramic elements were fabricated at +1° C. with different compositions and angles θ, and their vibration-frequency characteristics were measured. The results are shown in Table 4.

1厚“縦   □層            11第4
表から明らかなように、角度θを(30’にすることに
より、組成がPb Zr O,側あるいは1N)1−i
03側のいずれの場合にも厚み縦振動モードを利用し得
ることが理解されるであろう。たとえばX=0.20の
組成では、角度Oを、5゜かrう(30′″に変えるこ
とにより、厚み縦振動し一ドを閉込めることが可能どな
っC−いる。また、角度θが30°・へ−87°の範囲
では、組成が変化しても常に厚みすべり振動り一ドを利
用し冑ることが理解されるであろう。
1 thickness vertical □ layer 11 4th
As is clear from the table, by setting the angle θ to (30'), the composition changes to Pb Zr O, side or 1N) 1-i
It will be understood that the thickness longitudinal vibration mode can be utilized in any case on the 03 side. For example, in a composition where It will be understood that in the range of 30° to -87°, the thickness shear vibration limit is always utilized even if the composition changes.

以上のように、この発明によれば、分極された圧電セラ
ミクスの分極軸と、1対の対向電極の対向り向とのなづ
角度Oが、0°</7<9Q’であるため、従来の圧電
セラミクス素子では決しU 4+Wられ4I:かった様
々な特性を有1−る圧電セラミクス素子を、極めて簡単
に得ることが可能どなる。また、[)Z下糸あるいはP
l−系圧電セラミクスで従来利用不可能であった閉込め
振動上−ドを利用することが可能どなり、圧電セラミク
ス素子の利用範囲をより広範なものどするごとができる
。ざらに、角度θを適宜Sり定することにより、任意の
周波数温度特性の11−電セラミクス素J″−’E (
”=iることb可能となる。
As described above, according to the present invention, since the angle O between the polarization axis of the polarized piezoelectric ceramic and the opposing sides of the pair of opposing electrodes is 0°</7<9Q', It is now possible to extremely easily obtain piezoelectric ceramic elements having various characteristics such as U4+W, 4I:, and 1-, which conventional piezoelectric ceramic elements never had. Also, [)Z bobbin thread or P
It is now possible to utilize a confined vibration top, which has not been available in the past, with l-based piezoelectric ceramics, and the range of use of piezoelectric ceramic elements can be expanded further. Roughly, by appropriately setting the angle θ, the 11-electroceramic element J''-'E (
”=i and b become possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の圧電セラミクス素子を示すil視図で
ある。第2図は、同じ〈従来の圧電しラミクス索子を示
す斜視図ぐある。第33図は1.二の発明のJ3E電セ
ラミクス素子を説明するための略図的側面図である。第
4図)よ圧電pラミクスブ11ツクから、この発明の)
f電しラミクス桑子を切り出り状態を示す略図的側面図
を示す。第5図は圧電セラミクスブロックから切り出し
た圧電セラミクスに?1ftfiを形成して圧電セラミ
クス素子を形成tノだ略図的側面図を示寸。第6図は、
角曵60°の場合の振動−周波数特性を示覆グラノ(゛
ある3、第7図は、角度θが30°の場合の振動−周波
数特性を示すグラフである。第8図は、スラ、イス角と
周波数温度係数どの関係を示すグラノである1、第9図
は、角度60°の場合の厚みづべり振動L−ドでの周波
数温度変化を示1グラフである。第10図は、角度87
°゛の場合の厚みすべり振動Tニー1〜−(゛の周波数
温度変化を示すグラノ−(ある。 図にJ3いて、10は圧電セラミクス素子、11は圧1
セラミクス、12.13は1対の対向電極、θは、分w
i軸と対向T1(6の対向方向どのなり角度を示ず。 特許出願人 株式会社村田製作所 代  理  人  弁理士  深  児  久  部(
ほか2名) −17− 89 T j6←)「] 1 ・ 1人1 −Lラ 数 (MHz) 珀8図
FIG. 1 is an il perspective view showing a conventional piezoelectric ceramic element. FIG. 2 is a perspective view of the same conventional piezoelectric lamic cord. Figure 33 shows 1. It is a schematic side view for explaining the J3E electroceramics element of the second invention. Fig. 4) From the piezoelectric p-laminate block 11 of this invention)
A schematic side view showing a state in which an electric lamic mulberry tree is cut out is shown. Figure 5 shows piezoelectric ceramics cut out from a piezoelectric ceramic block? A schematic side view of the piezoelectric ceramic element formed by forming a 1ftfi is shown. Figure 6 shows
Figure 7 is a graph showing the vibration-frequency characteristics when the angle θ is 30 degrees. Figure 8 is a graph showing the vibration-frequency characteristics when the angle θ is 30 degrees. Figure 9 is a graph showing the relationship between the chair angle and the frequency temperature coefficient. Figure 9 is a graph showing the frequency temperature change in the thickness vibration L-mode when the angle is 60°. Figure 10 is angle 87
In the figure, J3 shows the piezoelectric ceramic element, 11 is the piezoelectric ceramic element, and 11 is the piezoelectric ceramic element.
Ceramics, 12.13 is a pair of opposing electrodes, θ is minute w
The angle between the i-axis and the opposing direction of T1 (6 is not shown.
and 2 others) -17- 89 T j6 ←) "] 1 ・ 1 person 1 -L La number (MHz) 珀8 figure

Claims (1)

【特許請求の範囲】[Claims] 5)極処理された圧電セラミクスと、この圧電セラミク
スを挾んC形成された1対の対向電極とを備える圧電ヒ
ラミクス京子に43いて、11を元圧゛ぷセラミクスの
分極軸と、前記1対の電極の対向方向どのなす角度θが
、0’<o<9Q°Cあることを特徴どする、圧電しラ
ミクス素子。
5) A piezoelectric ceramic Kyoko comprising a polar-treated piezoelectric ceramic and a pair of opposing electrodes formed by sandwiching the piezoelectric ceramic, is connected to the polarization axis of the ceramic, and the polarization axis of the ceramic is A piezoelectric lamics element, characterized in that the angle θ between the opposing directions of the electrodes satisfies 0'<o<9Q°C.
JP57154203A 1982-09-03 1982-09-03 Piezoelectric ceramic element Granted JPS5943619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57154203A JPS5943619A (en) 1982-09-03 1982-09-03 Piezoelectric ceramic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57154203A JPS5943619A (en) 1982-09-03 1982-09-03 Piezoelectric ceramic element

Publications (2)

Publication Number Publication Date
JPS5943619A true JPS5943619A (en) 1984-03-10
JPH0145770B2 JPH0145770B2 (en) 1989-10-04

Family

ID=15579092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57154203A Granted JPS5943619A (en) 1982-09-03 1982-09-03 Piezoelectric ceramic element

Country Status (1)

Country Link
JP (1) JPS5943619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017023A1 (en) * 1989-05-27 1990-11-29 Murata Manufacturing Co PIEZOELECTRIC DEVICE WITH VIBRATION DIRECTION IN THICKNESS EXTENSION AND METHOD FOR THEIR PRODUCTION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123287A (en) * 1974-03-15 1975-09-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123287A (en) * 1974-03-15 1975-09-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4017023A1 (en) * 1989-05-27 1990-11-29 Murata Manufacturing Co PIEZOELECTRIC DEVICE WITH VIBRATION DIRECTION IN THICKNESS EXTENSION AND METHOD FOR THEIR PRODUCTION
DE4017023C2 (en) * 1989-05-27 1999-04-08 Murata Manufacturing Co Piezoelectric device with direction of oscillation in thickness and method for its production

Also Published As

Publication number Publication date
JPH0145770B2 (en) 1989-10-04

Similar Documents

Publication Publication Date Title
JP3259677B2 (en) Piezoelectric ceramic composition
JP5355148B2 (en) Piezoelectric material
JP3874229B2 (en) Piezoelectric ceramics and piezoelectric device using the same
Horchidan et al. A comparative study of hard/soft PZT-based ceramic composites
JP2007173679A (en) Piezoelectric ceramic, its manufacturing method, piezoelectric resonator, and its manufacturing method
US20160340255A1 (en) Oxygen conducting bismuth perovskite material
US4255272A (en) Method for producing piezoelectric ceramics
Takeuchi et al. Rare-earth substituted piezoelectric PbTiO3 ceramics for acoustic wave applications
JPS5943619A (en) Piezoelectric ceramic element
US5833875A (en) Piezoelectric ceramics
JPH01148749A (en) Piezoelectric ceramic composition for actuator
JP2003095737A (en) Piezoelectric ceramic composition
Tawfik Elastic properties and sound wave velocity of PZT transducers doped with Ta and La
Yuhuan et al. Dielectric and pyroelectric properties of a PbTiO3 ceramic series modified by Mn, Nb, and Ce
JP3781317B2 (en) Piezoelectric ceramic material
Kumar et al. Dielectric and Pyroelectric Properties of Ferroelectric SBN–PVDF Composites Prepared by Hot‐Uniaxial Press
US3769218A (en) Piezoelectric ceramic compositions
Fuierer et al. Electric field assisted hot forging of bismuth titanate
JP3559221B2 (en) Ferroelectric ceramic material having strong piezoelectric properties and method of manufacturing the same
JPH0782022A (en) Ceramic with orientation and its production
JP3802611B2 (en) Piezoelectric material
WO2022153800A1 (en) Piezoelectric element
WO2024070625A1 (en) Lead-free piezoelectric composition and piezoelectric element
KR20010105276A (en) Piezoelectric ceramic compact and piezoelectric ceramic device
Acharya et al. Ferroelectric investigation of tungsten bronze lead barium lanthanum niobate ceramics with high d33 values